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Abstract: Chronic kidney disease affects millions of people worldwide and is associated with an increased 

morbidity and mortality as a result of kidney failure and cardiovascular disease. Accurate assessment of kidney 

function is important in the clinical setting as a screening tool and for monitoring disease progression and 

guiding prognosis. In clinical research, the development of new methods to measure kidney function accurately 

is important in the search for new therapeutic targets and the discovery of novel biomarkers to aid early 

identification of kidney injury. This review considers different methods for measuring kidney function and their 

contribution to the improvement of detection, monitoring and treatment of chronic kidneydisease. 
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I. Introduction 

Chronic kidney disease (CKD) is common and associated with an increased mortality, frequently as a 

result of kidney failure and cardiovascular disease [1–3]. Chronic kidney disease has been described as a 

worldwide public health problem [2], with a prevalence of ∼12% in the USA [4] and Europe [5]. In the USA, 

there are around 19 million adults with CKD and it is estimated that more than 2 million people will require 

dialysis or transplantation by the year 2030 [3]. Criteria outlined by the National Kidney Foundation Kidney 

Disease Outcomes Quality Initiative (KDOQI) [6] define chronic kidney disease as kidney damage present for 

more than 3 months with or without a decrease in glomerular filtration rate (GFR), or a reduction in GFR for 

more than 3 months with or without kidney damage. Kidney damage itself is defined as structural or functional 

abnormalities of the kidney manifest by either pathological abnormalities or markers of kidney damage, e.g. 

proteinuria. Chronic kidney disease is categorized into five stages based on the estimated GFR (eGFR; Table 1). 

Proteinuria, included within the classification as a marker of kidney damage, has been identified as an 

independent risk factor for CKD progression, cardiovascular disease and overall mortality [7–9]. International 

adoption of this system has facilitated both clinicians and researchers in the identification, diagnosis and 

management of CKD, and aided large-scale epidemiological studies examining the prevalence of CKD and the 

implications of severity with respect to clinical outcome [6, 7]. 

 

Table 1: Stages of Chronic Kidney Disease with Clinical Management Plan 
CKD stage Description GFR (ml min−1 

1.73 m−2) 

Action 

1 Kidney damage with normal or increased GFR >90 Diagnosis and treatment 
Treatment of comorbid conditions 

Slowing progression 

CVD risk reduction 

2 Kidney damage with mild reduction of GFR 60–89 Estimating progression 

3 Moderate decrease of GFR 30–59 Evaluating and treating complications 

4 Severe reduction of GFR 15–29 Preparation for kidney replacement 

therapy 

5 Kidney failure <15 (or dialysis) Replacement (if uraemia present) 

 

Accurate measurement of kidney function is methodologically difficult because the kidney has several 

different interlinked functions, including regulation of water and electrolytes, excretion of waste products, acid–

base homeostasis and hormone secretion. In the clinical setting, surrogate markers and prediction formulae are 

often used, while in the research arena clinical trials may necessitate a more precise determination of kidney 

function. This review considers a number of different methods to measure kidney function in both the clinic and 

the research setting. 

 

II. Glomerular Filteration Rate 
Glomerular filtration rate is considered the best overall measurement of kidney function and correlates 

well with disturbance in renal function [10–12]. A normal GFR is ∼130 ml min
−1

 1.73 m
−2

 in males and ∼120 

ml min
−1

 1.73 m
−2

 in females. Kidney function is proportional to kidney size which, in turn, is proportional to 
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body surface area and so adjustment is necessary when comparing GFR with normal values. Interindividual 

variation exists, however, depending on body mass, protein intake, exercise and diurnal variation. Glomerular 

filtration rate cannot be measured directly in humans but instead can be determined by plasma clearance of a 

filtration Glomerular filtration rate is considered the best overall measurement of kidney function and correlates 

well with disturbance in renal function [10–12]. A normal GFR is ∼130 ml min
−1

 1.73 m
−2

 in males and ∼120 

ml min
−1

 1.73 m
−2

 in females. Kidney function is proportional to kidney size which, in turn, is proportional to 

