Prevalence of Asymptomatic Bacteriuria in Preterm Labour and Maternal and Perinatal Outcome

Dr. Swaruparani1, Dr. Rekha2

1Associate Professor Mgmh, Petlaburz Osmania Medical College.
2Associate Professor Government Medical College Siddipet.

Corresponding Author: Dr. Rekha

Study was conducted at the Department of Obstetrics and Gynaecology, Petlaburz hospital, Hyderabad and Government General Hospital, Siddipet. The publication is done in collaboration.

The study period is from Jan 2019 to June 2019.
50 cases at each hospital

I. Introduction

Preterm labour is defined by the World Health Organisation as the onset of labour prior to the completion of 37 weeks of gestation in a pregnancy beyond 20 weeks of gestation1. Preterm birth is the leading cause of neonatal morbidity and mortality worldwide and accounts for 75\% of neonatal deaths and 50\% of long term morbidity, including respiratory disease and neurodevelopmental impairment2.

Infection is implicated as the aetiological factor in 40-50\% cases of preterm labour at early gestation(<30 weeks). Asymptomatic bacteriuria and systemic infections like pyelonephritis, pneumonia, acute appendicitis often lead to increased uterine activity and preterm labour3. Urinary tract infection is one of the most frequent bacterial infections4. It is the second most common bacterial infection seen during pregnancy5.

The asymptomatic UTI is a persistent, actively multiplying bacteria within the urinary tract without any symptoms of infection6. A clean voided specimen containing more than 1,00,000 organisms/ml is diagnostic7. Prevalence in pregnancy is 2-7\%. If not treated, about 25\% of women will subsequently develop acute infection during pregnancy. ASB is an entity with possible serious consequences in the form of fetal and maternal morbidity8. As ASB is a risk factor for preterm labour, the present study is undertaken to emphasize the need for its early diagnosis and treatment and thus reducing preterm deliveries.

II. Aims And Objectives

AIMS:
To study the prevalence of asymptomatic bacteriuria in preterm labour and maternal and perinatal outcome

OBJECTIVES:
To find out the number of women in preterm labour who are positive for ASB. To find out the commonest pathogenic organism in these women with ASB. To find out the maternal and perinatal morbidity of these women with ASB
DEFINITION:
Asymptomatic bacteriuria is defined as the finding of greater than 1,00,000 colony forming units per ml of urine of a single pathogen in two consecutive midstream, clean catch urine specimens or one catheterisation specimen. Lower colony count in asymptomatic women usually represents contamination.

RISK FACTORS FOR PRETERM DELIVERY
- **Maternal characteristics**: Black race, Interpregnancy interval of less than six months, physically strenuous work, prepregnancy BMI <= 19kg/m2
- **Pregnancy history**: Previous preterm delivery
- **Pregnancy characteristics**: Bacterial vaginosis, chlamydia infection, cocaine/heroin use, h/o cervical cone biopsy/LEEP, intrauterine infection, maternal abdominal surgery, multiple gestation, periodontal disease, UTI and non-genital tract infection.

PHYSIOLOGICAL CHANGES IN PREGNANCY PREDISPOSING TO UTI

1. **CHANGES IN KIDNEYS**:
Renal blood flow and GFR increase early in pregnancy. Increased bladder volume and decreased bladder and ureteral tone, contribute to increased urinary stasis and ureterovesical reflux.

2. **URETHRA**:
The female urethra is relatively short and is anatomically proximal to the vagina, which is colonised with organisms from the GIT.

3. **CHANGES IN THE BLADDER**:
Bladder tone progressively decreases from 12th week onwards. Bladder capacity increases. Incomplete emptying of bladder during pregnancy leads to increasing volumes of residual urine. Presence of residual urine >5ml is risk factor for UTI.

4. **URETER**:
Ureters undergo dilatation especially in the upper two-thirds. This is called as “HYDROURETER OF PREGNANCY” can contain up to 200ml of urine. Ureteric tone decreases significantly, even in first trimester.

ENVIRONMENTAL FACTORS
- Women from lower socioeconomic status are prone for UTI by 5 times than in the general population.
- Poor personal hygiene is associated with ASB and UTI.

