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Abstract: A microgrid is defined as an independent power network that uses distributed energy resources to
provide grid backup or off-grid power to meet the load demand. Microgrids play an important role in managing
and controlling the distributed generation. It is very important to maintain the quality of power for the
organizations such as data centers, hospitals and airports that rely on 24/7 access to uninterrupted power to
operate efficiently. Hence, in a microgrid, it is essential to maintain the power balance in load-demand for
stability. Balancing the power becomes even more important as the microgrid is operating with a limited supply
to the load demand. Control techniques are used for power balancing in microgrid also to have smooth and
reliable operation. The proposed work involves in the development of power management scheme for microgrid
comprising of solar and wind as the input sources along with battery for backup. As per load requirement, the
detailed sizing of microgrid components was carried out using HOMER Pro software. Dual Input Single Output
(DISO) DC-DC converter and an inverter were designed and simulated using MATLAB Simulink. To manage
the power flow from source to load, local and global controllers were implemented. Local controller was used
to control the dual-input converter switches. The battery with Bi-directional DC-DC Converter (BDC) was used
to control the charging and discharging process of the battery and the inverter controller was used to control
the inverter based on the output AC voltage. Finally, the global controller manages the control of the entire
microgrid for efficient power management.
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I.  Introduction

The exponential population increase, economic expansion and increase of production capacity in the
industrial sector needs increase in power demand. The application of distribution generation is growing
widespread, as the use of renewable energy sources overcome the restrictions. Microgrid is a cluster of energy
distribution and storage devices works either in grid mode or in islanded mode [1]. Microgrid is a new energy
source and grid management technology that has emerged at the end of last century provides power with
distributed generation systems and is capable to operate even under the failure of the main grid. In addition, the
use of local sources of energy to serve local loads helps to reduce energy losses in transmission and distribution
and hence improves the efficiency. Microgrid is often used as supplement to the main power grid during heavy
demand [2].

Microgrid includes many sources like solar, wind, hydro, fuel cell, diesel generator etc., all these
multiple sources increase the complexity of power system considerably. Each distributed energy source in a
microgrid shares active and reactive power to maintain the systems voltage and frequency. It is critical to
examine the overall system performance with various types of loads available on the distributed system. The
distribution of load raises issues like power quality, power flow balancing and stability of microgrids [3]. There
are different strategies for power management such as linear control and nonlinear control. Linear control
methods are Proportional Integral (P1), Proportional Resonant (PR) and field-oriented controllers. Non-Linear
controls such as artificial neural network-based algorithms, Adaptive Practical Swarm Optimization (APSO)
algorithm, Fuzzy logic-based algorithm, Predictive algorithm etc. These controllers are used to monitor and
balance the generation and consumption of energy in an electrical network [4]. The controller has to be fast
enough to calculate and take necessary action with the least delay in case of automatic action. In microgrid, the
power management system is essential for optimal use of distributed energy resources in intelligent, secure,
reliable and coordinated ways.

I1. Design & Analysis of Microgrid Components
Traditional microgrids are becoming strained as demand for energy is increasing. It is essential to
maintain the power supply-demand balance for stability as it is difficult to predict power generation from
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renewable resources. The supply-demand balancing problem becomes even more important as the microgrid is
operating in stand-alone mode with a limited supply. The objectives of the project are to optimize the sizing of
microgrid components. To design, analyse and simulate dual input and single output DC-DC converter. And to
develop controller for power flow management.

Sizing of Microgrid Components using HOMER

Sizing is first step in development of a power management strategy. The load of 25KWis considered
here. A battery is used for backup purpose. Based on the load profile, the sizing of each component is calculated
using a HOMER software. The load profile menu displays the graphical load data and summary statistics for the
considered load. Electrical load data is modified based on the load requirement on the daily basis, hour-by-hour
basis on the left side of the menu as shown in the Fig 1. Load profile window also shows the per day electricity
consumption in the month of January. In detail the monthly consumption and the annual consumption data is
also evaluated.
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Figure 1. Electrical Load Page in HOMER

Solar Global Horizontal Radiation (GHI) Resource
The solar GHI resource window allows to specify the GHI for each time step in the HOMER
simulation. The GHI is the total amount of solar radiation striking the horizontal surface on the earth. HOMER

calculates the global solar radiation incident on the surface of the PV array is shown in the Fig 2.
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Figure 2: Solar GHI Resource in HOMER
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Wind Resource
The availability of wind speed annually is shown in the Fig 3. HOMER uses these data to calculate the
output of the wind turbine in each time steps. The annual average wind resource data is available on the

HOMER. HOMER displays the annual average wind resource calculated using baseline data in the table and
graph.
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Figure 3: Wind Resource in HOMER
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Schematic Circuit of Microgrid

The connection of components in the microgrid includes PV panels, wind turbine and battery that are
connected to DC bus. Battery is bidirectional. The converter is connected between DC and AC bus. Load is
taken from AC Bus bar as shown in the Fig 4.
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Figlure 4: Components Connection in Microgrid