body surface area and so adjustment is necessary when comparing GFR with normal values. Interindividual 

variation exists, however, depending on body mass, protein intake, exercise and diurnal variation. Glomerular 

filtration rate cannot be measured directly in humans but instead can be determined by plasma clearance of a 

filtration marker into the urine. An ideal filtration marker is one that is physiologically inert, with a low 

molecular weight allowing free filtration at the glomerulus, is not bound to plasma proteins and does not itself 

alter renal function [10]. Additionally, filtration markers must be able to achieve a stable plasma concentration 

without being reabsorbed, secreted or metabolized by the kidney. A number of exogenous [inulin, iothalamate, 

ethylenediaminetetra-acetic acid (EDTA) and iohexol] and endogenous filtration markers (creatinine and 

cystatin C) have been studied and will be discussed in more detail. 

marker into the urine. An ideal filtration marker is one that is physiologically inert, with a low 

molecular weight allowing free filtration at the glomerulus, is not bound to plasma proteins and does not itself 

alter renal function [10]. 

 

III. Exogenous Filtration Markers 
A). Inulin 

Urinary clearance of inulin, a 5200 Da inert polymer of fructose derived from plant tubers, is 

considered the ‘gold standard’ measurement of GFR [11]. Inulin is freely filtered at the glomerulus and is not 

reabsorbed, synthesized or metabolized by the tubules. The classic method of urinary clearance involves fasting 

subjects prior to administration of a priming dose of inulin followed by a continuous intravenous infusion [13]. 

Once steady state is achieved, repeated timed urine and blood samples are collected, and GFR can be derived 

from the concentration of inulin in plasma (P), urine (U) and the urine flow rate (V) using the formula: GFR = 

UV/P. Methodological limitations are associated with the use of this method, however, not least due to the 

strictly timed urine collections, which are not only challenging for both patient and clinician but may even 

necessitate urinary catheterization.zation. 

Earle and Berliner (1946) [14] described an alternative infusion technique avoiding the need for timed 

urine collections. This method was based on the concept that inulin is exclusively eliminated via the renal 

pathway and therefore, in steady state, the rate of excretion equals the rate of infusion [15]. The GFR (in 

millilitres per minute) may be calculated by dividing the rate of the infusion (in milligrams per minute) by the 

plasma concentration (in milligrams per millilitre). While this method gives reproducible results [16, 17], it is 

hard to achieve a constant plasma inulin concentration, and small changes in inulin concentration can 

significantly affect the calculated GFR [10]. Furthermore, animal and human studies demonstrate that complete 

equilibration of inulin in body fluids, necessary for accurate GFR calculation, can take several hours to achieve 

[17, 18]. As a result, serum inulin concentrations are often lower than expected, which in turn leads to an 

overestimation of GFR, frequently exceeding urinary inulin clearance by ∼5–10 ml min
−1

 [17, 19]. 

While inulin continues to be useful particularly for mechanistic studies, especially when coupled with 

measurement of renal clearance of para-aminohippuric acid (PAH) to assess renal plasma flow [20, 21], it is 

seldom used nowadays, partly due to the complex methodology described above but also as a result of 

limitations in the supply of this agent. Nevertheless, the classic urinary inulin clearance method remains the 

benchmark by which newer, and often simpler, methods of GFR assessment are compared. 

 

B). Radioisotope Filtration Markers 

Radioisotopically labelled agents were introduced in the 1960s as an alternative method of GFR 

measurement. Compounds such as 
125

I-iothalamate, 
51

Cr-ethylenediaminetetra-acetic acid (
51

Cr-EDTA) and 
99m

Tc-diethylenethiaminetetra-acetic acid (
99m

Tc-DTPA) possess a low molecular weight, show minimal plasma 

protein binding, and clearance can be calculated from plasma concentration–time curves following single-dose 

administration, avoiding the practical difficulties associated with continuous infusions and repeated urine 

sampling [10, 22]. These agents, however, are expensive, unsuitable for use in women of childbearing age, and 

require strict precautions during their handling and disposal [23]. Furthermore, important differences in their 

clearance have been highlighted, suggesting that their use as accurate filtration markers may be limited. 

