Canagliflozin – A Novel Oral Hyperglycemic Agent in The Fight Against Diabetic Mellitus

*S.Melina.I.Sahay¹, DamalKandadai Sriram²Melvin George³
¹(Department of Clinical Research, Hindu Mission Hospital,Tambaram, Chennai-45)
²(Department of Endocrinology and Diabetology, Hindu Mission Hospital,Tambaram, Chennai-45)
*Corresponding author: S.Melina.I.Sahay

Abstract: Canagliflozin, is a first-in-class oral hypoglycemic drug to be approved by US FDA, that acts through inhibition of sodium glucose co-transporters in the renal tubules, resulting in glucosuria. Clinical trials with canagliflozin have shown that it causes consistent dose-dependent reduction in HbA1c. The drug has a risk of causing genito-urinary infections & amputations in patients with diabetic foot ulcers. This article summarizes the current knowledge regarding canagliflozin and its future perspectives in the treatment of type 2 diabetes mellitus.

Keywords: canagliflozin, SGLT-2 inhibitors, type 2 diabetes mellitus, amputations, infections.

Date of Submission: 07-12-2017 Date of acceptance: 23-12-2017

I. Introduction

Diabetes is a global health concern, affecting 425 million people worldwide. The global prevalence of diabetes is expected to reach 629 million by 2045[1] and as many as 69.2 million were afflicted with the disease in India as of 2015 [2]. Diabetes is a common non-communicable disease characterized by an elevation of blood glucose level due to either insulin resistance or insulin deficiency[3]. A variety of anti-diabetic drugs are available in market for T2DM patients [4], among them metformin is often the first drug prescribed to patients who have inadequate glycemic control in addition to diet and exercise [5]. While recent additions such as GLP analogues and DPP-4 inhibitors have propped up the scenario in the pharmacological management of diabetes, there is still room for additional drugs which offer better control of blood glucose and also reduce the long term complication of the disease [6]. Several years of intense research in diabetes has led to the successful identification of a new class of drugs for treating diabetes [7,8] Canagliflozin (Invokana®) is the first oral SGLT2 (sodium glucose transporter) inhibitor to be approved by FDA for T2DM[9]. This article aims to discuss the mechanism of canagliflozin, its efficacy, safety and its current status in the treatment of T2DM.

II. Mechanism Of Action

Kidney’s contribution in maintaining blood sugar is significant through glomerular filtration and most of the glucose is re-absorbed in the proximal tubule[1]. In a normal healthy adult the glomeruli filters roughly about 180g of glucose per day with 1% being excreted in the urine. When the tubular glucose load exceed 220mg/min with no glucose excretion glucosuria begins to occur leading to plasma glucose concentration an important modulator of SGLT2 activity [2]. Canagliflozin reduces plasma glucose levels by inhibiting the effects of SGLT2. It reduces re-absorption of glucose being filtered and thereby increases urinary glucose excretion. Canagliflozin’s urinary glucose excretion mechanism also leads to reduction of body weight and blood pressure due to loss of calories and diuretic effect. Canagliflozin results in a loss of 100mg of glucose/day in diabetic patients [3].

2.1 Pharmacoketics

Pharmacokinetic profile of Canagliflozin is similar with T2DM patients and healthy individuals. Canagliflozin is absorbed rapidly when administered orally and reaches its peak plasma concentration within 1-2 hrs and its half life is between 10.6 and 13.1 hrs. The drug reaches steady state concentration within 4 to 5 days of dosing [9]. The protein binding of canagliflozin is 99% and metabolized by O-glucuronidation pathway into three metabolites M5, M7 and M9 inactive conjugates with minimum oxidative metabolism. Canagliflozin is primarily excreted via feces (60%) and most of the remaining (33%) is excreted in urine and 1% as unchanged drug into urine[13].

