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Abstract: A Numerical approach is used to find the energy levels and electron distribution for each subshell in 

Hydrogen like atoms. This approach used the built in ability of MATLAB to find Eigen values and Eigen  ectors. 

The space around the nucleus is divided in three dimensions into a large number of elements. The wave function 

in each element, for a specific subshell,was foundto be the Eigen vector of the Hamiltonian operator matrix 

constructed for the discrete spatial elements. The square of the magnitude of the wave function is plotted in 

three dimensions to show the distribution of electron around the nucleus. The electron energy for that subshell 

was found from the corresponding Eigen value. 

The results shows very goodfit with analytical methods used to solve Hydrogen-like atoms. This fit includes both 

energy levels and electron distribution around nucleus. 

 

I. Introduction 
Schrodinger equation for an electron in Hydrogen atom is

[1]
; 

 
 

Where; 

V: is the potential energy of the electron 

E: is the total energy of the electron 

ψ: is the wave function of the electron 

 

And  is the kinetic energy operator 

 

The above equation can be written as: 

Ȟ Ψ = E Ψ……(1)  

 

 

 

 

Where;Ȟ = is the Hamiltonian operator. 

 

Analytical solutions are available in literature
[1]

, which are perfect for Hydrogen-like atoms. But 

analytical solutions can hardly be developed to solve more complicated atoms. Some numerical solutions are 

also available
[2],[3]

, but they suffered from huge number of calculations, so they either work in two dimensions 

only to reduce the number of calculations, losing generality, or reduce the number of spatial elements, losing 

accuracy. In this paper, we reduced the problem into an Eigen value problem and used the built in ability of 

MATLAB to find Eigen values and Eigen vectors. This enable ustokeep accuracy by taking large number of 

spatial elements and to keep generality by working in three dimensions. 

 

Theory: 
Using finite difference method, if the functions are taken at discrete points, Ȟwill be a square matrix 

and Ψwill be a column vector. Then equation (1) is an Eigen value problem, where Eis an Eigen value of the 

matrix Ȟand Ψis its associated Eigen vector. 

For discrete functions, the one dimensional Laplacian operator can be calculated as follows
[3]

; 

 



A Numerical Approach To The Solution Of Schrodinger Equation…. 

DOI: 10.9790/0853-15079128131                          www.iosrjournals.org                                                129 | Page 

Where a is the element size. 

Then the Laplacian operator on Ψ(with respect to x) will be
[4] 

; 

 

 1 

=------….    (4) 

a
2 

 

 

 

 

 

 

 

 

The three dimensional discrete Laplacian operator with respect to x, y and z can be constructed using 

the Kronecker tensor product of each of the three operator’s matrices for each dimension (x, y and z) with 

similar size identity matrices as follows
[5],[6]

; 

x,y,z= K(K( x,I), I) + K(K(I, y), I) + K(K(I, I), z)…(5) 

 

Where K(A, B) is the Kronecker tensor product of A and B. 

If x, y and z matrices are NxN, then the above matrix ( x,y,z)will be N
3
xN

3
matrix. 

 

The potential energy varies as -1/R, where R= (x
2 
+ y

2 
+ z

2 
) 

0.5 
, or; 

V(x,y,z)= -1/R 

 

These values should be distributed on the diagonal of an N
3
xN

3
matrix and then added to the three 

dimensional discrete Laplacian given by equation (2) to get the Hamiltonian operator Ȟ. 

So, the Ȟ operator matrix will be; 

Ȟ = -0.5 * x,y,z+ (-1/R) spread over the diagonal of N
3
xN

3
matrix 

 

Then the minimum Eigen value of the matrix Ȟ is the ground level energy of Hydrogen atom (energy 

of 1s orbital) in atomic units. The associated Eigen vector is the wave function Ψ of the 1s orbital at each point 

in space (x, y, z).The number of points is N
3
and the probability of finding the electron at any point in space is 

|Ψ|
2 
. 

The next four minimum Eigen values of the matrix Ȟ are the values of energies of 2Px , 2Py, 2Pz and 2S 

subshells of the Hydrogen atom. The associated Eigen vectorsare the wave functionsof those four  subshells. 

The next nine minimum Eigen values of the matrix Ȟ are the values of energies of 3Px , 3Py , 3Pz , 3S, and the 

five 3dsubshells of the Hydrogen atom. The associated Eigen vectors are the wave functions of those four  

subshells. 