Clearance of 
125

I-iothalamate exceeds that of both inulin and 
51

Cr-EDTA, leading to an overestimation of GFR 

[22, 24, 25]. This difference can be reduced by pretreatment with probenicid, suggesting that 
125

I-iothalamate 

undergoes tubular secretion. Although no difference has been demonstrated between clearance of 
51

Cr-EDTA 

and 
99m

Tc-DTPA [26], plasma clearance of both markers exceeds urinary clearance, suggesting that these agents 
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undergo a degree of extrarenal elimination, thereby limiting their use for accurate measurements of GFR [26]. 

While these differences may preclude their use to provide an accurate measure of GFR, particularly in the 

context of clinical trials, they may have some role as a guide of GFR over time in the clinical settinging. 

 

C). Radiographic Contrast Agents 

Radiographic contrast agents have been used as markers of GFR because their use avoids the 

methodological difficulties associated with inulin clearance techniques and the practical restrictions associated 

with radioactive material. Nonradioactive iothalamate and iohexol have both been used, with the latter being 

more attractive due to its lower allergenic potential [27]. Iohexol is not secreted, metabolized or reabsorbed by 

the kidneys, is less than 2% protein bound and undergoes exclusive renal elimination, with the total amount 

injected being recovered from the urine within 12 h [28, 29]. It can be measured in the serum following a single 

bolus injection by high-perfomance liquid chromatography, and a good correlation has been demonstrated using 

a one- or two-compartment model between total body clearance and urinary clearance of inulin across a wide 

range of GFRs [27, 29]r time in the clinical settc. 

 

IV. Endogenous Filtration Markers 
A). Creatinine 

Serum creatinine is the most commonly used endogenous glomerular filtration marker in clinical 

practice [23, 30]. Creatinine is predominantly formed from creatine and phosphocreatine in skeletal muscle [10], 

with a small contribution from ingestion of meat [31]. It is freely filtered by the glomerulus without being 

reabsorbed or metabolized, and its use avoids the need for administration of expensive exogenous agents. The 

use of serum creatinine as a surrogate for GFR, however, is limited by a number of patient-dependent and -

independent factors. 

Creatinine production not only differs between individuals and over time in association with changes in 

muscle mass and diet, but it has also been shown to undergo tubular secretion in addition to glomerular filtration 

[11, 23], potentially leading to an overestimation of GFR. The degree of tubular secretion varies between, and 

even within, individuals [32], and may also be affected by medication, such as cimetidine and trimethoprim [33, 

34]. Extrarenal elimination of creatinine via the gastrointestinal tract, particularly in advanced renal failure, 

further contributes to an overestimation of the GFR [11, 23, 35]. While accuracy may be improved through 

measurement of creatinine clearance by means of a timed urine collection together with measurement of serum 

creatinine concentration [creatinine clearance (CrCl) = (urine creatinine concentration × urine volume)/serum 

creatinine concentration], urine collections are cumbersome to perform, costly and subject to error. It was 

recognized in the 1980s that creatinine concentration may remain within the standard reference range in a 

substantial proportion of patients with significantly reduced GFRs [36]; thus, the use of creatinine as a marker of 

GFR is questionable. More recently, however, Spanaus et al. [37] demonstrated good diagnostic perfomance of 

serum creatinine in detecting even minor deterioration in renal function. Prediction of progression was also 

similar between creatinine and other biomarkers, such as cystatin C. Our negative perception of creatinine as a 

marker of GFR may partly be due to inappropriate reliance on reference ranges and, through longitudinal 

monitoring, identification of small, but clinically important, changes in creatinine concentration will ensure 

detection of deterioration in renal function [38]. Nevertheless, the variability surrounding creatinine production 

and tubular secretion preclude it from being used as an accurate measure in clinical trials, although it does 

remain a worthy clinical tool for estimation of GFR.CYSATATIN C  Cystatin C has been proposed as an 

alternative endogenous glomerular filtration marker. This cationic nonglycosylated cysteine proteinase is 

produced at a constant rate by all nucleated cells [39] and, owing to its low molecular weight, is freely filtered 

by the glomerulus and almost completely reabsorbed and degraded by proximal tubular cells [40]. As it is 

completely cleared from the circulation, it supports the hypothesis that the serum concentration will reflect the 

