Clinical and Functional Outcome between Proximal Femoral Nailing and Cemented Hemiarthroplasty in the Management of Elderly Patients with Intertrochanteric Fractures – A Comparative Study

Dr. Ganta Varaprasad1, Dr. Sandesh Reddy Yaratapalli2
1(Department of Orthopaedics, Guntur Medical College and General Hospital, India) 2(Department of Orthopaedics, Guntur Medical College and General Hospital, India)

Keywords: Proximal Femoral Nailing(PFN), Bipolar Hemiarthroplasty, Harris Hip Score(HHS)

I. Introduction

Intertrochanteric fractures are a major cause of morbidity and mortality in elderly population. They contribute up to 45% of all hip fractures. Unstable intertrochanteric fractures in elderly age group are associated with high rates of morbidity and mortality. Lately the results have improved with internal fixation and early mobilisation. However fracture comminution, osteoporosis and instability often prevent full weight bearing early. Both direct and indirect forces result in these fractures following fall. Koval and Zukerman postulated that Intertrochanteric fractures constitute almost 50% of fractures of the proximal femur. Direct forces act along the axis of the femur or directly over greater trochanter. Indirect forces include pull of the Iliopsoas muscle on the lesser trochanter and pull of the abductor muscle on the greater trochanter region. Intertrochanteric fractures is often seen in patients over 60 years of age. They are three times more frequent in women than men due to postmenopausal osteoporosis. Before the development of internal fixation devices, treatment was nonoperative, consisting of prolonged bed rest with traction until fracture healed (usually 10 to 12 weeks), followed by lengthy rehabilitation. In elderly patients, this was associated with high complication rates which include decubitus ulcer, urinary tract infection, joint contractures, pneumonia, atelectasis, malunion and thromboembolic complications. In addition, fracture healing was generally accompanied by varus deformity and shortening because of the inability of traction to effectively counteract the deforming muscular forces. Surgery is important in elderly intertrochanteric fractures to prevent these complications.

II. Aim Of The Study

To compare the clinical and functional outcome of intertrochanteric fractures in elderly patients treated with proximal femoral nail and cemented hemiarthroplasty

III. Materials And Methods

- A prospective comparative study
- 40 elderly patients were included in the study
- Patients operated with PFN were allotted Group A and Bipolar prosthesis Group B
- 20 patients were allotted in each group randomly

INCLUSION CRITERIA
1. Patients more than 60 years of age
2. Comminuted intertrochanteric fractures
3. Type 3 and type 4 fractures under Boyd and Griffith classification
4. Closed fractures
5. Fracture within 3 weeks of injury

EXCLUSION CRITERIA:
1. Patients less than 60 years of age
2. Seriously ill patients and patients not fit for surgery
3. Pathological fractures
4. Compound fractures and polytrauma
5. Previous implant failure
6. Associated Neurovascular injuries

Preoperative Assessment:
- Detailed history after admission
- Mode of injury and associated medical illness
- Clinical evaluation and assessment
- X ray involved hip – AP and Traction internal rotation view

Anaesthetic Assessment:
The American society of Anesthesiologists(ASA) score was calculated as under
I. A normal healthy patient
II. Patient with mild systemic disease
III. Patient with severe systemic disease
IV. Patient with severe systemic disease that is a constant threat to life
V. Moribund patient who is not expected to survive without operation

OUTCOME:
Fair-Harris hip score between 70 and 80
Good-Harris hip score between 80 and 90
Excellent-Harris hip score 90 and above

HARRISHIPSORE

<table>
<thead>
<tr>
<th>Harris Hip assessment tool</th>
<th>1. Pain (44 possible)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) None or (ignore it) 44</td>
<td>B) Slight, occasional, no compromise in activities 40</td>
</tr>
<tr>
<td>C) Mild pain, no effect on common activities, rarely moderate pain with unusual activity, may take simple pain medication 30</td>
<td></td>
</tr>
<tr>
<td>D) Moderate pain, tolerable, accepts limitations caused by pain, Some limitation of common activities or work, Occasionally takes pain medication stronger than aspirin 20</td>
<td></td>
</tr>
<tr>
<td>E) Pronounced, serious limitation of activities 10</td>
<td></td>
</tr>
<tr>
<td>F) Totally disabled, crippled, pain in bed, bedridden 0</td>
<td></td>
</tr>
</tbody>
</table>