2.2 Efficacy

Across several clinical studies, canagliflozin has been found to consistently reduce HbA1c and fasting plasma glucose from baseline [9]. Canagliflozin provided dose dependent reduction in HbA1c when studied as a
monotherapy against placebo. In these studies, the mean HbA1c reduction rate was between -0.32 to -1.03% from baseline and greater number of patients achieved HbA1c <7.0% relative to placebo [14-18]. Reduction in fasting glucose was also seen. Canagliflozin showed greatest reduction in HbA1c by 12th week and the reduction was sustained up to 104 weeks. Canagliflozin when studied in combination with other agents such as metformin, sulphonylureas, DPP-4 inhibitors and GLP-1 receptor analogues. Canagliflozin 300 mg showed prominent efficacy in lowering HbA1c when compared to Sitagliptin and Glimepiride over 52 weeks [19,24] and also provided dose dependent reduction in HbA1c and fasting glucose with other active comparator [20-23]. Studies to date reveal that the combination of canagliflozin and insulin always provided apparent reduction on HbA1c (-0.4 to -1.09%) and also reduction in the daily dose of insulin from baseline relative to placebo over 18 weeks and sustained up to 52 weeks[25-27]. Canagliflozin at a dose of 300mg in patients with Type 1 diabetes showed greater reduction in HbA1c when combined with insulin. [25]. However, the drug is yet to receive marketing approval in this population.

2.3 Additional Benefits Of Canagliflozin

Body weight reduction is an added benefit with canagliflozin. In several studies, both doses of canagliflozin provided consistent, dose-dependent reductions in bodyweight relative to placebo and other anti hyperglycemic agents. Canagliflozin at a dose of 100 mg and 300 mg had a greater proportion of subjects achieving ≥5% body weight reduction (27.8%, 33.1% and 10.5%, respectively) relative to placebo after 104 weeks of treatment[19]. Canagliflozin also provided significant reduction in bodyweight compared with sitagliptin (approximately up to 3%) over 26 weeks [24]. In addition to weight loss, canagliflozin is also associated with lowering of blood pressure due to its diuretic effect. [15] Both doses of canagliflozin showed a reduction in systolic and diastolic BP across all phase 3 studies compared with placebo or active comparator [20,22,27]. From two major clinical trials, namely CANVAS and CANVAS-R involving T2DM patients with an elevated risk of cardiovascular disease, it has become known that canagliflozin reduces the risk of death caused by myocardial infarction or stroke compared with placebo [28, 29]. This pharmacological effect is something that can catapult canagliflozin towards becoming one of the front-line contenders in the fight against diabetes.

III. Adverse Events

Canagliflozin is generally well tolerated as monotherapy and as part of combination therapy for T2DM. The overall frequency of adverse events was modestly higher in patients receiving canagliflozin relative to placebo. [30]. Some of the adverse events seen with canagliflozin were genital mycotic infections, urinary tract infection, hypoglycemia and polyuria or pollakiuria. The less commonly observed adverse events were hypotension, ketoacidosis, hyperkalemia, urosepsis and lower limb amputation, bone fracture, impairment in renal function. One of the recent concerns with canagliflozin is its association with an increased frequency of amputations as witnessed in the CANVAS trials. This has resulted in FDA placing a black box warning in the package insert of canagliflozin. Hence the drug is to be avoided among patients who are having diabetic foot ulcers.

3.1 Current Status

Canagliflozin has been approved in the USA, Europe and India for treating T2DM as an adjunct to diet and exercise. One of the limiting factors in the molecule to gain substantial popularity among diabetologists is its prohibitive cost. For instance, one month course of canagliflozin would cost Rs.1530 (30 tablets)[31] while a course of sitagliptin would cost around Rs.1281[32]. Several studies have already evaluated canagliflozin’s efficacy in adult patients, therefore currently a study NCT03170518 is investigating canagliflozin’s safety and efficacy in children and adolescents (≥10 to <18 Years) With Type 2 Diabetes Mellitus [33]. Another ongoing study is evaluating the effect of canagliflozin on bone metabolism in healthy volunteers, since canagliflozin increases the bone fracture risk in people with diabetes[34]. However certain questions do remain unanswered such as the lack of head to head trials with other SGLT-2 inhibitors and its long-term effects in diabetes patients.