VARIOUS TESTS TO DETECT BACTERIURIA:

1. **PYURIA**:
- It is the presence of increased number of PMN leukocytes in the urine. It is evidence of an inflammatory response in urinary tract to bacteria.
 In a well mixed, uncentrifuged sample <2 hrs old, presence of:
 >= 10 pus cells/ml – Highly suggestive of infection
 >5 pus cells - Abnormal
 3-5 pus cells – Doubtful significance
 <5 pus cells - Less significant.
Prevalence of Asymptomatic Bacteriuria in Preterm Labour and Maternal and Perinatal...

2. **GRAM STAINING:**
Gram staining is not as effective as urine culture to detect significant bacteriuria.20

3. **DIPSTICK:**
 - Low sensitivity
 - High specificity
 - Low positive predictive value
 - High negative predictive value

Urine reagent strips are not sufficiently sensitive to be of use in the screening of asymptomatic bacteriuria.21

URINE CULTURE AND COLONY COUNTING:
 - **GOLD STANDARD METHOD** in screening and diagnosis of ASB.17
 - **DIAGNOSIS:** ASB>= 10^5 CFU/ml in CCMU – Sensitivity 98% , Specificity 86%.

COMPLICATIONS

MATERNAL COMPLICATIONS:
1. **Symptomatic infections:** Pregnancy is a provocation for the asymptomatic bacteriuria to become symptomatic bacteriuria. Detection of all women with asymptomatic bacteriuria is important as 25% to 30% will develop symptomatic UTI while pregnant.
2. **Maternal Anemia:** Asymptomatic bacteriuria during pregnancy is associated with anemia of the mother, especially after 32 weeks of gestation. Pyelonephritis causes bone marrow suppression, increased erythrocyte destruction and decreased red cell production.
3. **Premature Rupture Of Membranes:** Bacterial enzymes such as collagenase, weaken fetal membranes which can result in PROM. Bacterial endotoxins activate macrophages, which release inflammatory mediators that weaken the membranes.
4. **Preterm labour:**
 - The rate of preterm labour in ASB is now accepted to be 20-50%. Maximum risk exists in patients not responding to 1st course of antibiotics.
5. **Preeclampsia:** ASB is associated with hypertension and preeclampsia. It can occur due to chronic subclinical infection, which increases maternal cytokines, sufficient enough to affect vascular endothelial function and prime individuals for subsequent development of preeclampsia.
6. **Pyelonephritis:** If bacteriuria is not treated 30-40% of patients develop pyelonephritis.

FETAL COMPLICATIONS
1. **Prematurity:** Asymptomatic bacteriuria in pregnancy causes prematurity, as it causes preterm delivery.
2. **Low birth weight:** Women with asymptomatic bacteriuria have a 54% higer risk of a low birth weight infant.
3. **Perinatal mortality:** Asymptomatic bacteriuria can cause stillbirth sudden unexpected infant death of women with urinary infection.

MATERIALS AND METHODS
- **PLACE OF STUDY:** All pregnant women in preterm labour who are admitted to Obstetrics and Gynaecology
- **STUDY DESIGN:** Observational study
- **PERIOD OF STUDY:**
- **INCLUSION CRITERIA:**
All pregnant women in preterm labour(after 20 weeks of gestation before 37 weeks) who are free from symptoms of UTI.
- **EXCLUSION CRITERIA:**
1. Patients with symptoms of UTI
2. Patients with h/o UTI during this pregnancy
3. Patients with diabetes, chronic HTN and other preexisting medical disorders
4. Patients who had taken antibiotics in last two weeks
III. Methodology

After obtaining informed consent, total of 100 pregnant women in preterm labour after 20 weeks and before 37 weeks of gestation were randomly selected for the study

CRITERIA TO DOCUMENT PRETERM LABOUR:
• Contraction of 4 in 20 minutes or 8 in 60 minutes plus progressive change in the cervix.
• Cervical dilatation > 1cm
• Cervical effacement of 80% or greater

A DETAILED HISTORY WAS TAKEN REGARDING THE
• Socioeconomic status(kuppuswamy socioeconomic class)
• Menstrual history
• Obstetric history
• Past history
• Family history
• Personal history
 ▶ A thorough general physical examination with reference to PR, BP, RR and TEMPERATURE were noted.
 ▶ Per abdomen and per vaginal examination done and preterm labour confirmed
 ▶ Routine antenatal profile done
 ▶ The patients were instructed to give midstream urine sample by clean catch method for CUE and urine culture.