II. Function (47 possible)
A. Gait (30 possible)
1. Limp
 a) None 11
 b) Slight 8
 c) Moderate 6
 d) Severe 0
2. Support
 a) None 11
 b) Cane for long walks 7
 c) Cane most of the time 5
 d) One crutch 3
 e) Two canes 2
 f) Two canes 0
 g) Not able to walk 0
 (specify reason:_________)
3. Distance walked
 a) Unlimited 11
 b) 6 blocks 8
 c) 2-3 blocks 5
 d) Indoors only 2
 e) Bed and chair 0

B. Activities (14 possible)
1. Stairs
 a) Normally without using a railing 4
 b) Normally using a railing 2
 c) In any manner 1
 d) Unable to do stairs 0

2. Shoes and socks
 a) With ease 4
 b) With difficulty 2
 c) Unable 0

3. Sitting
 a) Comfortably in ordinary chair one hour 5
 b) On a high chair for one half hour 3
 c) Unable to sit comfortably in any chair 0

4. Enter public transportation 1

III Absence of deformity points (4) are given if the patient demonstrates:
A) Less than 30° flexion contracture
B) Less than 10° adduction
C) Less than 10° fixed internal rotation in extension
D) Limb length discrepancy less than 3.2 centimeters

IV. Range of motion (index values are determined by multiplying the degrees of motion possible in each arc by the appropriate index)
A. Flexion
 0—45° degrees X 1.0
 45—90° X 0.6
 90—115° X 0.3
B. Abduction
 0—15° X 0.8
 15—20° X 0.5
 over 20° X 0
C. External rotation in extension
 0—15° X 0.4
 over 15° X 0
D. Internal rotation in extension
 any X 0
E. Adduction
 0—15° X 0.2

To determine the overall rating for range of motion, multiply the sum of the index values X 0.05. Record Trendelenburg test as positive, level or neutral.
IV. Results

TABLE - 4.1: AGE DISTRIBUTION

<table>
<thead>
<tr>
<th>AGE (YEARS)</th>
<th>PFN</th>
<th>BIPOLAR</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>60-65</td>
<td>9</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>66-70</td>
<td>5</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>71-75</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>76-80</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>81-85</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>20</td>
<td>20</td>
<td>40</td>
</tr>
</tbody>
</table>

GRAPH 1: AGE DISTRIBUTION

TABLE – 4.2: SEX DISTRIBUTION

<table>
<thead>
<tr>
<th>SEX</th>
<th>PFN</th>
<th>BIPOLAR</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MALE</td>
<td>12</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>FEMALE</td>
<td>8</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>TOTAL</td>
<td>20</td>
<td>20</td>
<td>40</td>
</tr>
</tbody>
</table>

GRAPH-2: SEX DISTRIBUTION
TABLE – 4.3: MODE OF INJURY

<table>
<thead>
<tr>
<th>MODE</th>
<th>PFN</th>
<th>BIPOLAR</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTA</td>
<td>6</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>TF</td>
<td>14</td>
<td>17</td>
<td>31</td>
</tr>
<tr>
<td>TOTAL</td>
<td>20</td>
<td>20</td>
<td>40</td>
</tr>
</tbody>
</table>

GRAPH 3: MODE OF INJURY

TABLE – 4.4: TYPE OF FRACTURE WITH METHOD OF FIXATION

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PFN</th>
<th>BIPOLAR</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>11(55%)</td>
<td>12(60%)</td>
<td>23(58%)</td>
</tr>
<tr>
<td>T4</td>
<td>9(45%)</td>
<td>8(40%)</td>
<td>17(42%)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>20(100%)</td>
<td>20(100%)</td>
<td>40(100%)</td>
</tr>
</tbody>
</table>

GRAPH 4: TYPE OF FRACTURE WITH METHOD OF FIXATION

TABLE – 4.5: POST-OPERATIVE COMPLICATIONS

<table>
<thead>
<tr>
<th>POST OPERATIVE COMPLICATIONS</th>
<th>OPERATIVE PFN</th>
<th>OPERATIVE BIPOLAR</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOUND INFECTION</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>SCREW BACKOUT</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
TABLE – 4.6: POSTOPERATIVE PAIN

