“Study of Antibiotic sensitivity pattern and detection of fluoroquinolone resistance of Escherichia isolates of urinary tract infection”

Yachna Arora¹, Abhishek Chourasia² Dr. Prasanna gupta³
¹(SENOR LECTURER, EKLAYA DENTAL COLLEGE AND HOSPITAL KOTPUTLI, RAJASTHAN)
²(LECTURER, GURU GOVIND SINGH COLLEGE OF DENTAL SCIENCE & RESEARCH CENTRE, BURHANPUR, (M.P.)
³(PROFESOR OF MICROBIOLOGY, GOVT. MEDICAL COLLEGE CHATTISGARH, RAJGARH)

Abstract: The present study was done to detect Antibioticsensitivity pattern and detection of fluoroquinolone resistance of Escherichia isolates of urinary tract infection.

Background: Urinary tract infection (UTI) is the most common bacterial infection in human produced by uropathogenic species of bacteria. Escherichia coli is the most prevalent in human¹ Escherichia coli is the most common cause of urinary tract infection. Escherichia coli accounts for 75% to 90% of urinary tract infection. At some point in lives, at least 12% men and 10-20% women have a patient like-old age, pregnant women, immune sup present, previous infection (David rah a 2008). Although UTIs occur in both men and women, clinical studies suggest that the overall prevalence of UTI is higher in women².

Materials and Methods: During the study period, 300 clinical samples of urine samples were collected and process for isolation and identification of E. coli by standard method out of which 70 positive E. coli were isolated and their antibiotic sensitivity were tested by Kirby Bauer disc diffusion method according to CLSI guidelines (2018). E. coli ATCC 25922 strains were used as control organism.

Results: Conclusion: Out of 300 samples 150 are sterile samples and remaining 150 showed growth, in which E. coli 70(46.66%) was the most commonest organism isolated followed by Klebsieilla spp. 33 (22%) and citrobacter spp. 17(11.33%), Pseudomonas spp. 15 (10%), Acinetobacter 5 (3.33%), Proteus spp. 4 (2.66%), Enterobacter spp. 3(2%), staphylococcus spp. 2(1.33%), And Candida albicans 1 (0.66%) were the least common organism isolated. In the study showed an increased fluoroquinolone resistance among uropathogenic E. coli isolates. Increased antibiotic resistance trends in UTI patients indicated that it is imperative to rationalize the use of antimicrobials and to use them conservatively.

Key Word: Escherichia coli, Urinary tract infection, Sensitivity, Resistance

Date of Submission: 23-06-2020
Date of Acceptance: 11-07-2020

I. Introduction

UTI is the most common bacterial infection in human produced by uropathogensics species of bacteria. Escherichia coli is the most prevalent in our human¹. Escherichia coli is the most common cause of urinary tract infection. Escherichia coli accounts for 75% to 90% of urinary tract infection. At some point in lives, at least 12% men and 10-20% women have a patient like-old age, pregnant women, immune sup present, previous infection (David rah a 2008). Although UTIs occur in both men and women, clinical studies suggest that the overall prevalence of UTI is higher in women². Uncomplicated UTIs in healthy women have an incidence of 50/1000/year². In 2017, demonstrated that prevalence for UTI among female is higher than male 75.6%, 24.4% respectively and higher prevalence is seen in 16 to 30 age group³.

An estimated 50% of women experience at least one episode of UTI at some stage in their life, while about 20-40% of women have suffered recurrent episode⁴, 5.

II. Material And Methods

The prospective cross sectional observational study was carried out in department of Microbiology at National Institute of Medical Science & Research, Jaipur, Rajasthan. A total 70 Escherichia coli strains were isolated from various clinical samples of patient.

Study Design: Cross sectional observational study.
Study Location: This study was conducted in Department of Microbiology, National institute of medical science and research centre, Jaipur, Rajasthan.
Study Duration: The study was carried from July 2018 to December 2018

DOI: 10.9790/0853-1907043440
www.iosrjournals.org 34 | Page
Sample size: 300 patients.

Sample size calculation: During the study period 300 mid-stream urine (MSU) were collected at NIMS hospital. Out of 300 samples 150 are sterile samples and remaining 150 showed growth, in which E. coli 70 (46.66%) was the most common organism isolated followed by Klebsiella spp. 33 (22%) and Citrobacter spp. 17 (11.33%), Pseudomonas spp. 15 (10%), Acinetobacter 5 (3.33%), Proteus spp. 4 (2.66%), Enterobacter spp. 3 (2%), staphylococcus spp. 2 (1.33%), and Candida albicans 1 (0.66%) were the least common organism isolated.

