Surgical Management of Spondylolisthesis by Pedicular Screw Rod System and Postero-Lateralfusion

Dr.Ramesh Benguluri¹ & Dr.Chinnala Srujan Kumar²
1.Department Of Orthopaedics, Assistant Professor, Deccan College Of Medical Sciences(PEH).
2.Department Of Orthopaedics, Junior-Resident, Malla Reddy Institute Of Medical Sciences.

Abstract:

Introduction: Incidence of spondylolisthesis in general population is 5-7%. No matter what the etiology is, patients usually have significant functional disability. Few studies have investigated the long term effect of Postero Lateral Fusion on functional outcome.

Objectives: To study the efficacy of Postero Lateral Fusion in spondylolisthesis especially in terms of functional outcome.

Methodology: From July 2010 to June 2012, a total of 86 patients, operated with Postero Lateral Fusion were followed up and evaluated based on Visual Analogue for Pain (VAS) for low back pain, ODI and neurological deficits.

Results: Follow up was 83% of original study population (86). Average follow up was 13 months. The mean difference between pre operative and post operative VAS at final follow up was 3.5 cms (SD= 2.94); ODI was 28% at 4 months and 36% at 8 months. Claudication pain relieved in all; functional outcome was good in 67%, fair in 27.5% and failed in 5.5%; 75% had fusion at an average of 5.5 months.

Conclusion: PLF is still a safe, promising and appealing technique.

Keywords: Spondylolisthesis, Posterolateral Fusion (PLF), Functional Outcome.

Date of Submission: 28-03-2018 Date of acceptance: 12-04-2018

I. Introduction:

Spondylolisthesis is the subluxation of a vertebral body over another in the sagittal plane and is a relatively frequent mechanism of intervertebral instability¹,². Spondylolisthesis can be caused by ligamentous laxity, a defect in the pars interarticularis, previous surgery, or may be traumatic and occurs in up to 5% of the general population and affects all ages³. The surgical treatment of spondylolisthesis is indicated for cases of neurogenic claudication, intractable radicular pain, severe low back pain, presence of neurological symptoms, and failure of conservative management, radiological instability, progressive worsening of the listhesis, meyerding grade III and IV listhesis, and spondyloptosis⁴,⁵. The primary goal of spinal fusion is to remove pain generating tissues and to alleviate the patient’s pain by stabilization of one or more motion segments⁶. Spinal fusion has been developed as a final course of progressive intents, which are designed to stabilize spine movement, reduce pain, and to moderate further degenerative change⁷,⁸. The goals of surgical treatment for lumbar spinal stenosis include relief of leg and back pain. Although decompression is a standard treatment regimen for the surgical treatment of lumbar spinal stenosis, additional fusion after extensive decompression can be required in many cases. In particular, an extensive facetectomy is needed for decompression of the foraminal stenosis in many cases. Thus, for cases of lumbar foraminal stenosis, a combination of neural decompression and spinal fusion can be performed to achieve the goals of surgical treatment. Lumbar spinal fusion is a common surgical treatment used in disc degeneration, which is related to chronic lower back pain and other spinal disorders, such as disc herniation, spondylolisthesis, facet arthropathy, and spinal stenosis⁹. Since spinal arthrodesis was first reported 90 years ago, various techniques have been developed for lumbar spine fusion. Posterior lumbar fusion has the advantages that these are the purely dorsal approach thus avoiding the risks inherent to an anterior approach¹⁰,¹¹. PLF construct reduces the postoperative segmental mobility and permits better graft incorporation¹². Posterior spinal decompression, stabilization and fusion are associated with acceptable postoperative complication rate when done under fluoroscopic guidance. The availability of intraoperative fluoroscopy and improved access to varieties of spinal titanium implants has revived posterior spinal stabilization techniques with their distinct advantages¹³. The present study was conducted to review our experience with Posterior Lumbar Fusions for the management of spondylolisthesis.
II Materials And Methods:

The present study was conducted in the department of Orthopedics, Narayana Medical College and general hospital, Chintareddy Palem, Nellore.