Design of Dual-Input Single Output Buck Converter

Dual-input single output DC-DC converter simultaneously draws energy from two sources and
provides single output power. The power ratios are derived from each source and maintained constant. A non-
isolated DI DC-DC buck converter in continuous conduction mode (CCM) is designed [9]. Two inputs are
combined to form dual-input DC-DC converter. The Table 1 shows the specification of dual-input buck
converter used for a proposed microgrid. The specification values are selected according to the HOMER results.
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Table -1: Dual Input Converter Specification

Solar plant | Wind plant | Unit
Input Voltage 800 750 \Y/
Output Voltage 640 640 \Y/
Output Power 6.5 5.5 KW
Switching Frequency 150 150 KHZz

Design of Load Resistor R and Output Current I,
The output current and load resistance are calculated using output voltage and power as described in
specification Table 1.

Vo? (640)?

Load resistance (R.) = 2o = 5000 16.38 ohms (1)
Po — 025000

Load current (I,) = — = ——=39.06 Amps 2

Vo 640

Duty Ratio

The key to the analysis of the duty ratio is to check the inductor current and voltage flow in the switch for D
cycle and for (1-D) cycle. The required duty cycle is higher to compensate for the voltage drop across the
switch, diode and inductor in order to regulate output voltage. The duty cycle is a ratio of output voltage to input
voltage is calculated as follows

Yo __640 _35 A3)

Vin~ 800+980
Design of Inductor

The inductor L, is chosen such that the inductor ripple current A, is practically 30% of the load current. It must
also meet the L, inductance requirements.

(1-D)*R;, _ (1-0.35)%16.38
Liin= = =355uH 4

min 2%fs 2%150%103 H (4)
(Vs—IoRps—Iorr,—V0)*D _ (1780—(39.06%1.45)—(39.06+0.005)—640)+0.35

L= Al +fs 11.75150%103
Design of Capacitor

The capacitor of a buck converter is calculated as
C= (Vo+Vf+AI(;*rL)*(1—D) - (640+1.1+32.f6*0.005)*(0.65) =107.21 uF ©)
SL*V_O"*fsz 8*216u*m*(150*103)2

Selection of the IGBT

In any application, the appropriate IGBT considers the reduction of losses. Losses are affected by current, duty
cycle, switching frequency, switching rise and fall times. The selection of an IGBT is typically based on the
device rating and its ability to handle the systems power. The required high breakdown voltage Ve is > Vin,
and the collector current I¢ is <Io, based on the above analysis.

Selection of the Diode

The reverse breakdown voltage V., the forward voltage drop Vs and the forward current I; are the factors
influences for diode selection. The OFF time of the diode is critical in high frequency applications in terms of
efficiency. It is necessary to have a high reverse breakdown voltage V, > V;, (diode stress as the switch is
closed). It is necessary to have a lower forward voltage drop Vs and a higher forward current I;.

Design of Bi-Directional DC-DC Converter (BDC)

Specification values are selected according to HOMER results.

=216uH (5

Table -2: Specification of Bidirectional converter in Battery system

Symbol | Value | Unit
Input Voltage V; 300 \Y
Output Voltage A 640 \Y
Output Power P, 25 KW
Switching Frequency fe 30 KHZ
o  The capacitor value is calculated as follows
C=——Al,T = ——*12*0.05m = 117.18 uF @
8AV 8+0.64
o The inductor is chosen based on the circuit's working mode (CCM or DCM) and the current ripple
demand.
_ (1-05)T% _ (1-0.5)(0.05m)? _
L= gcslVC T ga117.18pu 4222 T 1.33mH ®)
Vo 640
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Proportional Integral (Pl) Controller

A P.1 Controller is a feedback control loop that calculates an error signal by subtracting the difference
between a system's output and the set point, in case the power drawn from the battery. The set point is the power
level at system to operate ideally. And the system is made to operate near maximum power without triggering
the power limiter. The transfer function is implemented directly in the software package like MATLAB
Simulink this allows to simulate the system and find the right proportional and integral constant parameters for
the controller. The Fig 5 shows basic PI controller model.

. g |

reference

Figure-5: PI Controller

Controller Algorithms
The algorithm for the battery controller, local controller and complete microgrid as shown in the form of a flow

chart in Fig 6, Fig 7 and Fig 8 respectively.
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Figure-7: Local Controller Flowchart
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Figure-8: Complete Microgrid Flowchart

I1l.  Simulation Circuits and Results
Sizing results from HOMER, simulation circuit of solar model, wind model, dual-input single output converter,
bi-directional DC-DC converter, inverter, DISO converter for different case studies and controllers are shown
below.