Subjects & selection method: The study was conducted in the department of Microbiology, NIMS Medical College and hospital, Rajasthan from July 2018 to December 2018. During the study period, 70 E. coli organism isolate from 300 urine specimen of patients of all ages both sexes attending various patient at NIMS Hospital were processed in which 150 samples were sterile. Remaining 150 samples are E. coli 70 (46.66%) was the most common organism isolated followed by Klebsiella spp. 33 (22%) and Citrobacter spp. 17 (11.33%), Pseudomonas spp. 15 (10%), Acinetobacter 5 (3.33%), Proteus spp. 4 (2.66%), Enterobacter spp. 3 (2%), Staphylococcus spp. 2 (1.33%), and Candida albicans 1 (0.66%) was the least common organism isolated.

In comparison of K. Usha, E kumar, drvsagopal et al 2013 total of 121 GNB were isolated identified by standard biochemical tests E. coli was predominant (37.19%) followed by Pseudomonas spp. (19.83%), non fermentative gram negative bacilli (NFGNB) (10.74%), Enterobacter spp. (6.61%) and others (3.30%).

Inclusion criteria:
1. Patients diagnosed with UTI (10-70 Age group) will be seen.
2. Patient not taking prior medications (1-6 month) including antibiotics that may affect the culture results.

Exclusion criteria:
1. Age less than 10 years and more than 70 years of patient.
3. H/o Pregnancy / lactation.
4. History of Type-2 Diabetes Mellitus.
5. H/o patient with post-surgical UTI.

Procedure methodology
After written informed consent was obtained, a well-designed questionnaire was used to collect the data of the recruited patients respectively.

Method of collection of urine specimen
Patient who were clinically suspected of UTI were asked to collect a fresh sample of midstream specimen of urine (MSU) in a wide-mouthed universal container with a secure lid. A proper instruction was given to the patient regarding the method of collection of mid-stream urine sample. Male patient was asked to retract the prepuce, cleanse the glans penis with soap and water and then collect the sample from middle of the urine flow. Female patient was instructed to thoroughly clean the genital area from front to back, pass urine with labia separated and collect sample from middle portion of stream.

Specimen Transport:
Since urine is an excellent culture medium supporting the rapid growth of many bacteria. It was transported to the laboratory within an hour and processed.

MICROBIOLOGICAL EXAMINATION
A) Culture: Sample was inoculated on media such as Cysteine Lactose Electrolyte Deficient (CLED) Agar incubated at 37°C for overnight.
B) Inoculation of sample: All urine sample were processed immediately and routinely cultured as per standard protocol on CLED agar. These plates were routinely incubated at aerobically and after overnight incubation, they were checked for bacterial growth. The organism was identified by their colony morphology, gram staining characters, motility and other relevant biochemical test as per standard laboratory method of identification.

Antimicrobial susceptibility testing:
Antimicrobial susceptibility testing will be performed by Kirby Bauer disk diffusion method by CLSI guidelines 2018. An inoculation with a turbidity equivalent with a 0.5 McFarland standard and Muller Hinton agar is used. The inoculum will be smoothly swabbed over dried surface on Muller Hinton agar plate within 15 minutes and allowed to dry at room temperature. Antibiotic disc will be placed on with pointed forceps and
plates will be incubated at 37°c for 24 hrs. The following antibiotic disc from HI media laboratories will be used for testing. Antibiotic sensitivity testing profile of Kirby Bauer disc diffusion method on Muller Hinton agar media.

The following drugs are used for FLUOROQUINOLONES for Enterobacteriaceae are Ciprofloxacin, Levofloxacin, Nalidixic acid, Norfloxacn, Ofloxacin, Gemifloxacin, Cinofloxacin and for GNB are Ampicilin, Imepenam, Meropenam, Doxycycline, Azethronam, Cefazolin, Cefoxitin, Amikacin. Result were measured and recorded as compared to that of the according to the Clinical and Laboratory standard institute (CLSI) guideline.

McFarland standard turbidity preparation: To standardize the inoculums density for a susceptibility test, for McFarland turbidity equivalent to a 0.5 McFarland standard was used.