GFR assuming the production rate remains constant [39]. Unlike creatinine, production of cystatin C is 

unaffected by muscle mass or diet, and remains constant even in the presence of intercurrent infection or 

malignancy [39]. Most [39, 41–45], although not all studies [37, 46, 47], including a meta-analysis [30], have 

demonstrated superiority of cystatin C as a measure of GFR in comparison to serum creatinine. However, 

cystatin C is ubiquitous, and many other factors, including age, male gender, weight, height, smoking and 

steroid therapy, have been shown to be associated independently with higher serum cystatin C levels after 

adjustment for renal function, suggesting that it may lack specificity for renal impairment [48, 49]. Additionally, 

thyroid disease has been shown to have a major influence on cystatin C concentration and so measurement of 

this marker should be avoided in those with abnormal thyroid function [50].  However, the cost-effectiveness of 

measurement of cystatin C against the more traditional and cheaper method of serum creatinine will play an 

important role in determining uptake of method.     
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Estimated GFR  

Prediction equations based on the serum creatinine have been developed as a simple, rapid means of 

estimating GFR to monitor disease progression and aid treatment decisions. This is particularly valuable in the 

clinical setting, where it avoids the need for potentially invasive, time-consuming and complex methods of GFR 

assessment. The Cockcroft and Gault equation was one of the first such formulae to be developed, estimating 

creatinine clearance based on serum creatinine concentration, age, sex and weight [51]. Although use of this 

equation quickly became widespread, it systematically overestimates GFR as a result of tubular secretion of 

creatinine. The GFR is further overestimated in the presence of obesity or fluid overload, where an increase in 

weight may not necessarily reflect an increase in muscle mass [11, 23]. In 1999, Levey et al. [52] developed an 

equation based on the Modification of Diet in Renal Disease (MDRD) Study, a multicentre study evaluating the 

effect of dietary protein restriction and strict blood pressure control on the progression of renal disease in 

patients with CKD. This equation was based on serum creatinine concentration, demographic characteristics 

(age, sex and ethnicity) and serum urea and albumin levels. Subsequently, a four-variable MDRD equation was 

developed based on age, sex, ethnicity and serum creatinine levels to simplify clinical use [6, 53]. While the 

exclusion of weight reduces error associated with obesity and fluid retention, inclusion of ethnicity accounts for 

the higher than average serum creatinine values present in the black population [52]. The MDRD formula has 

been validated in different patient groups [54,55], and the four-variable equation has now become the most 

widely used equation in clinical practice [56]. It is less accurate, however, in patients with GFR values near or 

above 60 ml min
−1

 1.73 m
−2

 [56]. Variability in the calibration of serum creatinine assays may introduce error, 

particularly at high levels of GFR [57, 58]. The four-variable MDRD equation has now been re-expressed with a 

standardized serum creatinine assay demonstrating more accurate GFR estimates [53]. Important differences in 

the performance of the MDRD equation depending on ethnicity have also been demonstrated in the Chinese, 

Japanese and Indian populations [59–62]. More recently, a formula based upon serum cystatin C concentration 

has been developed [63–66]. While this has been shown to demonstrate greater accuracy in detection of GFR 

values either below or above 60 ml min
−1

 1.73 m
−2

 in patients with CKD, as with the creatinine-based formula, 

the equation lacked precision and underestimated the actual measured GFR [65]. The Chronic Kidney Disease 

Epidemiology Collaboration (CKD-EPI) [4] have developed an equation based on data pooled from 10 studies, 

with an additional 16 studies used as validation. This equation gives improved accuracy, particularly at higher 

GFR values. However, it performs less well at lower GFR values, demonstrating that neither equation is optimal 

across all populations, and the use of a single equation requires an understanding of reduced accuracy at either 

higher or lower GFR values [67]. It remains unclear whether the accuracy of creatinine-based equations to 

estimate GFR could be usefully improved by adding further variables. 