In present study we evaluated the outcome of surgical management of patients who were operated upon with posterior stabilization using pedicular screw rod system and postero lateral fusion for spondylolisthesis between July 2010 and June 2012 and followed up.

Inclusion Criteria:
1) Patients Age Between Of 20 – 75 Yrs.
2) Both Genders.
3) Patients Diagnosed With Spondylolysis And Spondylolisthesis With Failed Conservative Treatment

Exclusion Criteria:
1) Patients Of Age Less Than 20 Yrs And More Than 75 Yrs.
2) Patients With Grade–V Spondylolisthesis.
3) Patients Who Did Not Have A Regular Follow Up For A Minimum Period Of 6 Months.
4) Patients With Any Other Spinal Pathologies.
5) Patients Who Have Had Earlier Surgeries On Their Spine.

II. Results:

A total of 86 cases of spondylolisthesis were treated surgically by posterior stabilization using pedicular screw rod system and postero-lateral fusion. Of these cases, 72 cases turned up for follow up while 14 patients were lost to follow up.

Clinical Details:

Of the 86 patients that were followed up there were 58 females and 28 males. All patients were in the range of 20 years to 75 years with an average age at the time of surgery being 43 years. These patients have a duration of symptoms ranging from 1 month to 10 years with a mean time period of 28.6 months. The majority of the patients were housewives followed by those doing heavy manual work. All the 86 patients had low back pain; radicular pain present in 56 patients; neurological deficits present in 12 patients; claudication pain present in 36 patients. No involvement of bowel and bladder in any patient. All patients were requiring NSAID’s, bed rest, 45 patients underwent traction and physiotherapy for a variable periods with an average of 6 months. All patients have had paraspinal muscle spasm and spinal tenderness and had reduced spinal movements. Average pre-operative vas for low back pain was 7.8 and ODI was 52%.

Of total 86 patients:
1) 55 patients had instability at the level of L4–L5 and 31 had L5–S1 instability.
2) 44 patients had grade 1 slip, 34 patients had grade 2 slip and the rest 8 had grade 3 slip.

The patients had an average blood loss of about 250 ml. In our study there were no instrumentation failure, vascular injury and infection. Intra-operatively 8 (9.3%) patients had dural tear, 2 patients had pedicle failure leading to medial wall penetration and post operatively developed radicular pain on right side which was of new onset, hence was revised with removal of instrumentation. Dural tear was tackled by placing free fat graft and water tight closure of all layers.

Post–Operative Observations At Discharge:

The mean difference between pre operative and post operative VAS and ODI at discharge were 2.6 cm(SD=1.87)and 26% respectively. The mean difference of ODI and VAS was found to be more in males than females. Claudication pain was relieved in all patients. Neurological improvement was seen in 8 out of 12 patients. Sensory improvement was seen in 18 and blunting in 6 patients.

Post operatively grade of slip improved as 44 patients had grade 0, 28 patients had grade i and grade ii in 14 patients. Overall outcome had been graded into good, fair and failed depending on VAS, ODI, improvement in radiculopathy and neurological deficits.

<table>
<thead>
<tr>
<th>Points</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAS Difference</td>
<td>>3.5</td>
<td>>3</td>
<td><2.94</td>
</tr>
<tr>
<td>ODI Difference</td>
<td>>40%</td>
<td>10-40%</td>
<td><10%</td>
</tr>
<tr>
<td>Radiculopathy</td>
<td>Absent</td>
<td>Occasionally Present</td>
<td>Persisting</td>
</tr>
<tr>
<td>Neurological Deficits: Improvement</td>
<td>2 Grades</td>
<td>1 Grade</td>
<td>Not Improved</td>
</tr>
</tbody>
</table>