<table>
<thead>
<tr>
<th>POST OPERATIVE PAIN</th>
<th>PFN</th>
<th>BIPOLAR</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4(20%)</td>
<td>4(20%)</td>
<td>8(20%)</td>
</tr>
<tr>
<td>2</td>
<td>10(50%)</td>
<td>10(50%)</td>
<td>20(50%)</td>
</tr>
<tr>
<td>3</td>
<td>6(30%)</td>
<td>6(30%)</td>
<td>12(30%)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>20(100%)</td>
<td>20(100%)</td>
<td>40(100%)</td>
</tr>
</tbody>
</table>

1-NO PAIN
2-MILD PAIN NOT AFFECTING AMBULATION
3-MODERATE PAIN AFFECTING AMBULATION REQUIRES ANALGESICS
4-SEVERE PAIN, EVEN AT REST, REQUIRES STRONGER ANALGESICS

TABLE – 4.7: POST OPERATIVE MOBILITY SCORE

<table>
<thead>
<tr>
<th>METHOD</th>
<th>MEAN±SD</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRE-OPERATIVE</td>
<td>1.26±0.31</td>
<td>20</td>
</tr>
<tr>
<td>POST OPERATIVE</td>
<td>1.63±0.65</td>
<td></td>
</tr>
<tr>
<td>BIPOLAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRE OPERATIVE</td>
<td>1.05±0.23</td>
<td>20</td>
</tr>
<tr>
<td>POST OPERATIVE</td>
<td>2.38±0.70</td>
<td></td>
</tr>
</tbody>
</table>
Clinical And Functional Outcome Between Proximal Femoral Nailing...

GRAPH 7 - POSTOPERATIVE MOBILITY SCORE

![Postoperative Mobility Score Graph](image)

TABLE 4.8: POST-OPERATIVE SHORTENING

<table>
<thead>
<tr>
<th>METHOD</th>
<th>MEAN+SD</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFN</td>
<td>1.23+/-0.67</td>
<td>20</td>
</tr>
<tr>
<td>BIPOLAR</td>
<td>0.5+/-0.43</td>
<td>20</td>
</tr>
</tbody>
</table>

GRAPH 8: POST-OPERATIVE SHORTENING

![Postoperative Shortening Graph](image)

TABLE 4.9: POST OPERATIVE ROM

<table>
<thead>
<tr>
<th>METHOD</th>
<th>ROM MEAN+SD</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFN</td>
<td>110+/-8.74</td>
<td>20</td>
</tr>
<tr>
<td>BIPOLAR</td>
<td>90+/-4.51</td>
<td>20</td>
</tr>
</tbody>
</table>

DOI: 10.9790/0853-1703118597 www.iosrjournals.org 90 | Page
TABLE 4.10: FUNCTIONAL OUTCOME VS TYPE OF FRACTURE: PFN

<table>
<thead>
<tr>
<th>OUTCOME</th>
<th>TYPE OF FRACTURE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T3</td>
<td>T4</td>
</tr>
<tr>
<td>EXCELLENT</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>GOOD</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>FAIR</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

GRAPH 10: FUNCTIONAL OUTCOME VS TYPE OF FRACTURE: PFN

TABLE 4.11: FUNCTIONAL OUTCOME VS METHOD OF FIXATION: BIPOLAR

<table>
<thead>
<tr>
<th>RESULTS</th>
<th>TYPE OF FRACTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T3</td>
</tr>
<tr>
<td>EXCELLENT</td>
<td>4</td>
</tr>
<tr>
<td>GOOD</td>
<td>6</td>
</tr>
<tr>
<td>FAIR</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>12</td>
</tr>
</tbody>
</table>
All our cases were assessed using Harris hip score. They were graded as excellent, good, fair, poor and failure. 70% excellent and good results was seen in bipolar group and 60% with PFN group. The mean HHS score was 85.4 in Bipolar group and 83.6 in PFN group.

HARRIS HIP SCORES in various studies:

<table>
<thead>
<tr>
<th>SERIES</th>
<th>YEAR</th>
<th>BIPOLAR%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carl Johan Hedbeck</td>
<td>2010</td>
<td>79.3</td>
</tr>
<tr>
<td>Cadler</td>
<td>1996</td>
<td>72</td>
</tr>
<tr>
<td>Nottage</td>
<td>1990</td>
<td>85</td>
</tr>
<tr>
<td>Meyer</td>
<td>1981</td>
<td>77</td>
</tr>
<tr>
<td>Drinker and Murray</td>
<td>1979</td>
<td>77.5</td>
</tr>
</tbody>
</table>

Yamagata et al reviewed 1001 cases of hip hemiarthroplasty. 682 unipolar and 319 bipolar cases were studied. Patients undergoing Bipolar exhibited higher hip score and lower acetabular erosion rates compared to unipolar prosthesis.

