A Clinico-Epidemiological Study on Opportunistic Fungal Infection In HIV Patients And Its Corroboration With CD4 Cell Count

*Tapati Mondal¹, Nilay Mandal², Purba Mukherjee³, Purushottam Kumar⁴, Chitrira Chattopadhyay⁵

¹Assistant Professor, Dept. of Microbiology, Malda Medical College & Hospital, India
²Associate Professor, Dept. of General Surgery, Bankura Sammilani Medical College, India
³Demonstrator, Dept. of Microbiology, Midnapore Medical College, Midnapore, India
⁴Senior Resident, Dept. of General Surgery, AIIMS Patna, India
⁵Professor, Dept. of Microbiology, Burdwan Medical College & Hospital, India

*Corresponding author: Tapati Mondal¹

Abstract: The opportunistic mycoses are those fungal infections which are found in patients whose immunological defense mechanisms are weakened by cancer, AIDS, etc. In patient with AIDS, incidence of opportunistic mycoses are inversely correlated with the CD4 lymphocyte count. Our aim was to establish a correlation between fungal infections and CD4+ T cell count, evaluate prevalence of fungal infections in HIV patients, correlate fungal speciation and CD4+ T cell count. SDA, SDCA, SDCCA were used as isolation culture media. Moulds and their species were identified by colony morphology and Teasing and LCB mount findings. Candida spp. was the most common (101, 94.39%) isolated fungus followed by Aspergillus spp. (3.74%) and Rhizopus spp. (1.87%). Candida isolates were found in any ranges of CD4 cell count from 200 to less than 50. Aspergillus spp. was isolated from patients having CD4 cell count <50 and Rhizopus spp. were found in patients having CD4 cell count not more than 100. It was concluded that oral candidiasis is the commonest opportunistic fungal infections in HIV seropositive patients in this part of India. Almost all the patients having CD4 cell count less than 200.

Keywords: HIV seropositive patients, opportunistic fungal infections, Candida, CD4 cell count.

I. Introduction

Opportunistic infection is an infection in a patient with compromised defences by an agent of low virulence that would not produce infection in a normal patient.¹ Compromised defences or immunodeficiencies may be classified as primary or secondary. Primary deficiencies in immunological function can arise through failure of any of the developmental process from stem cell to functional end cell. Acquired deficiencies can occur secondarily to a number of disease states or after exposure to drugs and chemicals. Viral infections are often immunosuppressive, for example, measles, HIV (Human Immunodeficiency Virus) viruses infect cell of the immune system.²³

The HIV virus is recognized as the aetiological agent of the slowly progressing immunodeficiency in humans that culminates in development of AIDS (Acquired Immunodeficiency Syndrome). HIV is a retrovirus-integrates via a provirus in the human genome; thereby they can persist and potentially cause life-long damage to the immune system. The primary targets of HIV-1 infection are cluster-differentiated (CD4+) cells, especially T cells and the cells of the myeloid lineage, monocytes and macrophages. Secondary T cell deficiency is a cardinal feature of HIV infection and the paucity of CD4+ T cells and the lack of appropriate immune response facilitate numerous opportunistic infections.³ Opportunistic infections may be bacterial, viral, fungal or parasitic.

In patient with AIDS, the susceptibility and incidence of opportunistic mycoses are inversely correlated with the CD4 lymphocyte count. The data of fungal infections in HIV/AIDS patients in this geographical area and their spectrum of infections with relation to immunological profile are scarce. Hence our aim is to study the profile of fungal opportunistic infections and their relationship with the CD4+T lymphocyte profile.

II. Materials And Methods

The study was planned as a cross sectional observational study. One-hundred seven HIV seropositive cases with clinically detected possible fungal infection who were attending the Antiretroviral Therapy (ART) clinic of Burdwan Medical College and Hospital and willing to provide written informed consent, were included in the study. Data was included in a predesigned format (case report form).
Collection of specimen - Specimens of throat swab, sputum, skin scrapings and nail clippings were collected by standardized aseptic methods. The specimens were transported promptly to the mycology laboratory and examined and cultured following standard methods. Direct Microscopy and Gram staining - Direct microscopy with 10% KOH for skin samples and sputum samples and 20% KOH for nail samples using recommended techniques. A smear was prepared from throat and oral swabs and examined under light microscope after gram staining following standard method. Culture and Isolation - All samples (skin and nail samples, throat and oral swab) were inoculated into the agar slant—Sabouraud’s dextrose agar (SDA), Sabouraud’s dextrose agar with chloramphenicol (SDCA), Sabouraud’s dextrose agar with chloramphenicol and cycloheximide (SDCCA) in the test tube. All cultures were incubated at 25°C and 37°C following standard protocol. Sputum samples were inoculated on SDA,SDCA slant in Mac Cartney’s bottle and incubated at 25°C and 37°C and all cultures were incubated for at least 3weeks, and examined at frequent intervals for developing colonies. Isolated colonies on Sabouraud’s agar were used for identification. Further identification of fungal isolates was done by standard recommended procedure.