Quality Control: E. coli ATCC These Were used as quality control strains for antimicrobial susceptibility testing

III. Result

The present Study of Antibiotic sensitivity pattern and detection of fluoroquinolone resistance of E. coli isolates of urinary tract infection was conducted in the department of Microbiology, National Institute of Medical Sciences (NIMS) Medical College and hospital, from July 2018 to December 2018. During the study period 300 mid-stream urine (MSU) were collected at NIMS hospital. Out of 300 samples 150 are sterile samples and remaining 150 showed growth, in which E. coli 70 (46.66%) was the most commonest organism isolated followed by Klebsiella spp. 33 (22%) and Citrobacter spp. 17 (11.33%) Pseudomonas spp. 15 (10%), Acinetobacter 5 (3.33%), Proteus spp. 4 (2.66%), Enterobacter spp. 3 (2%), Staphylococcus spp. 2 (1.33%), and Candida albicans 1 (0.66%) were the least common organism isolated.

During the study E. coli isolated from urine specimen of patient of all ages were processed further for Study of Antibiotic sensitivity pattern and detection of fluoroquinolone resistance of E. coli isolates of urinary tract infection.

Distribution of E. coli according to gender:

During the study period E. coli isolated from urine specimen of patient of all ages and both sexes were processed.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Sex</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male</td>
<td>25</td>
<td>35.71%</td>
</tr>
<tr>
<td>2</td>
<td>Female</td>
<td>45</td>
<td>64.28%</td>
</tr>
<tr>
<td>3</td>
<td>Total</td>
<td>70</td>
<td>100%</td>
</tr>
</tbody>
</table>

As shown in chart 2 Escherichia coli causing urinary tract infections were seen mostly in females 45 (64.28%) than in men 25 (35.71%).

DOI: 10.9790/0853-1907043440 www.iosrjournal.org 36 | Page
As shown in the table 2, and Chart 2 the maximum percentage in IMEPENAM 59(84.28%) & AMIKACIN 58(82.85%), minimum in AZETHRONAM 30(42.85%)

Fluoroquinolone Sensitive/resistant drugs ratio

Table 3. Fluoroquinolone Sensitive/resistant drugs ratio

<table>
<thead>
<tr>
<th>S.no.</th>
<th>Drugs</th>
<th>Sensitive</th>
<th>Resistance</th>
<th>Total sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ciprofloxacin</td>
<td>15</td>
<td>55</td>
<td>70</td>
</tr>
<tr>
<td>2.</td>
<td>Levofloxacin</td>
<td>17</td>
<td>53</td>
<td>70</td>
</tr>
<tr>
<td>3.</td>
<td>Ofloxacin</td>
<td>21</td>
<td>49</td>
<td>70</td>
</tr>
<tr>
<td>4.</td>
<td>Norfloxacin</td>
<td>25</td>
<td>45</td>
<td>70</td>
</tr>
</tbody>
</table>
As shown in chart 3 maximum resistant fluoroquinolone drug is ciprofloxacin (55)

Percentage of Resistant Fluoroquinolone drug

<table>
<thead>
<tr>
<th>S.No</th>
<th>Drugs</th>
<th>Resistant Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ciprofloxacin</td>
<td>78.57</td>
</tr>
<tr>
<td>2</td>
<td>Levofloxacin</td>
<td>75.71</td>
</tr>
<tr>
<td>3</td>
<td>Ofloxacin</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>Norfloxacin</td>
<td>64.20</td>
</tr>
</tbody>
</table>

Table 4. Percentage of Resistant Fluoroquinolone drugs

As shown in chart 4 Maximum percentage in fluoroquine drugs are ciprofloxacin (78.57%) than levofloxacin (75.71%), ofloxacin (70%), Norfloxacin (64.20%)
IV. Discussion

Urinary tract infections are the most common bacterial infections in women and accounts for significant morbidity and increases health care costs. Factors such as the changing in patient population and extensive use and abuse of antimicrobial agents could contribute to changes in the microbial profile of urinary tract isolates. E. coli is one of the most common bacteria capable of causing infection in humans, particularly urinary tract infection UTI. Escherichia coli used for study were isolated from urinesamples.

The present study was conducted in the department of Microbiology,NIMS Medical College and hospital,Rajasthan from July 2018 to December 2018. During the study period, 70 E.coli organism isolate from 300 urine specimen of patient of all ages both sexes attending various patient at NIMS Hospital were processed in which 150 samples were sterile. Remaining 150 samples are E.coli (46.66%) was the most common organism isolated followed by Klebsiella spp. 32 (21.33%) and Citrobacter spp. 17 (11.33%), Pseudomonas spp. 15 (10%), Acinetobacter 5 (3.33%), Proteus spp. 4 (2.66%), Enterobacter spp. 3 (2%), Staphylococcus II (1.33%) and Candida albicans 1 (0.66%) was the least common organism isolated. In comparison of K. Usha, E kumar, dvrsaigopal et al 2013 total of 121 GNB were isolated identified by standard biochemical tests E. coli was predominant (37.19%) followed by Pseudomonas spp. (19.83%).