Bochner et al reported their experience with Bipolar hemi-arthroplasties in a consecutive series of 120 hemiarthroplasties. In this group 90 patients were followed for atleast 2 years with 91% being pain free and 92% demonstrating satisfactory power and motion.

Lestrange reviewed 496 patients with Bipolar hemi-arthroplasties for displaced femoral neck fractures and compared them with patients having fixed head prosthesis. He found that the Bipolar prosthesis offered advantages over one-piece designs in terms of stability, decreased acetabular erosion and improved function.

In 1988, Cornell et al reported no difference in the functional outcome in a small study including 48 patients with a six month follow up.

Calder et al published the results of a study including 250 patients aged 80 years and above with a 2 year follow-up. A higher proportion of patients were found to return to their pre-injury state was found in the unipolar HA group, but no other differences was found with regard to bipolar group.

According to Ong BC, there was no significant difference between the unipolar and bipolar groups. Finally in 2003, Raia et al reported the results of a study including 115 patients randomized to a more modern cemented unipolar HA or Bipolar HA with identical stems. At the one-year assessment there were no significant difference between the groups in terms of surgical complications and functional outcome.
VI. Examples

PROXIMAL FEMORAL NAILING
CASE 1: PRE AND POST OP X-RAYS

CASE 2: PRE AND POSTOP XRAYS

BIPOLAR HEMIARTHROPLASTY

Case 1: Pre and Post-op
Case 2: Pre and Post-op

COMPLICATION:
SCREW PULL-OUT
Both modalities PFN and Bipolar Hemi-arthroplasty have shown good functional outcome.

Patients treated with PFN (internal fixation) started full weight bearing late compared to hemiarthroplasty, hence functional recovery was delayed in internal fixation group.

Early postoperative HHS was good in patients treated with hemiarthroplasty as compared to internal fixation group but at the end of 1 year scores were comparable.

All inter-trochanteric fractures treated with PFN showed union by 12-16 weeks.

2 cases showed implant failure due to screw back-out.

Fractures treated with hemi-arthroplasty with bipolar prosthesis showed minimal and acceptable shortening of 1cm.

In Patients treated with hemi-arthroplasty early mobilization was achieved thus avoiding complications of prolonged immobilization and recumbency.

Patients treated with PFN showed better range of mobility, thus proving the fact that biological union and retaining original head of the femur gives better results. However quality of the bone in the form of density and texture dictates the treatment.

Activities of daily living involving squatting and sitting cross-legged are better achieved by biological union.

In patients with higher co-morbidities, poor bone quality, less functional activity and household ambulants, hemiarthroplasty is preferred than PFN.

Most of the fractures above 60 years were due to trivial trauma.

Small sample size is one of the limitations of our study.

Thus in our study, primary hemiarthroplasty provides stable, pain free and mobile joint with acceptable complication rate as seen in our study. However larger prospective randomized study comparing the use of PFN against primary hemiarthroplasty for unstable intertrochanteric fractures is needed.

References

[20] Dr,Rahul P Mehta comparative study of Treatment of Proximal Femoral Fractures in Elderly Osteoporotic Patients with PFN Vs Cemented Hemiarthroplasty based on pre-operative Traction Reduction and Grade of Osteoporosis-50 cases.
[22] Khalboud simno,MD,1,Mazen Sakr,MD,2,Julien Girard,MD,MSc,2,Hassan Khatib,MD.The effectiveness of primary Bipolar arthroplasty in treatment of unstable intertrochanteric fractures in elderly patients(North American Journal of Medical Sciences 2010;December,vol.2.No.12)
[23] KH Sancheti,PK Sancheti,AK Shyam,S Patil,Q Dharwal,R Joshi,Primary hemiarthroplasty for unstable osteoporotic intertrochanteric fractures in the elderly:A retrospective case series(Indian J Orthop.October 2010;Vol.44/Issue 4)
Clinical And Functional Outcome Between Proximal Femoral Nailing...

Bochner RM, Pellicci PM, Lyden JP. Bipolar hemiarthroplasty for fracture of the femoral neck. Clinical review with special emphasis on prosthetic motion. JBJS Am. 1988;70:1001-10