Identification of Candida and Candida species - Colony morphology, Gram staining findings presumed to be Candida spp. were further processed for species identification by Gern Tube Test, Chlamydospore formation in corn meal agar, subculture on CHROM agar and Biochemical Test- sugar fermentation and assimilation test following standard method. Identification of moulds - Moulds and their species were identified by colony morphology and Teasing and LCB mount findings under light microscope following standard method.

III. Results
Out of 107 HIV positive cases, 60 cases (56.07%) were male and rest 47 cases (43.93%) were female. Maximum number of cases were found to be of the age group of 21-40 years (83.18%) followed by 41-60 years (10.28%) and below 20 years (6.54%). Most of the cases of the study population reside in rural area (66.36%) and rest of the population (33.64%) from urban. It was found that heterosexual transmission (87.85%) was the most common mode of transmission. Others were vertical transmission (3.74%), blood & blood products (1.87%), and contaminated needles (0.93%). According to distribution of the study group on the basis of their occupation, it was seen that majority of the patients were labourers (22.43%) and zari workers (10.28%) followed by truck drivers (7.48%), service man (6.54%), businessman and bus drivers (both 3.74%), farmer (2.80%) and others. Among the female patients, majorities were house-wives (26.17%). Among the study population, 30.84% patients were having associated tuberculosis. The most common clinical presentation was fever followed by weight loss, cough and diarrhoea. Candida spp. (94.39%) was the most common isolated species among all cases of fungal infection in the study group followed by Aspergillus spp. (3.74%) and Rhizopus spp. (1.87%)[Table 1].

<table>
<thead>
<tr>
<th>Fungal infection</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candida spp.</td>
<td>101</td>
<td>94.39</td>
</tr>
<tr>
<td>Aspergillus spp.</td>
<td>4</td>
<td>3.74</td>
</tr>
<tr>
<td>Rhizopus spp.</td>
<td>2</td>
<td>1.87</td>
</tr>
</tbody>
</table>

Table 1: Distribution of different fungal infection in the study population

It was found that among the isolated Candida species in the present study population, most common species was Candida albicans (91.09%) followed by Candida krusei (4.95%), Candida tropicalis (1.98%) and Candida parapsilosis (1.98%). Among the isolated 3.74% Aspergillus spp. all were Aspergillus fumigatus. It was found that CD4 cell count was less than 50 in 20.56% of patients, 51 to 100 in 25.23% of patients, 101 to 150 in 28.04% of patients, 151-200 in 23.36% of patients and more than 200 in 2.80% of patients. In this study it was found that candida isolates were found in any ranges of CD4 cell count from less than 50 to 200. Candida isolated only from three patients having CD4 count >200. In this study Aspergillus spp. was isolated from patients having CD4 cell count <50 and Rhizopus spp. were found in patients having CD4 cell count not more than 100[Table 2].

<table>
<thead>
<tr>
<th>CD4 cell count</th>
<th>Aspergillus fumigatus</th>
<th>Rhizopus spp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 50</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>51-100</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2: CD4 cell count and other fungal infections

IV. Discussion
107 cases were recruited from the HIV positive patients attending the ART clinic at Burdwan Medical College and Hospital, a tertiary care hospital in West Bengal, India. Sample processing was done in the Department of Microbiology, Burdwan Medical College. Among the 107 HIV positive cases under study,
maximum HIV positive cases were in the age group of 21-40 years (83.18%, 89/107) with a male preponderance (56.07%, 60/107) which is concordant with many other studies.6,7 Heterosexual contact (87.85%) was the most common route of transmission in this study which correlates well with other studies.7,8 According to distribution of the study group on the basis of their occupation, it was seen that majority of the patients were labourers (22.43%) and zari workers (10.28%) followed by truck drivers (7.48%), service man (6.54%), businessman and bus drivers (both 3.74%), farmer (2.80%) and others. The differences between various studies could be explained by largely due to the differences in the occupational patterns and the source from where the patients were selected.6,9,10,11

Among the study population, 30.84% patients were having associated tuberculosis. This association is concordant with many other studies.12,13 In the present study, majority of patients had more than one symptom. Fever and weight loss were the predominant symptoms, followed by cough and diarrhea. Anand. K. Patel and his colleagues reported in their study that cough was the most common symptom, other common symptoms were fever and weight loss.1 In another study in Varanasi, fever (70.6%), weight loss (53.3%) were the predominant symptoms, and others were chronic diarrhoea (43.9%) and cough (40.3%).14