IV. Conclusion

Canagliflozin has shown considerable promise as an anti-diabetic agent both as monotherapy and as combination therapy with other OHA and insulin. The drug also has a reasonable safety margin but one should be wary of the higher risk of genito-urinary infections and the risk of amputations especially in those with pre-existing diabetic foot ulcers. Hypoglycemia could be a cause for concern if the drug is taken along with insulin. The most gratifying fact about the drug is the robust evidence for its cardiovascular benefit in clinical trials, and this could turn out to be a game changer as far as its place is concerned among anti-diabetic agents in the market.

DOI: 10.9790/0853-1612099296
www.iosrjournals.org
Canagliflozin – A novel oral hyperglycemic agent in the fight against Diabetic Mellitus

References

[23]. Yee J, Xie J, Sherman SE, Garceau C. Canagliflozin in Conjunction With Sulfonylurea Maintains Glycemic Control and Weight Loss Over 52 Weeks: A Randomized, Controlled Trial in Patients With Type 2 Diabetes Mellitus. Clin Ther [Internet]. 2017; Available from: http://linkinghub.elsevier.com/retrieve/pii/S01492918173173100

[30]. MShahdadalan, Satish Chandra, Janardan Sharma, Risk and Benefits of Canagliflozin, a New Sodium-Glucose Co-Transporter Type 2 Inhibitor, in the Treatment of type-2 Diabetes Mellitus, International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064

[33]. www.ClinicalTrials.gov Identifier: NCT0170518

Canagliflozin – A novel oral hyperglycemic agent in the fight against Diabetic Mellitus

