The Study Effects of Dental Composite Resin as Antibacterial Agent Which Contain Nanoparticles of Zinc Oxide on the Bacteria Associated with Oral Infection

Reham M. Al-Mosawi¹, Rafid M. Al-Badr²
¹²Dentistry College, Basrah University, Basrah, Iraq

Abstract: The absent of antimicrobial properties in composite resin was partly ascribed to the recurrent caries therefore the resin composite plus antimicrobial activity be useful to prevention of the secondary caries which frequently are seen around the restorations. Aim of the present study is evaluating the effectiveness of ZnO nanoparticles incorporating into composite resin as antimicrobial agent against bacteria causing dental caries in oral cavity.

This study examined the antibacterial effects of the nanoparticles zinc oxide as inorganic antibacterial agent on pathogenic bacteria associated with oral infectious disease, in which the bactericide of ZnO/NPs was immobilized. The antibacterial effects of inorganic antibacterial agent were assessed by employed the agar disc-diffusion test, with three different concentration of prepared ZnO/NPs (in vitro) on the bacteria causing caries in this study after isolation and biochemical detection, the results show 85% reduction in growth of different kinds of bacteria which tested under study. The antibacterial agent (ZnO/NPs) exhibited strong antibacterial activity against broad-spectrum of pathogenic bacteria in oral cavity associated with caries.

Keywords: antimicrobial agents; nanomaterials; dental composites; ZnO nanoparticles.

1. Introduction

Dental caries is an infectious microbial disease of the teeth that results in localized dissolution and destruction of the teeth calcified tissues which caused by plaque biofilm bacteria (dental plaque), as a by-product of their metabolism of fermentable carbohydrates /mono-sugars, then diffuse in to dental hard tissues and dissolve their mineral contents. Also the dental plaque leads to localized demineralization of tooth surfaces, which may ultimately result in formation of cavity in the tooth [1-5].

It is believed, that the dental caries is generally an infectious disease of microbial origin and was caused by multiple or all species of oral bacteria [4, 5]. Therefore, it is reasonable to prevent and control these diseases by applying materials that are capable of killing or inactivating the causative agents of bacteria. The development of materials with antibacterial effect has long been the goal of medical science and used of resin composites for the restoration of decayed teeth, several attempts have been reported about modification of the filler or resin matrix phase to provide antibacterial effects [3, 6-12]. The materials Composite resin are widely used in the dental clinic for replacement of hard tissues [13, 14]. Several reports have demonstrate the experiments in which an antibacterial agents were incorporated into filling materials, in order to inhibit the microbial attachment and dental plaque accumulation on their surfaces [13-15]. However, the antibacterial effects of these materials is dependent upon release of the agent timer and its effectiveness also this is associated with some disadvantages including toxic effects, influencing on mechanical properties, loss of effectiveness, and disruption of bacterial homeostasis [15, 16].

Antibacterial agents can be divided into two categories: inorganic and organic agents according to their chemical composition. Among the inorganic antibacterial agents were incorporated into resin filler materials containing silver are representatives, for a long time, but, discoloration caused by the reduction of silver ions to metallic silver has been considered a common problem for antibacterial agents which containing silver ions [11, 17-20]. Recently, certain new types of non-silver-containing inorganic antibacterial agents, basic magnesium hypochlorite, Zinc oxide whisker (ZnOw) and Zinc oxide nanoparticles (ZnO/NPs), have been introduced, which theoretically will not cause discoloration, non-toxic, and compatible with skin, making it a suitable additive for textiles and surfaces that come in contact with humans. In addition, several modified silver-containing agents or materials have also been reported with improved color stability [14, 21-26].

The aim of this study is evaluating the effectiveness of ZnO/NPs incorporating into resin composites as antimicrobial agent against bacteria causing dental caries in oral cavitywith examine their physical and mechanical properties.
II. Experimental/Materials & Methods

The compositions of the composites used in this study are given in Table 1.

<table>
<thead>
<tr>
<th>Table 1: Compositions of the composites used (%w/w).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Bis-GMA(^a)/TEGDMA(^b)</td>
</tr>
<tr>
<td>filler: Barium aluminosilicate glass (^c)</td>
</tr>
<tr>
<td>ZnO</td>
</tr>
<tr>
<td>CQ(^d)</td>
</tr>
<tr>
<td>Amin</td>
</tr>
</tbody>
</table>

\(^a\) 2,2-bis[4-(3-methacryloxy-2-hydroxypropoxy)phenyl]propane.
\(^b\) Triethyleneeglycoldimethacrylate.
\(^c\) Barium aluminosilicate glass of particle diameter < 1.34 µm
\(^d\) Camphorquinone.