Among the 107 fungal isolates, one hundred one (101/107, 94.39%) were Candida spp., four (4/107, 3.74%) were Aspergillus spp., and two (2/107, 1.87%) were Rhizopus spp. Wadhwa et al15 reported in their study in North India that candidiasis was the most common diagnosis (41.7%), followed by cryptococcosis (10.0%) and aspergillosis (8.3% each). In another study in Bologna, it was found that most common fungal isolate was candida (56/74, 75.68%), and aspergillosis were 5.40% (4/74).16 In our study, candida was the most common isolate, followed by aspergillus and rhizopus. Among the 101 Candida isolates, 89 were isolated from throat and oral swab and rest 12 were isolated from skin & nail samples. All the Candida isolates from skin and nail were C. albicans. Among the 89 oromucosal candida isolates, C. albicans was 89.89% (80/89), rest were non-albicans Candida spp. (10.11%).

Sangeeta D. Patel et al. reported in their study that out of 33 isolates from oral lesions, 27 were Candida albicans (81.8%) and 6 were non-albicans Candida spp. (18.2%).6 In another study at Aurangabad, Baradkar et al. reported that from oral lesions 76.92% were identified as C. albicans and rest were other Candida spp. (23.08%).17 These were comparable to our study. In a study18 it was reported that oral candidiasis was the most common (59.00%) opportunistic infection and this finding is similar to the report of NACO19 and T K Giri et al.20 In one study at Nagpur, it was reported that oral candidiasis was significantly correlated to a reduced CD4 cell count below 200 cells/mm3.21

In another study at Mumbai, it was reported that out of 40 patients with oral candidiasis, 28 patients had CD4 count <200 (group A), 10 patients were in group, B (CD4 count 200-500 cell/mm3) and 2 patients in group C (CD4 >500 cell/mm3).22 In our study it was found that out of 101 patients with candidiasis, all most all (98/101) had CD4 count <200 and only 3 patients had CD4 count >200.

In our study, four cases of aspergillosis had CD4 count <50. A study in Japan revealed that remarkable risk factor of HIV-related aspergillosis was decrease of CD4 cell count less than 10/µl, in addition to the usual risk factors of aspergillosis.23 In another study in USA, it was reported that neutropenia, a CD4 count <30 cells/mm3, corticosteroid use, and Pneumocystis carinii infection were associated with subsequent identification of Aspergillus in respiratory specimens.24 In one study it was reported that human zygomycosis caused by the Mucorales generally occurs in immunocompromised hosts as opportunistic infections. Host risk factors include diabetes mellitus, neutropenia, sustained immunosuppressive therapy, chronic prednisone use, iron chelation therapy, broad-spectrum antibiotic use, severe malnutrition, and primary breakdown in the integrity of the cutaneous barrier, with rhinocerebral and pulmonary diseases being the most common manifestations.25 In another study in India it was reported that the most common manifestation of mucormycosis is rhino-cerebral form. Most affected patients are diabetics, especially poorly controlled with ketoacidosis, patients on immunosuppressive treatment, desferoxime treatment and HIV and patients with malignancies.26 In our study, Rhizopus was isolated from two patients- both the patients were forty years males with history of diabetes mellitus.

V. Conclusion

In this clinico-epidemiological cross-sectional observational study, 107 HIV positive patients were recruited and samples were taken from different sites according to the presenting symptoms. They were also enquired for the presence of the risk factors relating to HIV infection along with other relevant data. Among the 107 HIV positive cases under study, maximum HIV positive cases were in the age group of 21-40 years (83.18%, 89/107) which is the sexually active age, with a male preponderance (56.07%, 60/107) which is comparable to other studies. From the relevant data it was concluded that HIV is more common among migrant labourers and heterosexual sex was the most common mode of transmission. Among the study population, 30.84% patients were having associated tuberculosis. Associated tuberculosis is concordant with many other studies.
It was found that *Candida* (94.39%) was the commonest fungal isolate among the opportunistic fungal infections and oral candidiasis was the most common opportunistic fungal infection. Most common species was *Candida albicans*. These are comparable to other studies. Among the isolated candidiasis patients all most all had CD4 count <200 and it is comparable to other studies. People having CD4 count less than 50 are more prone to infection with filamentous fungus. In our study isolated four cases of aspergillosis had CD4 count <50. It is concluded that oral candidiasis is the commonest opportunistic fungal infections in the HIV seropositive patients in this part of India. Almost all the patients with fungal opportunistic infections having CD4 cell count less than 200.

References


DOI: 10.9790/0853-1606135659 www.iosrjournals.org 59 | Page