 

B). Assessment of Proteinuria 

Proteinuria is an important independent marker in the evaluation and management of CKD. It is 

associated with an increased risk of CKD progression, cardiovascular disease and all-cause mortality [7, 68–70]. 

A reduction in proteinuria with drugs that block the renin–angiotensin system can lead to a slowing, or even 

reversal, of CKD progression [71] and a reduction in cardiovascular risk [72], highlighting this as an important 

therapeutic target. 

Urinary protein originates primarily from glomerular filtration of plasma proteins, such as albumin 

[69]. Nonplasma proteins, such as uromodulin, produced by the tubular epithelium or lower urinary tract, are 

also present, along with a variable proportion of immunoglobulins and low-molecular-weight proteins. 

Normally, only a small amount of protein is excreted in the urine. Proteinuria (>300 mg day
−1

) refers to 

increased urinary excretion of total protein (albumin plus other specific protein), while albuminuria specifically 

describes increased urinary excretion of albumin [6]. Microalbuminuria (>30 mg urinary albumin day
−1

) 

describes albumin excretion above the normal range but below the level of detection by tests for total protein 

[6]. A 24 h collection is the gold-standard method of urinary protein quantification. While this may still be 

useful in some patients (e.g. in the presence of severe proteinuria, in the extremes of age and weight, or where 

creatinine excretion is not constant), it is a costly approach, and patient inconvenience can often lead to 

incomplete collections and inaccurate assessment of proteinuria [6, 73]. As the excretion of creatinine and 

protein, in the presence of a stable GFR, is constant throughout the day, use of a ratio measurement of protein to 

creatinine [protein–creatinine ratio (PCR)] or albumin to creatinine [albumin–creatinine ratio (ACR)] on a single 

‘spot’ urine sample has now become a widespread clinical screening tool [73]. The test is quick, cheap, more 

convenient and, in the presence of stable renal function, correlates well with 24 h urine protein and albumin 

values [74, 75] across a variety of patient populations [69, 74, 76–78] and has been shown to predict renal 

outcome and death [79, 80]. There is no consensus on whether proteinuria or albuminuria should be measured in 

the assessment of patients with CKD. Although more expensive, urinary ACR is the most appropriate first-line 

test for the detection of proteinuria in diabetic nephropathy, because it has been demonstrated to provide a more 
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sensitive, quantitative and standardized measurement of loss of protein, particularly at low levels, in most 

nephropathies [81]. The KDOQI advises that for screening adults at risk of CKD and for monitoring progression 

of CKD, urinary ACR is preferred, but urinary PCR is acceptable if the ACR is more than 500–1000 mg g
−1

 [6]. 

The National Institute for Health and Clinical Excellence (NICE) [82] advises the use of urinary ACR for the 

detection and identification of proteinuria in the diagnosis of CKD because it has greater sensitivity for low 

levels of proteinuria. The Scottish Intercollegiate Guidelines Network (SIGN) [83], while recommending the use 

of urinary ACR for the detection and monitoring of diabetic nephropathy, recognizes that its use in patients with 

CKD without diabetes must be weighed against its greater cost, meaning that urinary PCR is often favoured. 

While use of proteinuria has been supported as a surrogate outcome to facilitate clinical trials [84], the role of 

PCR and ACR, where absolute levels of proteinuria are essential to monitor response to drug therapy, is less 

clear. Both PCR and ACR show similar accuracy and repeatability to 24 h urine protein [85]. Indeed, some drug 

trials have already used PCR as a surrogate for 24 h urine protein [86]. However, there is a need for a 

randomized controlled trial comparing all three methods in the quantification of proteinuria with respect to stage 

and progression of CKD in a variety of patient populations before the 24 h urinary collection is completely 

superseded by spot urine sampling [85]. 

