Triplet tumors in MISME syndrome- a rare case report and review of literature.

Dr. Duttaluru Seshadri Sekhar, Dr. Injeti Babji syamkumar, Dr. Bhavanam Hanuma Srinivas, Dr.Sathish Vandanapu, Dr.Ambati Vimala

Introductory

Neurofibromatosis (NF) type 2, also known as MISME syndrome, is a rare autosomal dominant inherited disorder, characterized by occurrence of multiple benign neoplasms in central and peripheral nervous system associated with eye lesions. MISME stands for multiple inherited schwannomas, meningiomas and ependymomas. To our knowledge, till now in literature simultaneous occurrence of all the above three tumors in a single patient with histological confirmation had been reported only in one case. Here we are reporting a very rare case of MISME syndrome with triple tumors in a 24 year old patient presenting with bilateral vestibular schwannomas, cervico medullary junction (CVJ) meningioma and an intra medullary ependymoma at D11/D12 region.

Key words: Cervico medullary junction, Ependymoma, Meningioma, Neurofibromatosis type 2, MISME syndrome, Schwannoma.

I. Introduction

NF2, also called as MISME syndrome, is a rare autosomal dominant inherited disorder, with estimated incidence of 1 in 33,000 and prevalence of 1 in 60,000. It has no predilection for race, sex and ethnicity. Most commonly presented in 2nd and 3rd decade, mostly between 16 to 24 yrs of age group. Approximately 50% of cases are familial, remaining 50% are sporadic in nature as a result of de novo/ new mutations. NF2 is caused by defect in merlin gene which is a tumor suppressor gene, located on long arm of chromosome 22 (22q12.2). The hallmark for diagnosis of NF2 is presence of bilateral vestibular schwannomas. The three types of tumors most commonly seen in NF2 are schwannomas, meningiomas and ependymomas. Here with we are presenting a rare case of simultaneous presentation of triple tumors in MISME syndrome with histopathological confirmation in a 24 yr old male patient.

II. Case Report

A 24 yr old patient born to non consanguineous parentage presented to our hospital with the chief complaints of tinnitus and defective hearing in both ears (Rt>Lt) for past 2 years. Swaying while walking for past 1 year, stiffness of all four limbs for past 8 months and urge incontinence of bladder for past 6 months. Family history revealed his father had H/O swaying while walking with right hemiplegia died undiagnosed at an early age, his grand father also died undiagnosed at an early age. Neurological examination showed left 7th cranial palsy (House and Brackmann grade 2), and bilateral 8th, 9th, 10th cranial nerve palsies. Motor examination showed increase tone in all four limbs (Upper limbs Modified Ashworth Score -1, lower limbs - Modified Ashworth Score - 2). Deep tendon reflexes are 3+ in all four limbs and plantars were bilateral extensor. Sensations of touch and pinprick decreased by 50% below C3 level. Pure tone audiometry showed bilateral sensory neural deafness more on right side. Ophthalmic evaluation revealed bilateral subcapsular lenticular opacities. MRI brain showed bilateral uniformly enhancing cerebellopontine angle (CPangle) tumors (Left - 5x4 cms, Right - 3x3 cms) [Figures:1 & 2]. In view of bilateral 8th nerve schwannomas, MRI screening of whole spine was performed.

MRI CVJ with C-Spine revealed a well defined intradural extramedullary lesion of size 4x3 cms with moderate homogenous enhancement anteriorly at cervicomедullary junction extending from C2 to foramen magnum in the form of dumbbell with severe compression over cord [Figure:3]. MRI dorsal spine showed 4x2 cms intramedullary lesion at D11-D12 region with heterogenous enhancement on contrast [Figure:4]. Staged excision of tumors were done. Patient underwent gross total excision of left Cerebellopontine angle tumor through retrosigmoid approach for better preservation of hearing, later stage CVJ and dorsal lesions excised [Figures:5,6, & 7]. Histopathology showed Schwannoma, Transitional meningioma and Ependymoma respectively [Figures:8,9 & 10].

DOI: 10.9790/0853-14847578 www.iosrjournals.org
III. Discussion

Neurofibromatosis (NF) is an autosomal dominant inherited condition characterized by development of multiple neoplasms in central and peripheral nervous system. In 1987 NF was classified as two types (Type 1 & 2) based on their clinical and pathological features. NF type 1 caused by defect in neurofibromin gene which was located on long arm of chromosome 17, whereas Type 2 caused by mutations in merlin gene located on long arm of chromosome 22. This merlin gene was a tumor suppressor gene, which maintains cell connection of cytoskeleton with the plasma membrane, thereby controlling shape, motility of cell as well as growth regulation. It has almost 90% clinical penetrance rate.