Homer Optimization Results

Once the design is complete and the necessary parameters are determined, then the system is simulated
and optimized. The overall optimization results are obtained for the sizing of the microgrid components using
HOMER software is shown in Fig 9.
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Figure-9: Overall Optimization Results in HOMER

HOMER simulations are performed for several hybrid system configurations with the combination of
PV/wind/Battery system for different capacities. HOMER calculates the total net present cost of all feasible
systems and the optimization results are displayed by ranking them in ascending order. The categorized
optimization results obtained for the proposed microgrid by the HOMER software is shown in the Fig 10. The
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categorized optimization result produces three different combinations. In the first category, the optimization
uses combination of solar PV rating of 5.96kW, wind rating of (3kW) and battery.
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Figure 10: Categorized Optlmlzatlon Results in HOMER
Solar Model

The schematic circuit of solar model as shown in Fig 11 consists of manual switch, it is used to switch
ON and OFF the solar model. The solar module is said to be in ON condition, if the irradiance is set to 1000
w/m? and OFF condition for 0 w/m?. The output voltage, current and power waveform of solar model is shown
in Fig 12.
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Figure-11: Schematic Circuit of Solar model
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WIND MODEL

The schematic circuit of wind model as shown in Fig 13 consists of wind speed parameter which is
used to obtain a different output for different speed. The output voltage, current and power waveform of wind

model is shown in Fig 14.
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Figure-14: Output Waveforms of Wind Model

Dual Input Single Output Converter
The schematic circuit of DISO converter consisting of both solar and wind as two input sources to obtain a
constant DC voltage as shown in Fig 15. The output voltage, current and power waveform of DISO converter is

shown in Fig 16.
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Figure-16: Output Waveforms of DISO converter

Dual Input Single Output Converter Working States

In this paper, different working states are considered to know the DISO status during uncertainties of
renewable sources. The different cases and working states are shown in Table 3. All these cases are simulated
and the output results are obtained. The DC output of dual input converter remains constant in all the cases
discussed. The output DC voltage for all the four cases of dual input converter is shown in Table 3. The DC
voltage of 640.5 V, DC current of 40A and DC power of 25 KW are obtained in one of cases.

Table-3: Output DC voltage of DISO in Each Working State

Cases | Working States | DISO Output
Solar | Wind | DC Voltage

1 1 0 638

2 0 1 640.5

3 1 1 641.1

4 0 0 637.5
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Output of DISO for Different Solar Irradiance and Wind Speed
The voltage, current and power for different solar irradiance and for different wind speed are tabulated
in the Table 4. As the solar irradiance and wind speed is varied the output voltage, output current and output

power varies. Hence DISO converter maintains almost constant output voltage even in source variations.

Table-4: DISO Output for Different Solar Irradiance and Wind Speed

DISO
SOLAR PANEL WIND TURBINE Converter
SOL.AR Voltage in | Currentin Power in Wind_ Voltage in | Currentin Power in
Iri;a\c,i\;/iqg € Vo?ts Amps Watts S’;f/esg;n VOE[S Amps Watts DC Voltage
1000 812 8.11 6592 12 986 9.82 9690 641.1
800 812 7.24 5883 8 638.5 7.24 4624 639
600 812 6.40 5203 6 4714 6.41 3022 638.7
400 812 5.59 4546 4 308 5.59 1728 638.1
200 812 4.29 3450 2 40 4.23 169 640.8

Bidirectional DC-DC Converter
The schematic circuit of bi-directional converter for battery storage system is shown in Fig 17. The complete

state of charging and discharging of battery with 60% as its initial capacity is shown in Fig 18.
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Figure-18: Output Waveforms of Charging and Discharging stage

The schematic circuit of sub-controllers like battery controller, local controller and inverter controller are
shown in Fig 19.
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Complete Circuit of Microgrid

The schematic circuit of proposed microgrid is shown in Fig 21. The output voltage, current and power

waveform of inverter is shown in Fig 22.
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V. Conclusions

A sudden or large change in load causes instability in the power system. Controllers helps to coordinate
and optimize system functions with intelligent capabilities to ensure reliable, safe, and efficient microgrid power
generation and distribution. Optimal sizing of microgrid components was designed to ensure feasibility and
economic viability. Hybrid power management software HOMER was used for sizing of each component of a
microgrid. An optimized power management algorithm for hybrid power systems was developed and
implemented. MATLAB Simulink was used for the development of complete circuit schematic of the microgrid.
For the entire power management of microgrid, the Pl controller based global controller is developed that
consists of all sub controllers like local controller, battery controller and inverter controller.

As per the HOMER optimization results, for the peak load of 3.30 KW the solar panel of capacity 5.96
KW and wind turbine of capacity 3KW was designed. The battery with three strings of 80 Amps, nominal
voltage of 12V with size of 75 number lead acid batteries were designed. The output power of 6.5KW and
output voltage of 812V was obtained from solar model. The output power of 9.5KW and voltage of 986V was
obtained from wind model. These outputs were used as input to the DISO converter. A constant DC voltage of
640 was obtained across DISO. Even in uncertainties of sources, the DISO maintained constant DC output
voltage of 640 V. The battery with BDC was used for back up purpose. The DC voltage is then fed to inverter
and inverter converts DC to an AC output voltage of 240V with a 25kW load.
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