Role of Ephedrine on the Onset Time Neuromuscular Blockade Produced By Rocuronium

Poonamkumari¹, Bharti², Ladhu lakra³

DR. Poonamkumari: Senior Resident: Deptt of anaesthesia RIMS, Ranchi
DR. Bharti: Senior Resident: Deptt of anaesthesia RIMS, Ranchi
DR. Ladhulakra: Professor: Deptt of anaesthesia RIMS, Ranchi
Rajendra Institute Of Medical Science, Ranchi, Jharkhand, India
Corresponding Author: DR. Bharti

Abstract: Patient is at risk of hypoxia and pulmonary aspiration the time between losses of consciousness to tracheal intubation. It is usually desirable to use a muscle relaxant with a short onset time. The onset time is partly determined by the speed with which these drugs reach the neuromuscular junction, a factor that appears to be proportional to cardiac output and muscle blood flow. Since ephedrine can increase these variables our hypothesis was that it could reduce the onset time of muscle relaxants. Rocuronium is the currently preferred non-depolarizing neuromuscular blocking agent used as an alternative to succinylcholine for rapid tracheal intubation.

Use of ephedrine during the induction of general anesthesia has been described to accelerate the onset of action of rocuronium and improve the intubating conditions.

The aim of this study was to evaluate the effects of a single dose of ephedrine, given at the moment of induction, on the onset time of rocuronium and on blood pressure and heart rate evolution during the induction sequence.

Date of Submission: 01-05-2019
Date of acceptance: 15-05-2019

I. Introduction

Patient is at risk of hypoxia and pulmonary aspiration the time between losses of consciousness to tracheal intubation. It is usually desirable to use a muscle relaxant with a short onset time. The onset time is partly determined by the speed with which these drugs reach the neuromuscular junction, a factor that appears to be proportional to cardiac output and muscle blood flow. Since ephedrine can increase these variables our hypothesis was that it could reduce the onset time of muscle relaxants. Rocuronium is the currently preferred non-depolarizing neuromuscular blocking agent used as an alternative to succinylcholine for rapid tracheal intubation.

Use of ephedrine during the induction of general anesthesia has been described to accelerate the onset of action of rocuronium and improve the intubating conditions.

II. Materials & Methods

This study was done in RIMS, Ranchi, Jharkhand, India during 2008-2010. After obtaining informed consent, we studied 50 ASA physical status I-II patients, aged 18-60 year, scheduled for elective general surgery and gynecologic procedures under general anesthesia were included. Patients were divided in 2 groups: Group I(n=25): Ephedrine Group, Group II(n=25): Control Group. Exclusion criteria included anticipated difficult endotracheal intubation (Mallampati class III—IV), any cardiovascular or neuromuscular disease, intake of drugs known to interact with the neuromuscular junction or ephedrine, increased risk of pulmonary aspiration. After premedication monitors were used like NIBP, ECG, Pulse Oximeter and TOF watch. Anesthesia was induced through an intravenous line, in group I ephedrine 70mcg/kg diluted in 5ml normal saline given and in group II patients received same amount of saline only.

After loss of the eyelid reflex and confirmation that ventilation via a facemask was possible, rocuronium 0.6 mg/kg was administered in 5 s. When maximum neuromuscular blockade was achieved, tracheal intubation was performed. Only oxygen was given between fentanyl administration and tracheal intubation, and anesthesia was then continued with isoflurane 0.5% and Nitrous oxide 66%.

Onset time was defined as the time from the end of injection of rocuronium to maximum neuromuscular blockade (complete disappearance of TOF response).

Heart rate and non-invasive blood pressure were measured immediately before the administration of each of the drugs used in the induction sequence, just after, 1 min & 2 min after tracheal intubation.

The presence of arrhythmias on the electrocardiograph ECG monitor was noted.
Role of Ephedrine on the Onset Time Neuromuscular Blockade Produced By Rocuronium

Statistical comparisons were made with Student’s t-test for demographic data. P value less than 0.05 was considered significant.