2.1. Filler

Barium aluminosilicate glass particles with a mean of particle diameter < 1.34 µm was used after modification of surface, the silanized with 1.0% (wt%) of γMPS.

ZnO/NPs (average particle size of 20 nm with hexagonal crystal structure and 99.8% purity) (NanoparsEspadana, Isfahan, Iran) used without modification.

2.2. Preparation of test samples

The experimental specimens were prepared by mixture of 70 wt.% Bis-GMA and 30 wt.% TEGDMA was prepared as matrix phase. 0.5 wt.% Camphorquinone and 0.5% wt. N, N-dimethyl aminoethyl methacrylate, the silanized filler and unsilanized ZnO/NPs was then added to the matrix in different percentages (5%, 7% and 10%wt).

The composite resins were inserted into a stainless-steel mold with a cylindrical cavity of 1 mm height and 6 mm diameter while the top of the mold were covered with glass. The specimens were irradiated 40 secs with a LED light source (Woodpecker china) with intensity 600 W/m² with exit window diameter of 6 mm, the curing tip placed 1 mm from the glass plate.

2.3. Antibacterial test

2.3.1. Materials

The microbial media used in this study are nutrient broth, Mueller-Hilton, MacConkey, mannitol salt, blood base and Nutrient agar were all, obtained from LAB of Microbiology in dentistry College within fundamental science Department in Governorate of Basrah.

2.4. Isolation and characterization of bacteria

In randomly form the extracted teeth were obtained from fifty (50) patients (comprising male and female in equal number) attending to the Outpatient Clinic in dentistry College for treatment of dental caries in Dental Clinic in Basrah.

Each specimen was separately collected in normal saline (sterile) after that inoculation in sterile nutrient broth for 24 hrs. then the samples were streaked onto the surfaces of prepared sterile media which were mannitol salt, MacConkey, blood base and finally on Mueller-Hilton agar media for susceptibility testing of synthesis ZnO/NPs antimicrobial agent. At the end the identification and characterization of microbial isolates were done by the applied of conventional biochemical tests which include primitive and confirmative testing that consisting of Gram stain, IMVC test, catalase, coagulase, oxidase & urease test [27-29].

2.5. Antibacterial Testing

To investigate the property of inorganic antimicrobial agent ZnO/NPs incorporating into dental resin composites after being cured, against bacteria causing dental caries in human oral cavity. That done by employed the test of disc-diffusion agar, in this test the sterile plates are inoculation with oral microbes or bacteria after identification and characterization in present study then the synthesis materials have been placed on the sterile agar plates. Through, disc-diffusion method, bacterial isolates were inoculated to be tested by homogenous streaking (aseptically transfer inoculum) across the sterile agar plate by sterile wire loop, then incubated at 37°C for 24 h. to read the inhibition results. within this test , the growth of bacterial inhibited are seen by the zones where are produced around the synthesis material which we tested, that meaning (+ve) results[30].
The Study Effects of Dental Composite Resin as Antibacterial Agent Which Contain

Fig. 1: Show the susceptibility (inhibition growth) of Streptococcus mutans to the synthesis ZnO/NPs dental composite in three concentrations 5%, 7% and 10% prepared from this inorganic agent.

Fig. 2: Show no effect of the control (dental composite without the addition of ZnO/NPs) on the bacterial growth.

Fig. 3: Show the differences between the effect of control (dental composite resin without ZnO/NPs) and dental composite resin with addition of 10% ZnO/NPs; (A) no inhibition growth of *Klebsiella* spp (unsusceptible) to control, (B) inhibition growth of *Klebsiella* spp (susceptible) to synthesis ZnO/NPs dental composite.

Fig. 4: Show the susceptibility (inhibition growth) of *Staphylococcus aureus* to the synthesis ZnO/NPs dental composite in 7% concentration prepared from this inorganic agent.
The Study Effects of Dental Composite Resin as Antibacterial Agent Which Contain ….