 

C). Renal Plasma Flow 

Assessment of renal clearance of PAH is the gold-standard measurement of renal plasma flow (RPF) 

[16, 87] and, typically, clearance of PAH and inulin are measured simultaneously to assess RPF and GFR, 

respectively. Para-aminohippuric acid is both freely filtered by the glomerulus and secreted by the proximal 

tubule [87, 88], and measurement of PAH clearance is based on the principle that renal clearance can be used to 

determine RPF if a substance is completely extracted in a single transit through the kidneys. At low 

concentrations, renal clearance of PAH approximates RPF. As the concentration of PAH rises, and the tubular 

transport mechanism becomes saturated, however, extraction of PAH reduces, leading to an underestimation of 

RPF [87]. Interindividual variation also exists in the extraction ratio of PAH, particularly in the presence of 

renal failure, such that it is difficult to assess RPF accurately without determination of renal venous plasma 

concentration, which is impractical in clinical practice [87]. 

As with traditional inulin clearance studies, there are methodological limitations to this technique. 

Additionally, some medications (such as trimethoprim and sotalol) containing a para-aminobenzoic ring may 

reduce the reliability of PAH clearance through interference with the assay in the laboratory [88]. As with 

inulin, an alternative infusion technique allowing clearance to be measured without urine sampling has been 

described [14]. This technique is more straightforward and avoids the need for exact timing of serum and urine 

samples and any potential requirement for urinary catheterization. However, while some have demonstrated a 

good correlation with the classic renal clearance method [16], others suggest that this method lacks the accuracy 

and precision of the urinary clearance method [87]  

 

V. Novel Biomarkers for CKD 
Chronic kidney disease is rising in prevalence [89]. Disease progression can be slowed and prognosis improved 

if appropriate treatment is instituted at an early stage. Traditional biomarkers commonly used to identify and 

monitor kidney function and progression of CKD include serum creatinine, as a surrogate for GFR, and the 

presence of proteinuria. These biomarkers, however, have limitations. Glomerular filtration rate reflects late 

changes in kidney function [90] because hyperfiltration and compensatory hypertrophy of remaining healthy 

nephrons can maintain GFR in the face of significant functional loss [91]. Proteinuria may also identify a 

disease process that is already well established [92], and may not be present in some types of renal injury [93]. 

As an association between acute kidney injury (AKI) and the incidence and progression of CKD has become 

appreciated [94, 95], identification of sensitive and specific novel biomarkers of cell injury which may predict 

disease progression before abnormalities in traditional parameters of renal function are evident has become an 

area of intense research. 

 

A). Neutrophil Gelatinase-Associated Lipocalin (NGAL) 
It is a protein expressed in renal tubular cells, which has been shown in animal and human studies to be 

released in response to harmful stimuli, such as ischaemia or infection [96–98]. Release of NGAL is rapid, 

occurring within a few hours of kidney injury, before any change in creatinine or GFR, demonstrating its 

potential use as a real-time indicator of active kidney injury [98]. While the role of NGAL as 

markerofAKIhasbeenextensively investigated [98], increased concentrations of NGAL in the urine and plasma 

have also been shown in patients with CKD [99]. Bolignano et al. [100] demonstrated a direct correlation 

between urinary NGAL concentration and proteinuria, and an inverse relationship with residual renal function in 

patients with membranous glomerulonephritis, such that patients with higher urinary NGAL levels experienced 

greater reductions in kidney function. Another study of 96 patients with various aetiologies of CKD stages 2–4 
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showed that urinary and serum NGAL at baseline were directly associated with the progression of CKD over 18 

months, independent of other confounders, such as age and eGFR [101]. Plasma NGAL levels were also shown 

to be inversely proportional to GFR in a study of 45 children with CKD stages 2–4 [102]. More recent studies 

suggest that NGAL may be useful not only in the prediction of CKD progression but also in the monitoring of 

response to treatment [103, 104]. Changes in urinary NGAL, however, are not specific to renal disease, and 

other conditions have been shown to have an influence, such as infection, inflammation, malignancy and 

hypertension [105, 106]. Further large-scale studies are required to explore the pathophysiological role of 

NGAL and its potential use in the detection, staging and prediction of progression of CKD. 