<table>
<thead>
<tr>
<th>Authors</th>
<th>Population</th>
<th>Ethnicity</th>
<th>Subjec ts</th>
<th>Dosage& Frequency</th>
<th>Comparato r</th>
<th>Backgrou nd</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inagaki, N et al., (2017)</td>
<td>T2DM Japanese patients</td>
<td>Japanese</td>
<td>143</td>
<td>Cana 100 mg</td>
<td>Placebo</td>
<td>Insulin</td>
<td>Canagliflozin 100 mg showed reduction in HbA1c relative to placebo at 18th weeks of treatment and remained stable up to 56 weeks.</td>
</tr>
<tr>
<td>Yale,J.F. et al., (2017)</td>
<td>Patients were required to have a stable background of SU for 8 weeks</td>
<td>Mixed</td>
<td>215</td>
<td>Cana 100/300 mg</td>
<td>Placebo</td>
<td>Sulphonyl urea</td>
<td>Both doses of canagliflozin achieved sustained reduction in HbA1c relative to placebo after 52 weeks of treatment.</td>
</tr>
<tr>
<td>Fulcher, G.et al., (2016)</td>
<td>T2DM patients enrolled in CANVAS study</td>
<td>Mixed</td>
<td>411</td>
<td>Cana 100/300 mg</td>
<td>Placebo</td>
<td>DPP-4 inhibitors or GLP-1 receptor</td>
<td>Canagliflozin 100 & 300 mg showed change in HbA1c (from baseline) relative to placebo after 18 weeks of treatment.</td>
</tr>
<tr>
<td>Davidson, J.et al., (2016)</td>
<td>Diabetic patients Of Different Ethnicity</td>
<td>Hispanic/Latino vs NonHispanic/Latino</td>
<td>2313</td>
<td>Cana100/300 mg QD</td>
<td>Placebo Or Sitagliptin 100 mg</td>
<td>Metformin</td>
<td>Reduction in HbA1c was seen in a dose related manner with canagliflozin compared with placebo in both cohorts after 26 weeks of treatment.</td>
</tr>
<tr>
<td>Wilding,J et al., (2015)</td>
<td>Adult patients with known duration of T2DM.</td>
<td>Mixed</td>
<td>2313</td>
<td>Cana100/300 mg QD</td>
<td>Placebo</td>
<td>Metformin</td>
<td>Reduction in HbA1c (from baseline) relative to placebo after 26 weeks of treatment.</td>
</tr>
<tr>
<td>Bode,B.et al., (2015)</td>
<td>Adult patients between 55 and 85 years with T2DM.</td>
<td>Mixed</td>
<td>714</td>
<td>Cana100/300 mg QD</td>
<td>Placebo</td>
<td>NIL</td>
<td>Both doses of Canagliflozin showed reduction in HbA1c at 12 weeks followed by progressive increase at 104 weeks in relative to placebo.</td>
</tr>
<tr>
<td>Henry,Re et al., (2015)</td>
<td>Patients with Type 1 Diabetes</td>
<td>Mixed</td>
<td>352</td>
<td>Cana100 / 300 mg</td>
<td>Placebo</td>
<td>Insulin</td>
<td>Reduction in HbA1c and daily insulin dosage (from baseline) was seen in canagliflozin 100&300mg relative to placebo after 18 weeks of treatment.</td>
</tr>
<tr>
<td>Neal,B et al., (2015)</td>
<td>Patients with inadequate glycaemic control</td>
<td>Mixed</td>
<td>2072</td>
<td>Cana 100/300 mg</td>
<td>Placebo</td>
<td>Insulin</td>
<td>Both doses of Canagliflozin showed reduction in HbA1c relative to placebo at 18th week with comparable reduction also seen after 52 weeks.</td>
</tr>
<tr>
<td>Leiter,Let al., (2015)</td>
<td>T2DM patients inadequately controlled with metformin</td>
<td>Mixed</td>
<td>1450</td>
<td>Cana 100 /300 mg</td>
<td>Glimepiride</td>
<td>Metformin</td>
<td>Both doses of Canagliflozin showed reduction in HbA1c compared with Glimepiride by the end of 52 weeks. Later Cana 300 mg confirmed superiority to glimepiride in lowering of A1C after 104 weeks of treatment.</td>
</tr>
<tr>
<td>Qu,R.et al., (2014)</td>
<td>T2DM patients aged between 18 &80 years</td>
<td>Mixed</td>
<td>279</td>
<td>Cana 50/150 mg BID</td>
<td>Placebo</td>
<td>Metformin</td>
<td>Both doses of Canagliflozin showed significant reduction in HbA1c relative to placebo after 18 weeks of treatment.</td>
</tr>
<tr>
<td>Wilding,J et al., (2013)</td>
<td>T2DM patients with inadequate glycaemic control on Metformin plus Sulphonylurea</td>
<td>Mixed</td>
<td>469</td>
<td>Cana 100/300 mg QD</td>
<td>Placebo</td>
<td>Metformin plus Sulphonylurea</td>
<td>Canagliflozin 100 and 300mg showed reduction in HbA1c relative to placebo at 26 weeks and were maintained up to 52 weeks.</td>
</tr>
</tbody>
</table>

TABLE 1: Major studies which evaluated the anti-diabetic efficacy of canagliflozin.
Canagliflozin – A novel oral hyperglycemic agent in the fight against Diabetic Mellitus

<table>
<thead>
<tr>
<th>Gonzalez L. et al., (2013)</th>
<th>Patients with inadequate glycaemic control on metformin.</th>
<th>Mixed</th>
<th>1284</th>
<th>Cana 100/300mg QD</th>
<th>Placebo Or Sitagliptin 100mg</th>
<th>Metformin</th>
<th>Canagliflozin 100 mg showed reduction in HbA1c (from baseline) relative to Sitagliptin and Placebo. Canagliflozin 300mg showed superiority to sitagliptin in glucose lowering effect after 26 weeks of treatment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stenlo.Ke et al., (2013)</td>
<td>Diabetic patients inadequately controlled with diet and exercise</td>
<td>Mixed</td>
<td>584</td>
<td>Cana100/300mg QD</td>
<td>Placebo Metformin plus sulfonylurea</td>
<td>Reduction in HbA1c from baseline with canagliflozin 100 and 300 mg compared with placebo after 26 weeks of treatment.</td>
<td></td>
</tr>
</tbody>
</table>