Urine specimen collected should undergo-
• Routine urine analysis
• Culture and sensitivity

ROUTINE URINE ANALYSIS – It includes physical, chemical and microscopic examination
 Physical examination- It includes colour, odour, reaction, volume, specific gravity and clarity of the sample
 Chemical methods- Albumin and sugars are tested
 Microscopy- The sample is tested for hematuria, WBCs(pus cells), epithelial cells, casts
 Unspun urine is examined directly under microscope and pus cells per HPF were calculated. A count of >=10 pus cells/HPF is an indication of UTI23

CULTURE AND SENSITIVITY – QUANTITATIVE BACTERIOLOGY
 Calibrated loop direct streak method
 Using a flame sterilised and cooled 4mm platinum loop delivering 0.01ml, one biconvex loop full of well mixed, uncentrifuged urine specimen was deposited on blood agar 11plate and Mac Conkey’s agar plate to the lower edge of the plate in a T pattern from inoculum site. Both plates were incubated overnight at 35 degree Celsius and read next morning.
 Diagnosis of significant bacteriuria(IDSA Guidelines)
 ASB >= 100000 CFU/ml in CCMSU
 After determining the plate count, organisms present were identified and the susceptibility to antibiotics were determined by Disc Diffusion method. Mixed growth of >=2 organisms was considered as contamination and the sample was repeated. If no growth occurred, specimens were held for another day in incubator, and if still negative, reported as no growth after 48 hours.

IV. Results

<table>
<thead>
<tr>
<th>No. of Patients</th>
<th>Non-Bacteriurics</th>
<th>Bacteriurics</th>
<th>Prevalence of ASB in Preterm labour</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>82</td>
<td>18</td>
<td>18%</td>
</tr>
</tbody>
</table>

DOI: 10.9790/0853-1901021928 www.iosrjournals.org 22 | Page
Prevalence of Asymptomatic Bacteriuria in Preterm Labour and Maternal and Perinatal...

Number of patients studied for asymptomatic bacteriuria

<table>
<thead>
<tr>
<th>Non-Bacteriurics</th>
<th>Bacteriurics</th>
</tr>
</thead>
</table>

Pathogen

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Number</th>
<th>Percentage %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>10</td>
<td>55.5</td>
</tr>
<tr>
<td>Klebsiella</td>
<td>4</td>
<td>22.2</td>
</tr>
<tr>
<td>Proteus</td>
<td>1</td>
<td>5.55</td>
</tr>
<tr>
<td>Coagulase Negative staphylococcus</td>
<td>3</td>
<td>16.6</td>
</tr>
</tbody>
</table>

CAUSATIVE ORGANISMS

<table>
<thead>
<tr>
<th>Escherichia coli</th>
<th>Klebsiella</th>
<th>Proteus</th>
<th>Coagulase Negative staphylococcus</th>
</tr>
</thead>
</table>

Age group in years

<table>
<thead>
<tr>
<th>Age group in years</th>
<th>Bacteriurics</th>
<th>Non-Bacteriurics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percentage %</td>
</tr>
<tr>
<td>18-22</td>
<td>9</td>
<td>50.0</td>
</tr>
<tr>
<td>23-27</td>
<td>5</td>
<td>27.7</td>
</tr>
<tr>
<td>28-32</td>
<td>4</td>
<td>22.0</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>
Prevalence of Asymptomatic Bacteriuria in Preterm Labour and Maternal and Perinatal...

