A study on profunda brachi artery in adult and foetus to determine the variations in its origin

Hazarika Dipali¹, Rabha Gunamani², Baro Baneswar³

¹Assistant Professor, Assam Medical College, Dibrugarh, Assam
²Assistant Professor, Diphu Medical College, Diphu, Karbi Anglong, Assam
³Associate Professor, Diphu Medical College, Diphu, Karbi Anglong, Assam

Abstract:
Background: The profunda brachi artery is the main arterial supply to the back of the arm. Variations in its origin have been reported in foetal and adult human limbs. Variations of profunda brachii artery are important during harvesting of the lateral arm flaps and may lead to inadvertent injury during percutaneous arterial catheterization or injection of drugs. Knowledge of such variations has got clinical importance especially in the field of orthopedic, vascular and plastic surgeries. Method: The study was conducted on 100 numbers of upper limb of both male and female belonging to different age group in Department of Anatomy, Assam Medical College and Hospital, Dibrugarh. Results: In the present study, normal origin of the profunda brachi artery in foetus were found in 93.75% and 93.75%. Variations in foetus were found as 3rd part of axillary artery 3.125% and 3.125%, junction of axillary artery 3.125% and 3.125% for the right and the left limb respectively. In adult 100% origin were normal and no variations were found. Conclusions: Knowledge of the anatomy of the profunda brachi artery for effective and fruitful management of arterial implication from primary level of general practitioners, among the Anatomists, Surgeons. Key Word: Profunda brachi artery, Brachial artery, Axillary artery, Variation of artery

I. Introduction
Profunda brachii artery is the largest branch of the brachial artery given off in the arm from the posteromedial aspect. Arteria profunda brachii is also known as superior profunda and deep brachial artery. It at first runs backwards between the long and medial heads of the triceps, then in the nerve’s groove covered by the lateral head of triceps, posteriorly to join the radial nerve in the radial groove where it gives rise to its deltoid branch, nutrient artery, and terminates by bifurcating into middle and radial collateral arteries. Radial collateral (anterior descending) is the artery’s continuation and it accompanies the radial nerve through the lateral intermuscular septum, descending between the brachialis and brachioradialis anterior to the lateral epicondyle, anatomosing with the radial recurrent artery.

Variations in the branching pattern of the major arterial trunks have been reported with an incidence of up to 20% in human adult limbs and they have been the subject of much controversy since the beginning of the nineteenth century. Variations of profunda brachii artery are important during harvesting of the lateral arm flaps and may lead to inadvertent injury during percutaneous arterial catheterization or injection of drugs. Variant origins and branching patterns have been described by Charles et al. in 1931. All these variations have been explained on basis of ontogenic stages in development of human brachio - antebrachial system, initially coined by Singer and later modified by Baeza et al. Knowledge of such variations has got clinical importance especially in the field of orthopedic, vascular and plastic surgeries.

II. Material And Methods
The present study on human profunda brachi artery was carried out in the Department of Anatomy, Assam Medical College and Hospital, Dibrugarh during the period from 1st July, 2015 to 30th June, 2016. The study was conducted on 50 cadavers consist of 100 numbers of upper limb of both male and female belonging to different age group. No specific criteria had been put on selection of specimens. Both foetus and adult cadavers coming to the department of anatomy were included. The profunda brachi arteries along with its branches, origin, course and termination were studied during dissection for undergraduate students. Because of the shortage of cadavers an attempt was made to dissect out few stillborn foetuses (28-42 weeks) from Obstetrics and Gynaecology Department and from the post-mortem fresh cadavers. The adult cadavers were received from the different clinical department of the college.

DOI: 10.9790/0853-1908044046 www.iosrjournals.org 40 | Page
A study on profunda brachi artery in adult and foetus to determine the variations in its origin

After fulfilment of all the official formalities the foetuses were received in the morgue of the anatomy department. The particulars of cadavers were recorded and the cadavers were preserved in the morgue using the mixer of preservatives like Formalin (1-1.5 litre), Glycerine (.5 -1 litre), Methylated Spirit (1-1.5 litre), Potassium carbonate (200-250 ml), water (3-5 litre) according to the weight of the cadavers.