Fig. 5: Show the susceptibility (inhibition growth) of Pseudomonas areuginosa to the synthesis ZnO/NPs dental composite in three concentrations 5%, 7% and 10% prepared from this inorganic agent.

III. Results

Table 2: Number of positive bacterial culture from specimens correlated with sex.

<table>
<thead>
<tr>
<th>Sex</th>
<th>No. of specimen</th>
<th>No. of (+ve) bacterial culture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>25</td>
<td>11</td>
</tr>
<tr>
<td>Female</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>26</td>
</tr>
</tbody>
</table>

In our study Table (2), represents the (26) isolates of bacteria from all caries specimens (50) showed the results, positive from culturing of bacteria in these specimens in which the male and female patients are respectively positive.

Table 3: Distribution the species of bacterial isolates in patient’s caries according to gender.

<table>
<thead>
<tr>
<th>No. and (%) of bacterial isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
</tr>
<tr>
<td>Total no. of isolates</td>
</tr>
<tr>
<td>S. mutans</td>
</tr>
<tr>
<td>S. aureus</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>Klebsiella.spp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sex</th>
<th>Total no. of isolates</th>
<th>S. mutans</th>
<th>S. aureus</th>
<th>Pseudomonas aeruginosa</th>
<th>Klebsiella.spp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>11</td>
<td>5(45.45)</td>
<td>3(27.27)</td>
<td>2(18.18)</td>
<td>1(9.09)</td>
</tr>
<tr>
<td>Female</td>
<td>15</td>
<td>7(46.66)</td>
<td>4(26.66)</td>
<td>3(20)</td>
<td>1(6.66)</td>
</tr>
</tbody>
</table>

Table (3), shows the association of the positive number +ve number of bacterial isolates in patients caries from male and female under study with percentage of each bacteria, in our study isolated four types of bacteria they consisted of Streptococcus.spp which was the most frequently isolated bacterial species 45.45%, 46.66% followed by Staphylococcus aureus 27.27%, 26.66%; Pseudomonas areuginosa 18.18%, 20% and Klebsiella.spp 9.09%, 6.66% in all cases with percentage ratio respectively in male and female.

Table 4: Antibacterial activity of the synthesis ZnO/NPs dental composite against bacterial isolates from cases of dental caries.

<table>
<thead>
<tr>
<th>No. (+ve) of bacterial isolates with diameter of inhibition zone (mm)</th>
<th>Concentration of synthesis (ZnO/NPs) dental composite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. mutans</td>
</tr>
<tr>
<td>5%</td>
<td>9</td>
</tr>
<tr>
<td>7%</td>
<td>15</td>
</tr>
<tr>
<td>10%</td>
<td>17</td>
</tr>
</tbody>
</table>

Antibacterial susceptibility profiles Table (4) reveal that the synthesis ZnO/NPs dental composite in different concentrations (5%, 7%, 10%wt) displayed the activity against all isolated of bacterial species. The
most susceptible of bacterial isolates were Streptococcus.spp and Pseudomonas areuginosa with inhibition zones correspond to 17 mm, 15 mm in concentration 10% of synthesis ZnO/NPs dental composite; 15 mm, 13 mm in concentration 7% of synthesis ZnO/NPs dental composite and 9 mm, 11 mm in concentration 5% of synthesis ZnO/NPs dental composite followed by other types of bacteria, the growth of Staphylococcus aureus and Klebsiella.spp were inhibited by synthesis ZnO/NPs dental composite with inhibition zones correspond to (10 mm, 13 mm) in concentration 10%; while in concentration 7% of synthesis ZnO/NPs were corresponding to 11 mm for each types of bacteria and in 5% concentration of synthesis dental composite were 5 mm, 8 mm respectively.

Fig. 6: The positive number of bacterial isolates with susceptibility (inhibition zone mm) to synthesis ZnO/NPs dental composite.

Also, in our study we tested the antimicrobial susceptibility of modified synthesis ZnO/NPs dental composite on bacterial isolates from patient's caries, revealed that no effects against all isolated of bacterial species in different concentrations.