Maximum Score–12 And Minimum Score–4
The mean difference between preoperative and postoperative ODI at 4 months follow up was 28% and 8 month follow up was found to be 36%. Re - Operation rates were 2.7%. Neurological deficits of new onset were 2.7% compared to 5% in literatures. Pedicle failure was observed in 2.7% of patients. 10 Patients had postoperatively low back pain, while 6 had radiculopathy and 4 had a limp. Whatever may be the score persistent radiculopathy is considered as failed response. Outcome score was good (>= 10) in 48(67%), fair (5 – 10) in 20(27.5%) and failed (<= 5) in 4(5.5%). Overall good outcome is significantly associated with more number of patients i.e., 67%. Good outcome was also significantly associated with 1) Younger age group. 2) Males. 3) Strongly associated with lower grade of slip and 4) Strongly associated with radiological fusion. It was found that there was no significant relation between level of instability and final clinical outcome. Clinical outcome (based on VAS for low back pain, ODI, radicular pain, neurological deficits and claudication) and spinal fusion was then assessed by plain lumbar spine radiographs at 2, 4, 8 and 12 months after operation.

III. Discussion:

Adult spondylolisthesis is a radiographically verifiable condition revealed by motion in lumbar segments. It is important to isolate the specific symptoms, signs, and functional disabilities that distinguish spondylolisthesis from other types of low-back pain and sciatica. Despite the conservative treatment previously received by many patients, their symptoms cannot be resolved33,64. In numerous studies, the mean age of the patients being treated for isthmic type spondylolisthesis has ranged from 29.8 to 53.4 years42. In a study, the mean age was 47.3 years in patients who underwent PLF procedure. The duration of the symptoms ranged from 8 to 60 months, with a mean duration of 38.4 months. 43 in present study also we had females more than male patients and a mean age was 43 years. The patients have duration of symptoms ranging from 1 month to 10 years with a mean time period of 28.6 months. In accordance with the literature surgery was performed in patients who did not respond to conservative management or who develop neurological deficits at the time of presentation43,64. In our series we had L4-L5 level (55 cases) involvement more than L5-S1 level (31 cases) and 44 patients had grade 1 slip, 34 patients had grade 2 slip and the rest 8 had grade 3 slip. Kim et al reported that 50% of the defective levels were L4-L5, and this ratio was similar to that found in our series (54%)45. In a study, the vertebral levels at which the implants were inserted were as follows: L2-3 (one patient), L4-5 (25 patients), and L5-S1 (15 patients)45. In one study, the most commonly affected level was L5-S1 followed by L4-5 and L3-L4 respectively34. Dantas reported equal number (45%) of patients involving the L4-L5 and L5-S1 levels1. Yan et al reported the L5-S1 affected rate of 52.27% and L4-L5 of 47.72%47. Postero lateral fusion has been one of the standards for surgical treatment of lumbar spinal instability, and with the use of spinal instrumentation, it has been widely used for lumbar degenerative pathology121. 54 of the 72 patients (75%) had obtained bony fusion while 18 patients did not. The average time for bony fusion was 5.5 months with the earliest being 4 months and the latest 11 months. Good outcome was significantly associated with younger age group, male gender, lower grade of slip and radiological fusion group. However there was no significant relation between level of instability and final clinical outcome. In spondylolisthesis patients, concern for spinal biomechanics is the key to proper surgical management11,62. Crawford et al. Reproduced the lumbar spondylolisthesis grade 1 using cadaveric specimens and studied the biomechanics of various hardware combinations including cages with and without intersomatic spacers, pedicle screws alone, and pedicle screws with cages60. The surgical treatment of choice for the management of spondylolisthesis remains a matter of controversy2,57,59,60 and an effective spondylolisthesis surgery involves fusion of the fewest possible segments, minimizes dislocation, achieves adequate decompression, corrects the sagittal axis, and accomplishes fusion37,58. Suk et al performed decompression, pedicle screw fixation and fusion in 76 patients with symptomatic spondylolisthesis and a stenotic spinal canal. In the PLF group, the incidence of nonunion was 7.5%, whereas there was no nonunion in the PLIF group45. However, in a study it could not be concluded which operative technique (PLF, PLIF, anterior lumbar interbody fusion, or instrumentation) best accomplished fusion. In the management of low-grade isthmic spondylolisthesis, instrumentation, decompression, reduction, and fusion can all play a beneficial role42. In a prospective study, however, Kim et al could not find any differences among clinical outcomes and fusion ratios after observing PLF, PLIF, and combined PLF/ PLIF groups for 3 years. In addition, the PLIF-only group showed shorter operating times, lower blood loss, and no pain in the iliac wing (the donor site for bone fusion)48. All the grade III listhesis were reduced to grade ii or i and grade ii were reduced to grade I or reduced completely. Grade i listhesis were reduced completely or in situ fixation was performed. In younger patient group the most common type of listhesis seen was dysplastic and in the elder group the degenerative type was the most common34. Madan and boeree compared 23 patients treated with PLIF and 21 treated with PLF who also had instrumentation treatment. Satisfactory clinical outcomes were found at a rate of 69.5% in the PLIF group and 69.5% in the PLF group. In patients with low grade spondylolisthesis, they obtained better clinical results in the PLF group; however, the quality of fusion and correction was better in the PLIF group52. After 2 years of experience with PLF and PLIF, Elman et al reported that these 2 methods produced similar outcomes in the management of adult isthmic spondylolisthesis (with the exception of Higher Complication Rates When
Using The PLIF Method. Patients With Adequate Fusion might have a better clinical outcome and vice versa. Some investigators have reported that the clinical outcomes for PLIF are no better than for other fusion techniques. In patients who underwent PLIF, the wider retraction of the nerve root and Thecal Sac Was Clearly disadvantageous because it induced leg pain. An Oswestry index of 89% with good or excellent results in the PLIF patients, and 86% in PLF patients. The difference was not statistically significant. In a prospective randomized study on degenerative lumbar disease, three fusion methods: posterolateral fusion (PLF), posterior lumbar interbody fusion (PLIF), and PLIF combined with PLF (PLF+PLIF), were compared and there was no significant differences in clinical results and union rates among the three methods. The reported complications in the PLF patients are screw fractures and loosening of the implants and these may require reoperation. It is generally believed that reduction at operation is not required for patients with symptomatic grades 1 and 2 spondylolisthesis. Complication rates were reportedly higher in patients who received reduction at operation. Although a sound fusion is thought to be a parameter for clinical success in patients with mechanical LBP, however, the fusion rates did not correlate with the clinical outcomes in patients.