Procedure: The foetus was laid on the table in supine position, under sufficient light in a well ventilated room. In order to have a clear site for dissection the blood in the vessels was drained by flushing the vessels by normal saline using gravitational method. 10% solution of formalin was injected to the cadaver in order to preserve it for further dissection. The arm was abducted and the dissection was carried out from the axilla to the back of arm.

The following incisions were done on skin through the deep fascia on the arm to fully expose the brachial artery first:
1. Along the border of bicipital aponeurosis
2. A longitudinal incision along the middle line of biceps.
3. A transverse incision on the front of the elbow between the two epicondyles. The skin was reflected on either side of the longitudinal incision and the deep fascia was removed down the anterior surface of the arm as far as the elbow. The brachial artery is dissected out first. Then, it was traced proximally to see the main branches of the artery and the profunda brachi artery was traced to see its origin, courses between two head of triceps brachi muscle and distally to its termination. Now it was examined for any variation and abnormalities of the artery. For better view, the profunda brachi artery was painted with fabric colour (red) and photographed.

III. Results and observations

In the present study, a total of 100 (one hundred) upper limbs of 50 cadavers of both sexes were studied of which 64 limbs were of foetus and 36 limbs were adult.

Right Side Profunda Brachi Artery of foetus:

In majority of cases the profunda brachi artery were found to be normal in its origin as per literature 1,5 mentioned earlier. Variations are observed in the origin of the profunda brachii artery. It occurs in relation to the borders of surface of teres major muscles (as shown in the Figure1-4).

Figure 1: Diagram showing the origin of profunda brachi artery in the right limb (A=Axillary artery, B=Brachial artery, PB= Profunda brachi artery, TM= Teres major, S= Subscapular artery, PHCA= Posterior humeral circumflex artery)

No. 1: Profunda brachii arise 1.0 cm distal to lower border of teres major muscle
No. 2: Profunda brachii arise from 3rd part of axillary artery 2.0 cm proximal to the upper border of teres major muscles.
No. 3: Profunda brachii arise from the axillary artery by a common trunk along with subscapsular, posterior circumflex humeral artery.
A study on profunda brachi artery in adult and foetus to determine the variations in its origin

Figure 2: Showing the origin of profunda brachi artery 1cm distalborder of teres major muscle in the right limb
(AA=Axillary artery, BA=Brachial artery, PBA= Profunda brachi artery, RN=Radial nerve)

Figure 3: Showing the origin of profunda brachi artery 2cm above from the 3rd part of axillary artery in the right limb (AA=Axillary artery, BA=Brachial artery, PBA= Profunda brachi artery, RN=Radial nerve)

Figure 4: Showing the origin of profunda brachi artery 1.5cm from the 3rd part of axillary artery by a common trunk in the right limb (AA=Axillary artery, BA=Brachial artery, PBA= Profunda brachi artery, MN=Median nerve, RN=Radial nerve, PCHA=Posterior humeral circumflex artery)

Left Side Profunda Brachi Artery of foetus:
In majority of cases the profunda brachi artery were found to be normal in its origin as per literature mentioned earlier. Variations are observed in the origin of the profunda brachii artery. It occurs in relation to the borders of surface of teres major muscle as shown in the Figure 5-8.
Figure 5: Diagram showing the origin of profunda brachi artery in the left limb (A=Axillary artery, B=Brachial artery, PB=Profunda brachi artery, TM=Teres major)

No. 1: Profunda brachii arise in 1 cm distal to lower border of teres major muscle.
No. 2: Profunda brachii arise in 1.5 cm from 3rd part of axillary artery surface to the upper border of teres major muscle.
No. 3: Profunda brachii arise in 2 cm from 3rd part of the axillary artery surface to the upper border of teres major muscles, it is double branches.