III. Result

The onset time of rocuronium was significantly shorter after E compared with placebo (P<0.05)

There were no statistically significant differences between the heart rates and mean blood pressure of both groups.

Table 1: General data

<table>
<thead>
<tr>
<th></th>
<th>Group I (n=25)</th>
<th>Group II (n=30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>34.12 (+/-10.63)</td>
<td>34.76 (+/-9.83)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>55.2 (+/-7.11)</td>
<td>55.88 (+/-5.76)</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>15/10</td>
<td>14/11</td>
</tr>
<tr>
<td>ASA (I/II)</td>
<td>25/5</td>
<td>26/4</td>
</tr>
<tr>
<td>Onset time of rocuronium</td>
<td>72.68 (+/-5.37)</td>
<td>97.3 (+/-8.68)</td>
</tr>
</tbody>
</table>

Table 2: Mean arterial pressure and heart rate in the two groups.

<table>
<thead>
<tr>
<th>Time</th>
<th>Ephedrine</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>NIBP</td>
</tr>
<tr>
<td>Before induction</td>
<td>81.68, 7.54</td>
<td>97.64, 4.14</td>
</tr>
<tr>
<td>after induction</td>
<td>82.16, 7.50</td>
<td>96.44, 5.37</td>
</tr>
<tr>
<td>1 min after induction</td>
<td>100.16, 7.19</td>
<td>104.27, 8.83</td>
</tr>
<tr>
<td>2 min after induction</td>
<td>91.4, 5.89</td>
<td>99.0, 8.06</td>
</tr>
</tbody>
</table>

Ephedrine, a weak, indirect and direct-acting sympathomimetic agent, produces venoconstriction to a greater degree than arterial constriction, causing a redistribution of blood centrally, improving venous return, increasing CO and restoring uterine perfusion. Clinical studies have shown that Ephedrine reaches its peak effect in 2—5 min and exerts its effect on blood pressure in less than 2 min after administration. We used propofol 2mg/kg for muscle relaxation during induction.

IV. Discussion

The main finding of this study is that a small dose of ephedrine administered at the moment of induction reduced the onset time of rocuronium by 26% without significant adverse effects in this group of patients. The rate of onset of neuromuscular blockade in any one individual depends only on the rate at which a pharmacologically effective concentration is achieved in the biophase, in this case, the neuromuscular junctional cleft. This rate, in turn, is influenced by several factors, such as the potency of the drug, the dose administered, and the cardiovascular status, including cardiac output and muscle blood flow.

We found that ephedrine reduced the onset time of rocuronium by almost 30 seconds, a fact that we believe is clinically relevant, especially when this was accomplished with a low dose of ephedrine without important adverse effects, at least in relatively healthy patients.

Although we expected to find significant differences in the hemodynamic profile of both groups after the injection of ephedrine, which suggests a difference in cardiac output (e.g., higher heart rate or blood pressure in the group receiving ephedrine), this was not the case.

Although we did not find adverse effects after the administration of ephedrine—such as tachycardia, hypertension, and arrhythmias—it must be considered that in a sample of 30 patients having an incidence of adverse effects equal to zero, the upper limit of the 95% confidence interval is estimated in 10%. Also, their incidence might be higher in patients with cardiovascular disease or with a different induction technique.

Finally, one additional effect of ephedrine was observed. This is the reduction of the variability in the onset time of rocuronium, a fact that has been regarded as one of the disadvantages of this drug (and the other nondepolarizing neuromuscular blocking drugs) when compared with succinylcholine.

V. Conclusion

Ephedrine reduced the onset time of rocuronium without significant adverse effects in a group of relatively healthy patients. This combination can be valuable when succinylcholine is contraindicated and the shortest possible time from loss of consciousness to tracheal intubation is desirable. However, it is not effective in preventing the hypotension which follows induction of anesthesia.
Role of Ephedrine on the Onset Time Neuromuscular Blockade Produced By Rocuronium

References

DOI: 10.9790/0853-1805061113 www.iosrjournals.org 13 | Page