The diagnosis of NF2 usually made in 2nd and 3rd decades, mostly 18 to 24 yrs of age. In literature 90-95% of cases of NF2 had 8th cranial nerve schwannomas, 80% of patients develop tumors in other cranial nerves or meningiomas and 2/3 of patients develop spinal neoplasms. Approximately 90% of patients suffer from ocular abnormalities mostly early cataracts but retinal hamartomas, epiretinal membranes, corneal lesions also have been documented in literature. There are two phenotypes of NF2. 1) Wishart phenotype and 2) Feiling-Gardner phenotype. The Wishart phenotype is more aggressive and characterized by multiple neoplasms in brain and spine, usually seen in patients <20 yrs age. The Feiling-Gardner phenotype mostly seen after 20 yr age group, characterized by single neoplasm in CNS with less aggressive nature. In 1997 diagnostic criteria for NF2 was updated. The definite or confirmed diagnosis of NF2 are A) Bilateral 8th cranial nerve schwannomas and B) First degree relative with NF and unilateral 8th cranial nerve schwannoma at <30 yrs or any two of following: Glioma, Neurofibroma, Schwannoma, Meningioma. In 1996 Mautner et al published a case series of 48 NF2 patients about their prevalence of tumors. He concluded that 46 patients (96%, 3 unilateral and 43 bilateral) had 8th cranial nerve schwannomas, 43 patients (90%) had Spinal tumors, 30 patients (63%) had posterior subcapsular cataracts, 28 patients (58%) had Meningiomas, and Trigeminal Schwannomas were found in 14 (29%) patients. MRI imaging of brain and spine with contrast is the investigation of choice in NF2 patients. NF2 patients should be managed by multidisciplinary approach which includes a team of doctors like neurologists, neurosurgeons, neuro radiologists, ophthalmologists, geneticists, audiologists and otologists. The children with family history of NF2 should be screened with imageology of cranial nerve S1 to S3, 8th cranial nerve, and spine as early as possible from 10 to 12 years with annual scans until 4th decade. Aoki S et al, 1989 reported a radiological study on NF2 in 11 patients. In that all 11 patients had 8th cranial nerve schwannomas, 8 had other cranial tumors apart from 8th cranial nerve.

Management in NF2 patients is preservation of function rather cure as they have life long tendency to develop new tumors and/or recurrences. NF2 related 8th cranial nerve schwannomas are difficult to manage as they are often big by the time they are diagnosed and tend to behave more aggressive in nature. Most of the
studies shown early intervention is the best for symptomatic Vestibular Schwannomas to preserve auditory and other cranial nerve functions. Cochlear implants, hearing aids complemented by lip reading and sign language and auditory brainstem implants are alternative modes of treatment for complete hearing loss. In literature conservative treatment for vestibular Schwannomas in NF2 patients is also documented. Clinical trials on Avastin/Bevacizumab, which is a monoclonal antibody against Vascular endothelial growth factor (VEGF), showing interesting results in preventing growth of CP angle Schwannomas, but still it was only off label use. It is suggested in situations where tumor load is so high and surgery is not possible or beneficial.

MISME syndrome characterized by multiple inherited Schwannomas, Meningiomas and Ependymomas. Very few cases of Simultaneous occurrence of all three tumors in a single patient have been reported in literature. Till now only one case with Simultaneous occurrence of all three tumors with HPE confirmation had been documented. In this report, we have presented a case of triple tumors with MISME syndrome had bilateral 8th cranial nerve Schwannomas, CVJ Meningioma and dorsal intramedullary Ependymoma.

IV. Conclusion

NF2 or MISME syndrome is a rare clinical entity in which development of bilateral 8th cranial nerve Schwannomas are hallmark for diagnosis. As there is lifelong tendency for formation of new tumors, treatment is focussed on preservation of cranial nerve function and maintenance of quality of life. Simultaneous occurrence of triple tumors in NF2 patient is rare. Hence, we should get the imageology of brain and whole spine while treating these cases to rule out the possibility of other tumors at different locations. The patients with family history of NF2 should be screened as early as 10 to 12 yrs of age with annual screening MRI s until 40 years age.

References


DO: 10.9790/0853-14847578 www.iosrjournals.org 77 | Page
Triple tumors in MISME syndrome - a rare case report and review of literature.

Figure: 1, 2, 3 Showing bilateral eight nerve schwannomas and Foramen magnum Meningioma.

Figure: 4 Showing Dorsal Ependymoma.

Figure: 5, 6, 7 Showing post operative images after excision of tumours.

Figure: 8, 9, 10 Showing HPE of left eight nerve schwannoma, Foramen magnum Meningioma and Dorsal Ependymoma respectively.