Figure 6: Showing the origin of profunda brachi artery 1cm distal border of teres major muscle in the left limb (BA=Brachial artery, PBA=Profunda brachi artery, MN=Median nerve)

Figure 7: Showing the origin of profunda brachi artery 2cm above from the 3rd part of axillary artery in the left limb (AA=Axillary artery, BA=Brachial artery, PBA=Profunda brachi artery, MN=Median nerve)
A study on profunda brachi artery in adult and foetus to determine the variations in its origin

Figure 8: Showing the double origin of profunda brachi artery 1.5cm from the 3rd part of axillary in the left limb (AA=Axillary artery, BA=Brachial artery, PBA= Profunda brachi artery, MN=Median nerve)

Table 1: Showing number of sites of origin of arteria profunda brachii in foetus (32 number of cadavers)

<table>
<thead>
<tr>
<th>SITE OF ORIGIN</th>
<th>RIGHT LIMB</th>
<th>(%)</th>
<th>LEFT LIMB</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brachial Artery</td>
<td>30</td>
<td>93.75</td>
<td>30</td>
<td>93.75</td>
</tr>
<tr>
<td>3rd part of Axillary Artery</td>
<td>1</td>
<td>3.125</td>
<td>1</td>
<td>3.125</td>
</tr>
<tr>
<td>Junction of Axillary-Brachial Artery</td>
<td>1</td>
<td>3.125</td>
<td>1</td>
<td>3.125</td>
</tr>
</tbody>
</table>

Table 2: Sites of origin of arteria profunda brachii in adults (18 numbers of cadaver)

<table>
<thead>
<tr>
<th>SITE OF ORIGIN</th>
<th>RIGHT LIMB</th>
<th>(%)</th>
<th>LEFT LIMB</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brachial Artery</td>
<td>18</td>
<td>100</td>
<td>18</td>
<td>100</td>
</tr>
<tr>
<td>Abnormal site</td>
<td>Nil</td>
<td>-</td>
<td>Nil</td>
<td>-</td>
</tr>
</tbody>
</table>

IV. Discussion

The results and observation of the present study has been discussed and compared. A humble attempt is made to study all the important features as far as possible.

The variation in the origin of the profunda brachii artery has attracted the attention of anatomists for almost a century. It was observed by Adachi, Harrison, Theile, Eichholz all of whom stated that profunda brachie may arise in common with the posterior circumflex artery. Theile in addition observed profunda brachii artery arise from axillary artery. Massie observed that the superior profunda artery arose as a large branch from the posterior medial aspect of the brachial artery distal to the teres major and followed the radial nerve closely. Third part of the axillary artery is known to show its variant branching pattern. It includes, two circumflex humeral arteries arising from single trunk or together with profunda brachii or together with subscapular artery etc.

Charles et al specified about 7 types of origins for profunda brachii artery which we compared with Anson and Keen:
Type I : Branch of brachial artery in 54.7% cases (55% by Anson).
Type Ia: Origin of arteria profunda brachii by 2 separate branches (seen in 0.7% dissections).
Type Ib: Origin of arteria profunda brachii by 3 separate branches (seen in 0.3% dissections).
Type II: Arising as a common trunk with superior ulnar collateral in 22.3% cases (22% by Anson).
Type III: Arising at lower border of teres major so can be considered to be arising from axillary or brachial in 8% cases.
Type IV: Branch of 3rd part of axillary artery in 8.7% cases (16.0% by Anson).
A study on profunda brachi artery in adult and foetus to determine the variations in its origin

Type V: Arising as a common trunk with posterior circumflex humeral in 4% cases (13% by Keen23 and 7% by Anson27). (Former includes 6% before entry of posterior circumflex humeral into quadrangular space and 7% after its entry into quadrangular space).

Type VI: Arising as a common trunk with subscapular and both circumflex humeral in 0.7% cases.