 

B). Kidney Injury Molecule-1 (KIM-1) 

It is a type I cell-membrane glycoprotein containing a unique six-cysteine immunoglobulin-like domain 

and mucin domain in its extracelluclar region [107]. Kidney injury molecule-1 is undetectable in healthy 

kidneys, but this phagocytosis receptor is upregulated in the proximal tubule of the injured kidney and is 

detectable in the urine of animals and humans following ischaemic kidney injury [107, 108]. As a result, KIM-1 

may be a useful biomarker for the early identification of AKI [109, 110] and its clinical outcomes [111]. The 

recent development of a rapid urine dipstick test for KIM-1 [112] will serve to facilitate further evaluation of 

this marker as a rapid, bedside clinical test. The potential role of KIM-1 in CKD is less clear. In a study of 

patients with CKD from various aetiologies, KIM-1 was expressed at the luminal side of dedifferentiated 

proximal tubules in areas of fibrosis and inflammation and correlated positively with kidney damage and 

negatively with renal function [113]. The same research group also showed KIM-1 to be an independent 

predictor of long-term graft loss in renal transplant recipients, apparently independent of creatinine clearance, 

proteinuria and donor age [114]. Others have shown that KIM-1 may have a role not only in the identification 

and prediction of progression of CKD but also in the response to treatment. A retrospective study of 34 

nondiabetic patients with CKD and proteinuria showed a parallel reduction in proteinuria and KIM-1 following 

treatment with a low-salt diet, angiotensin II antagonist and diuretic [115]. More recently, however, it has been 

shown in diabetic patients with CKD that, despite an association between KIM-1 and increased mortality, 

measurement of urinary KIM-1 offered no additional prognostic information beyond that already available 

through established risk factors [116]. 

 

Other Biomarkers have been Identified: 

Liver-type fatty acid binding protein (L-FABP)and asymmetric dimethylarginine (ADMA). Liver-

type fatty acid binding protein is expressed in the proximal tubule, and expression has been shown to be 

upregulated in AKI [117] and CKD [118]. In this latter study of patients with nondiabetic CKD, urine L-FABP 

levels correlated with urine protein and were significantly higher in patients who progressed to more severe 

disease. Asymmetric dimethylarginine is an endogenous nitric oxide synthase inhibitor that is metabolized in 

glomerular endothelial and tubular epithelial cells [90, 119]. Kidney dysfunction interferes with this 

metabolism, leading to increased levels of ADMA. Animal studies have shown that increased ADMA levels 

result in reduced nitric oxide production, which contributes to progressive kidney damage [120]. Asymmetric 

dimethylarginine has, therefore, been proposed as both a biomarker and a potential target for therapy for CKD 

[119]. 

Advances in basic science have helped to develop our understanding of the pathophysiological 

processes of renal disease and identified promising biomarkers that reflect severity and disease progression. It 

remains a challenge to translate these findings into therapeutic approaches to identify those at risk of CKD and 

halt its progression [121]. The European Medicines Agency and the US Food and Drug Administration have 

approved the use of some urinary biomarkers for the detection of acute drug-induced nephrotoxicity in the 

context of preclinical drug development [122]. It is recognized that further exploration of the use of biomarkers, 

such as KIM-1, for the detection of AKI is worthwhile because they provide additional information. The role of 

these biomarkers in CKD, however, is less clear. Much of the work to date involves small, single-centre studies 

describing statistically signficant results but lacking information on sensitivity and specificity necessary to 

determine the usefulness of the biomarker. 