Urinary tract isolates. E. coli is one of the most common bacteria capable of causing infection in humans, particularly urinary tract infections. UTI is the most common bacterial infection in women, and accounts for significant morbidity and increases health care costs.

Factors such as the changing in patient population and extensive use and abuse of antimicrobial agents could contribute to changes in the microbial profile of urinary tract isolates. E. coli is one of the most common bacteria capable of causing infection in humans, particularly urinary tract infection UTI. Escherichia coli used for study were isolated from urinesamples.

The present study was conducted in the department of Microbiology, NIMS Medical College and hospital, Rajasthan from July 2018 to December 2018. During the study period, 70 E. coli organism isolate from 300 urine specimen of patient of all ages both sexes attending various patient at NIMS Hospital were processed in which 150 samples were sterile. Remaining 150 samples are E. coli (46.66%) was the most common organism isolated followed by Klebsiella spp. 32 (21.33%) and Citrobacter spp. 17 (11.33%), Pseudomonas spp. 15 (10%), Acinetobacter 5 (3.33%), Proteus spp. 4 (2.66%), Enterobacter spp. 3 (2%), Staphylococcus II (1.33%) and Candida albicans 1 (0.66%) was the least common organism isolated. In comparison of K. Usha, E kumar, dvrsaigopal et al 2013 total of 121 GNB were isolated identified by standard biochemical tests E. coli was predominant (37.19%) followed by Pseudomonas spp. (19.83%).

Antimicrobial susceptibility testing to Escherichia coli strains isolated from urine samples showed highest resistance to Ciprofloxacin (78.57%), Levofloxacin (75.71%) and highest sensitivity shown to Imipenam (84.28%), Amikacin (82.85%) and gentamycin (75.71%). With the use of higher generations of fluoroquinolones for treating Escherichia coli causing urinary tract infections, my study showed slight decrease in resistance rates of both decreased sensitive s and resistance rates combined as 79% for ciprofloxacin-first generation drugs, 79% for second generation drugs-Levofloxacin 76%.

Fluoroquinolones resistance increased significantly with patient age because of decreased immune function and overall more frequent fluoroquinolones exposure than that for younger patients (Lauron Becnel Boyd; etal; 2008). Female: Male Escherichia coli urinary tract infections is 19%; 28.9% in 2002. According to Spanish national surveillance study and my study shows 64.28%; 35.71 %. Less inmalesisdueto prostate secretionsthat contain zinc whichacts as bactericidal substance and in females reduces the ability of microorganisms to attach to uroepithelial cells and do not penetrate.

In china ciprofloxacin resistance is increasing 46.6 to 59.4% in 1998-2002 studies while it is 62% and 18% with decreased sensitivity in my study 78.57%.

Fluoroquinolones resistance is higher in developing countries than in developed countries. My study shows higher fluoroquinolones resistance rates due to increasing prescriptions without noticing resistant pattern of fluoroquinolones towards urinary Escherichia coli as ours is an under developed country (Hafizah Y. chenia; 2006). Fluoroquinolones resistance is an Independent risk factor for mortality of patients due to delay in the initiation of appropriate antimicrobial therapy for patients with fluoroquinolone resistance infection and now it is no larger significant, after adjusting for inadequate empirical therapy (Ebbing Lautenbach; etal; 2005).

Fluoroquinolones are a drug of choice for urinary tract infections of the high bacterial resistance and clinical cure rates as well as low rates of resistance among uropathogens. But due to increased prescriptions more frequently in pastfewyears, increase in fluoroquinolones resistant Escherichia coli has occurred which is accounting for significant morbidity and health care cost.

V. Conclusion

In the study showed an increased fluoroquinolones resistance among uropathogenic E.coli isolates. Increased antibiotic resistance trends in UTI patients indicated that it is imperative to rationalize the use of antimicrobials and to use them conservatively.

References

[5]. Alemu A, Mages F, Shivered Y, Tares K, Kasur A, Anagen B. Bacterial profile and

DOI: 10.9790/0853-1907043440 www.iosrjournal.org