Type VII: Absent artery profunda brachii in 0.7% cases.

In the present study, in foetus 93.75% cases PBA were origin from brachial artery on right side and 93% from left side. In adult 100% cases were found to be normal in origin in both right and left limb.

George et al.24, and Kumar N. et al25 reported the origin of a common trunk from axillary artery and giving rise to common circumflex humeral-subscapular trunk and then continuing as profunda brachii artery. As per the study by Tountans26 in 55% cases, profunda brachii artery arises as a single trunk at the level of the tendon of the teres major muscle. It may arise from the axillary artery (in 22% cases), as a common trunk with the superior ulnar collateral artery (in 22% cases) or as a branch of the circumflex humeral artery (in 7% cases). Suchutra et al.27 observed that profunda brachii artery from the axillary artery in common with the subscapular artery in 20% of their cases. Bagooji et al.28, it has been reported a case report of trifurcation of axillary artery into superficial brachial artery, deep brachialartery and common subscapular arterial trunk. It was highlighted the double brachial artery in the arm, in which profunda brachii artery was arising from the superficial brachial.

Sawant et al.29 reported the axillary artery divided into 2 divisions. The superficial division continued as brachial artery and deep division performed the role of axillary artery by giving all its named branches then it continued as profunda brachii artery. In the present study, in case of foetus 3.125% profunda brachii artery from right limb and 3.125% profunda brachii artery from left limb were arise from the axillary artery by a common trunk along with subscapular, posterior circumflex humeral artery. In adult, no profunda brachii artery was arising from common trunk.

Sandhya K.30 observed the profunda brachii artery arises from posterior surface of the proximal part of the brachial artery and aberrant branch which pass around the radial artery at the neck of the radius. Shetty et al.31 have reported the two branches of the profunda brachii; the radial collateral and the middle collateral arteries originating from a common trunk, which also gave origin to the superior ulnar collateral artery. Hadimani et al.32 found profunda brachii artery in their study that two profunda brachii artery arises from the brachial artery one at proximal part of brachial artery and second one at a point distal to the level of 1st one. Ramesh et al.33 observed a case of common trunk giving branches including profunda brachii artery from the 3rd part of axillary artery. Samuel et al.34 identified a case of an abnormal arterial trunk originating from 3rd part of axillary artery giving multiple branches where classical profunda brachii was absent. In the present study, double profunda brachii arise from 3rd part of axillary artery in the left limb of foetus (3.125%) at the upper border of teres major muscle. In the right limb of foetus 3.125% were arise from 3rd part of axillary artery. In adult 100% were arising from normal site.

Ceirov A.35 reported the profunda brachii artery was absent in their study. In the present study, in 100% cases profunda brachii artery was present in both foetus and adult.

V. Conclusion

The variation in the arterial pattern of the upper limb have been observed frequently, either in routine dissection or in clinical practice. It is not very uncommon to find out the variation in its origin, course, relation, branching patterns, termination during routine anatomical dissection.

Various studies on the profunda brachii artery had been carried out in different parts of the world. The purpose of this study was to find out the effectiveness and applicability of different types of variation in the management of arterial replacement. Once again we emphasize the need of knowledge of the anatomy of profunda brachii artery for effective and fruitful management of arterial implication from primary level of general practitioners, among the anatomists, surgeons. The clinical implications of these variations are also highlighted in the diagnostic interventional and surgical significance. Of such a variation, diagnostically it may disturb the evaluation of angiographic images.

References

DOI: 10.9790/0853-1908044046 www.iosrjournal.org 45 | Page
A study on profunda brachii artery in adult and foetus to determine the variations in its origin.

Hazarika Dipali, et. al. “A study on profunda brachii artery in adult and foetus to determine the variations in its origin.” IOSR Journal of Dental and Medical Sciences (IOSR-JDMS), 19(8), 2020, pp. 40-46.

DOI: 10.9790/0853-1908044046 www.irosjournal.org 46 | Page