 

VI. Magnetic Resonance Imaging 
Progression of CKD is characterized by ongoing tubulo-interstitial injury causing tubular atrophy and 

interstitial fibrosis. Renal tissue hypoxia is hypothesized to be central to the pathogenesis of renal injury and, on 

reaching a certain threshold, a common, irreversible pathway of progressive renal decline occurs, independent of 

the initial insult [123–125]. Chronic hypoxia is likely to be multifactorial, secondary to tubulo-interstitial 

ischaemia, as a result of renal arteriolar and arterial damage, peritubular capillary loss due to fibrosis, 

glomerular damage causing a reduction in peritubular perfusion, an imbalance in vasoactive substances causing 

intrarenal vasoconstriction, and the development of anaemia contributing to reduced oxygen delivery [123]. 
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Recent studies have investigated the use of functional magnetic resonance imaging (MRI) to evaluate renal 

parenchymal fibrosis and hypoxia [124]. Diffusion-weighted (DW)-MRI and blood oxygen level-dependent 

(BOLD)-MRI are two non-invasive techniques that may provide valuable information in predicting disease 

progression and developing new treatment targets in CKD. These techniques avoid not only the need for 

potentially harmful exogenous iodinated radiographic contrast agents but also gadolinium-based contrast agents, 

which have been associated with nephrogenic systemic fibrosis [126]. Diffusion-weighted MRI is a technique 

used to measure molecular movement within tissues. The apparent diffusion coefficient is calculated from the 

DW-MRI images and combines the effects of capillary perfusion and water diffusion in the extracellular 

extravascular space [127]. Diffusion-weighted MRI provides information on perfusion and diffusion 

simultaneously and may be used to differentiate between normal and abnormal tissues. Studies in animals [128] 

and humans [129] demonstrate that use of this technique may be feasible in the assessment and detection of the 

early stages of CKD. 

Blood oxygen level-dependent MRI is a non-invasive technique for assessing renal oxygenation using 

deoxyhaemoglobin as an endogenous marker. It has been used to demonstrate not only enhanced concentration 

of deoxygenated haemoglobin within the renal medulla in humans with CKD when compared with those having 

healthy kidneys [125], but also a reduced oxygenation level-dependent signal following angiotensin II 

antagonism, suggesting that angiotensin II may have an important role in the generation of renal hypoxia in 

CKD [130]. Despite these positivefindings, Michaely et al. [131] demonstrated no signficant differences in 

signal of the cortex and medulla between patient age, sex, eGFR and stage of CKD, suggesting that BOLD-MRI 

cannot discriminate between patients with various stages of CKD. While DW-MRI and BOLD-MRI may have a 

role in the detection of parenchymal hypoxia in CKD, further studies are needed to investigate whether these 

techniques may be used in the clinical setting to identify and stage disease and to provide prognostic information 

and, in the research arena, to develop new treatment targets for CKD.  

 

 
  

Figure 1: Effect of gadolinium on right and left kidneys are shown with different renal structures by 

histology (Firstrow); proton density and T2 weighted 21 Tesla MRI images of normal kidneys(Second row); 

proton density and T2weighted 21 Tesla MRI images of gadolinium treated kidneys (third row). Proton density 

and T2 weighted 21 TeslaMRI images of Gdolinium treated vs SPIOM treated kidneys are shown in fourth row 

to illustrate the difference inMRI signal intensities by gadolinium enhanced relaxivity and SPIOM induced 

dephasing effect. At bottom, a highpower histology section shows cytomorphic details of different structures in 

kidney. Cortex-medulla thickness ismarker of nephrogenic fibrosis (shown as M-C). Nephron fibrosis was 

distinct and contrast agent Gadolinium andSPIOM contrast agents accumulate in kidneys as shown in panels at 

bottom.Reproduced from Sharma (2012) Ref no. with prior permission. 
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VII. Conclusion 

Measurement of renal function is complex. The kidneys serve a variety of roles within the body, and no 

individual method of measurement provides an accurate overall assessment of renal function. In the clinical 

setting, the monitoring of trends, particularly of GFR, is often all that is necessary to guide treatment decisions 

and predict prognosis. In clinical trials aimed at developing and assessing the effect of new drugs, however, a 

more precise measurement is required. Significant developments have been made in the field of novel 

biomarkers and radiological imaging, but whether these modalities will ultimately supersede the more 

traditional methods remains to be determined. Until then, a combination of assessment modalities may provide 

the best overall measure of kidney function and enable early prediction of CKD, as well as the development of 

new treatments aimed at slowing progression of renal dysfunction. 
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