In a prospective study, our aim was to compare the clinical outcome of posterior lumbar interbody fusion (PLIF) and posterolateral fusion (PLF) in spondylolisthesis. Radiography was performed preoperatively and postoperatively to assess the fusion. Both surgical procedures were effective, but the PLF group showed more complications related to hardware biomechanics. The PLIF group presented a better fusion rate than PLF group but there was no significant statistical difference in clinical and functional outcome in the two groups. Swan et al investigated 2 groups with low-grade isthmic spondylolisthesis; they treated the first group (50 consecutive patients) using 1-level posterior instrumentation and PLF, and they treated the second group (50 consecutive patients) with both anterior lumbar interbody fusion and PLF. At the 2nd year postoperatively, a clinical examination demonstrated that the patients who received the combined anteroposterior treatment showed more correction of their unstable spondylolisthesis than patients who only received posterior treatment. The complications associated with the spine procedure include permanent neurological deficit in 0.4%-1.7%, CSF leakage in 0.4%-0.5%, radicular pain in 1.1%-2.5%, and deep wound infection in 0.6%-5% of patients. The complication rates associated with PLIF are higher than those with PLF and, technically, PLF is easier to perform. In comparison to PLIF, the PLF has less blood loss and PLIF procedure considered to be difficult due to the increased bleeding, prolonged operation time, and more extensive dissection. Cerebrospinal fluid (CSF) leaks can occur as a result of spine surgery or trauma. These leaks represent serious problems because of persistent headaches and the possibility of meningitis. Surgical management is often needed and requires meticulous direct closure of the dura or closure by means of a fascial graft. Based on findings it was concluded that if there is instability affecting the three-column spine in spondylolisthesis, posterior interbody fusion with pedicle screws (PLIF) provides a more solid mechanical construction when compared with the pedicle screws used alone. Both surgical procedures were effective, although the PLF group showed more complications related to hardware biomechanics. Clinical and functional outcomes in both groups were similar, and no significant statistical difference was found. But PLIF presented better fusion rate when compared with PLF. Lumbar spondylolisthesis is a heterogeneous disorder characterised by the forward displacement of one vertebra on another. Conservative treatment for segmental instability is possible for patients with tolerable pain. Surgery is indicated if symptoms are disabling and interfere with work, if the condition is progressive, or if there is a significant neurological deficit. Postero lateral fusion can be an option for the management of lumbar spondylolisthesis. However, this study has limitations as the number of patients included was relatively small and studies with larger numbers of patients are required. With advances in minimal access technology using operating microscope, in future the present technique can be compared with other approaches providing an adequate decompression and circumferential fusion, and avoid many of the disadvantages of the traditional posterior open approach for degenerative spondylolisthesis.