IV. Discussion

Nanotechnology is a molecular-level technology and making progress in several scientific fields, with promising scientific and applied field in today’s medicine, including dentistry. In this technology, the materials are converted into Nano metric sizes in order to produce a new Properties for these materials [31, 32]. Nanoparticles possess unique physic-chemical, biological and optical properties in which can be manipulated for suitable desired applications [33]. Zinc oxide and silver successfully used in biological and chemical sensors, bactericidal agents, electronics and photo electronic devices and have considerable bio-activity as well [34-36]. ZnO/NPs have exhibited a strong bacterial growth inhibiting character [22]. Zinc oxide and silver have proper antimicrobial activity and when they are converted into nanoparticles increasing their surface to volume ratio with improving their antibacterial activity [37, 38]. the current study made an attempt to evaluation the antibacterial properties of composite resins containing zinc oxide nanoparticles against Streptococcus mutans, Pseudomonas areuginosa, Staphylococcus aureus and Klebsiella.spp (some species of gram positive and gram negative bacteria), which have a significant role in recurrent caries. Zinc oxide is a safe bactericidal metallic oxide (inorganic agent) because it is non-toxic to animal cells in low concentrations but is very toxic to bacteria, killing them, although, the metals and metallic oxides as zinc oxide, are considered toxic to human cells at high concentrations, they do not seem to be toxic at very low concentrations on human cells [32, 39-41]. In present study that was conducted on (50) caries samples, 26 isolates of bacteria from all caries specimens showed positive results due to bacterial culturing of these samples which are positive for male and female patients respectively as seen in Table 2, anyhow, our results were consistent with workers [42] observation. In our study isolated four types of bacteria they consisted of Streptococcus mutans which was the most frequently isolated bacterial species (45.45%, 46.66%) followed by Staphylococcus aureus (27.27%, 26.66%) and Pseudomonas areuginosa (18.18%, 20%) and Klebsiella.spp (9.09%, 6.66%) in all cases with percentage ratio respectively in male and female Table 3.

The findings of BB Oluremi et.al [42] were, to some extent, in agreement with the results of current study. Table 4 and figure 6 profiles, the antibacterial susceptibility of the synthesis ZnO/NPs dental composite in different concentrations (5%, 7%, 10% wt) which displayed that the activity against all isolated of bacterial species. The most susceptible of bacterial isolates were Streptococcus mutans and Pseudomonas areuginosa with inhibition zones correspond to 15 mm, 17 mm in concentration 10% of synthesis ZnO/NPs dental composite.
composite in our study these results suggest that, the synthesis ZnO/NPs dental composite may play a vital role in the prevention of dental caries since Streptococcus mutans has been implicated in the initiation of caries. 13mm, 15mm in concentration 7% of synthesis ZnO/NPs dental composite and 9 mm, 11 mm in concentration 5% of synthesis ZnO/NPs dental composite followed by other types of bacteria, the growth of Staphylococcus aureus and Klebsiella.spp were inhibited by synthesis ZnO/NPs dental composite with inhibition zones correspond to 10 mm, 13 mm; 11 mm, 11 mm, 5 mm, and 8 mm in concentrations of 10%, 7% and 5%wt respectively. Our results were consistent with Berdan Aydin Sevinc & Luke Hanley [23] results. In some studies, the technique of diffusion agar disc has been used for evaluation of antibacterial properties of cured composite resin [14, 23], as in current study, used the disc-diffusion method, in which the bacterial isolates were inoculated to be tested by homogenous streaking (aseptically transfer inoculum) across the sterile agar plate by sterile wire loop, then incubated at 37°C for 24 h. to read the inhibition results. within this method, an inhibition growth zone around the material is produced mean the (+ve) results. Also, in our study we tested the antimicrobial susceptibility of modified synthesis ZnO/NPs dental composite on bacterial isolates from patient’s caries, revealed that no effects against all isolated of bacterial species in different concentrations.

V . Conclusion

With the limitation of current study, we may conclude that, the antibacterial susceptibility of the synthesis ZnO/NPs dental composite in different concentrations (5%, 7%, 10%) which displayed that the activity against all isolated of bacterial species; the most susceptible of bacterial isolates were Streptococcus mutans and Pseudomonas aeruginosa , in our study these results suggest that, the synthesis ZnO/NPs dental composite may play a vital role in the prevention of dental caries since Streptococcus mutans has been implicated in the initiation of caries.

The antimicrobial susceptibility of modified synthesis ZnO/NPs dental composite tested on bacterial isolates from patient’s caries and revealed that no effects against all isolated of bacterial species in different concentrations.

References

DOI: 10.9790/0853-1601014955 www.iosrjournals.org 54 | Page