Age Incidence

<table>
<thead>
<tr>
<th>Parity</th>
<th>Bacteriurics</th>
<th>Non-Bacteriurics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percentage%</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>27.7</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>44.4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>16.6</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>11.1</td>
</tr>
</tbody>
</table>

PARITY & ASB

<table>
<thead>
<tr>
<th>Weeks of Gestation</th>
<th>Bacteriurics</th>
<th>Non-Bacteriurics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percentage%</td>
</tr>
<tr>
<td>20-27</td>
<td>1</td>
<td>5.55</td>
</tr>
<tr>
<td>28-33</td>
<td>10</td>
<td>55.5</td>
</tr>
<tr>
<td>34-36</td>
<td>7</td>
<td>38.8</td>
</tr>
</tbody>
</table>
Highest percentage of Bacteriurics are in the 28-33 weeks of Gestation Period.

<table>
<thead>
<tr>
<th>SYMPTOMS</th>
<th>Bacteriurics</th>
<th>Non-Bacteriurics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percentage%</td>
</tr>
<tr>
<td>PAIN ABDOMEN</td>
<td>12</td>
<td>66.6</td>
</tr>
<tr>
<td>DRAINING</td>
<td>6</td>
<td>33.3</td>
</tr>
</tbody>
</table>

Most of the Patients presented with labourpains(66.6%)

<table>
<thead>
<tr>
<th>Birth Weight</th>
<th>Bacteriurics</th>
<th>Non-Bacteriurics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percentage%</td>
</tr>
<tr>
<td><2 Kg</td>
<td>17</td>
<td>94.4</td>
</tr>
<tr>
<td>>2 Kg</td>
<td>1</td>
<td>5.55</td>
</tr>
</tbody>
</table>

DOI: 10.9790/0853-1901021928
Prevalence of Asymptomatic Bacteriuria in Preterm Labour and Maternal and Perinatal...

NICU Admission

<table>
<thead>
<tr>
<th>NICU Admission</th>
<th>Bacteriurics</th>
<th>Non-Bacteriurics</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>66.6%</td>
<td>30.48%</td>
</tr>
<tr>
<td>NO</td>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>33.3%</td>
<td>69.5%</td>
</tr>
</tbody>
</table>

Relation of Birth weight to Asymptomatic Bacteriuria

- **< 2 Kg**
 - Bacteriurics: 100%
 - Non-Bacteriurics: 70%

- **> 2 Kg**
 - Bacteriurics: 30%
 - Non-Bacteriurics: 10%

NICU Admissions

<table>
<thead>
<tr>
<th></th>
<th>Bacteriurics</th>
<th>Non-Bacteriurics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemia Hb < 10g</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>55.5%</td>
<td>30.4%</td>
</tr>
<tr>
<td>Blood Transfusion</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>44.5%</td>
<td>6.09%</td>
</tr>
</tbody>
</table>

DOI: 10.9790/0853-1901021928 www.iosrjournals.org 26 | Page
V. Discussion:

In the present study the incidence of asymptomatic bacteriuria among preterm labour is found to 18% which is consistent with the study done by Kass.

In the present study E.coli is the most commonest organism causing ASB with prevalence of 55.5% worldwide. Commonest isolate in 70-90% pregnant women. Klebsiella emerged as the second most common cause of ASB with a prevalence of 22.2%. According to the present study 88.8% of bacteriurics belongs to low socioeconomic group. The present study shows that asymptomatic bacteriuria is commonly seen between the ages of 18 - 22 years (50%), followed by 23 – 27 years (27.7%) indicating that it is common in the reproductive age group and this trend is attributed to the fact that most of the women in India complete their families by 25 years of age. Incidence of ASB in reproductive age group is due to to early pregnancy and multiparity in our country, especially in the rural sector. Many studies show advancing age as a risk factor for acquiring ASB in pregnancy because there is glycogen deposition and reduction in the lactobacillus as a part of ageing process which enhances bacterial adherence and invasion by pathogens and make them susceptible.
Prevalence of Asymptomatic Bacteriuria in Preterm Labour and Maternal and Perinatal Outcome

References

[22]. Nicolle LE. Screening for asymptomatic bacteriuria in early pregnancy. Canadian guide to clinical preventive healthcare. 1994; 100-10