IV. Conclusions:

Spondylolisthesis is a common condition that is seen in orthopedic practice for low back pain. To treat this many surgical and non-surgical methods have been described in literature. Surgical decompression and spinal stabilization is recommended for those patients who fail to respond to conservative management or who have significant spinal instability. Different techniques i.e. anterior, posterior and or combined approached have been used for various underlying degree of spondylolisthesis. Posterior lateral lumbar fusion and spinal decompression is an effective method in the treatment of spondylolisthesis, as it provided good spinal fusion, less complication with satisfactory clinical outcome. Although the surgical fixation of spondylolisthesis using pedicular screw rod system and posterolateral graft with decompression is a safe, promising and appealing technique especially in low grade listhesis, there is a need to study, adopt and PLIF, TLIF and ALIF procedures to produce better clinical results and in high grade spondylolisthesis. Based on our findings we conclude that spondylolisthesis was one of the most common indications for posterior spinal decompression, stabilization and posterolateral fusion (PLF) at our center. Surgical procedures were effective with fewer complications related
to hardware biomechanics. The surgical procedure was associated with minimal postoperative complications particularly when performed under fluoroscopic guidance. Good outcome was mainly related to the preoperative neurological deficits and the degree of slip. Apart from the surgical management, modification of the lifestyle is also recommended to avoid failure of surgery. Although short-term results from studies are promising, the number of patients included was relatively small and studies with larger numbers of patients are required.

Case 1:

![Pre-op X-ray](image1)

![MRI Sagittal](image2)

![Post-op X-ray](image3)
Surgical Management Of Spondylolisthesis By Pedicular Screw Rod System And Postero-Lateral Fusion

Case 2:

References:

DOI: 10.9790/0853-1704056170 www.iosrjournals.org
Surgical Management Of Spondylolisthesis By Pedicular Screw Rod System And Posterolateral Fusion

[52]. Laurent Le, Einoia S. Spondylolisthesis In Children And Adolescents. Acta Orthopaedica Scandinavica 1961;31:45-64.

[64]. Kim Ki, Kim Sr, Sasase N, Et Al. 2',5'-Oligoadenylate Synthetase Response Ratio Predicting Virological Response To Peg-Interferon-Alpha2b Plus Ribavirin Therapy In Patients With Chronic Hepatitis C. Journal Of Clinical Pharmacy And Therapeutics 2006;31:441-446.

[70]. Capener N. Spondylolisthesis. 1932.

[71]. Fribeg S. Studies On Spondylolisthesis1939.

DOI: 10.9790/0853-1704056170 www.iosrjournals.org 68 | Page
Surgical Management Of Spondylolisthesis By Pedicular Screw Rod System And Postero-Lateralfusion

[103]. Suk Ks, Jeon Ch, Park Ms, Moon Sh, Kim Nh, Lee Hm. Comparison Between Posteroentral Fusion With Pedicle Screw Fixation And Anterior Interbody Fusion With Pedicle Screw Fixation In Adult Spondylotic Spondylolisthesis. Yonsei Medical Journal 2001,42:316-323.