 

II. Results 
The minimum Eigen value of the matrix Ȟ, which is the ground level energy of Hydrogen atom (energy 

of 1s orbital) in atomic units was found. The number of elements was changed to see the effect of that on 

accuracy, the results are shownin the following table: 
Number of elements “N” in 

one dimension 

Calculated 

Energy 
error 

40 -0.49134 1.7 % 

50 -0.49402 1.2 % 

 

 
  

60 -0.49549 0.9 % 

70 -0.49638 0.72 % 

80 -0.49695 0.61 % 

100 -0.49763 0.47 % 

120 -0.49799 0.40 % 
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The results are in good coincidence with the theoretical valueof (-0.5000) and the error is decreasing 

with increasing number of elements. The space of calculation is 5 units from the nucleus in all directions. The 

associated Eigen vector, which is the wave function Ψ of the 1s orbital at each point in space (x, y, z), was also 

found and the probability of finding the electron at any point in space (|Ψ|
2
) is shown in figure(1). This figure 

shows good coincidence with the figures found in literature
[7]

.  

The next four minimum Eigen values of the matrix Ȟ are found to be equal, they are the energies of the 

2Px, 2Py, 2Pz and 2S respectively.Their calculated values, with N=100,are shown in the following table with 

theoretical true values for comparison: 

 
Subshell Calculated Value Theoretical 

Value 

% Error 

2Px -0.1253 -0.125 0.24 % 

2Py -0.1253 -0.125 0.24 % 

2Pz -0.1253 -0.125 0.24 % 

2S -0.124 -0.125 0.8 % 

 

The space of calculation is 15 unitsfrom the nucleus in all directions divided into 10
6 

elements (N
3
). 

The associated Eigen vectors, which are the wave functions of those four subshells, are also found and the 

figures of the probability of finding the electron at any point in space ( |Ψ|
2 

) are shown in figure (2 a-d) for 2Px , 

2Py , 2Pz and 2S subshells respectively. These figures show good coincidence with the figures found in 

literature
[7]

. The difference is that these figures are not aligned with the coordinate axes x, y and z.This is normal 

because the electron distributions in Px, Py and Pz subshells are nominally considered to be aligned with 

principal axes, butreally, theyare aligned with any three orthogonal axes, which is what these figures show. 
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The next nine minimum Eigen values of the matrix Ȟ are also found to be nearly equal.Their values 

range from -0.0553 to -0.0532 which are in good coincidence with the theoretical value of (-0.0556). They are 

the values of energies of 3Px , 3Py , 3Pz , 3S, and five for the 3d subshells of the Hydrogen atom.  

 

III. Conclusion 
The coincidence of energy of electron with theoretical values is great. The error is less than 1%, which 

is excellent for a numerical solution. The error can also be reduced if the number of elements is increased. 

The figures of distribution of electron around the nucleus for all subshells are similar to analytically found 

distribution figures. They are really better than those figures because they show the distribution in a better more 

realistic manner. 

The great advantage of this method is that it assist the available methods of solutions with good 

coincidence. It is also possible toevolve this method to find the solutions formore complicated atoms by 

modifying the potential energy term. Another termshould be added to the potential energy termto take into 

account the repulsion between electrons inthese atoms. This really need some effort to construct a matrix for this 

purpose, then the solution will be straightforward.  

 

References 
[1]. Hans A Bethe and Edwin E Salpeter, “Quantum mechanics of one and two-electron atoms” Dover Pub. INC, NY 2008. 
[2]. Anders W. Sandvik, “Numerical Solutions of the Schr¨odinger Equation”, PY 502, Computational Physics, Fall 2015  

[3]. SimenKvaal, ” A Critical Study of the Finite Differenceand Finite Element Methods for theTime Dependent Schrödinger Equation”, 

PHD thesis, University of Oslo, 2004. 
[4]. SupriyoDatta, “Fundamentals of Nano-electronics”, Sept 11, 2009, Chapter 2.2 

[5]. Wolfgang Hackbusch and Boris N. Khoromskij, “Hierarchical Kronecker Tensor-Product Approximations”, Max-Planck-

InstitutMathematik in den Naturwissenschaften, Inselstr. 22-26, D-04103 Leipzig, Germany 
[6]. Lambert M. Surhone, Mariam T. Tennoe and Susan F. Hensonnow “Kronecker sum of Discrete Laplacians”, Betascript 

Publishing 2010, ISBN-13: 978-613-1-32832-9 

[7]. Hans Kuhn, Horst-Dieter Forsterling and David H. Waldeck “Principles of physical chemistry”, 2nd Edition, 2009, John Wiley. 
 

 

 


