Molecular detection of Salmonella serovars in Retailed Raw Meat samples using 16SrRNA, sitC and fliC Virulence Genes in Lagos, Nigeria.

Anejo-Okopi JA1, Adamu ME2, Okwori AEJ3, Audu O4, Odeigah PGC5

1Microbiology department, University of Jos, Nigeria, 2Jos University Teaching Hospital, AIDS Prevention Initiative Nigeria, Jos, Nigeria 3Cell Biology and Genetics department, University of Lagos, Nigeria 4Microbiology department, Federal College of Veterinary and Medical Laboratory Technology, Vom, Nigeria 5Department of Epidemiology and Community Health, College of Health Sciences, Benue State University, Makurdi, Nigeria

Abstract:
Introduction: The presence of virulence genes such asit C and fli C are known among Salmonella serovars of clinical interest. The common sources of Salmonella include dairy products, beef, poultry, eggs and vegetables. This study was aimed at identifying salmonella using 16S ribosomal RNA gene (16SrRNA), and sitCandfliCvirulence genes in raw meat samples commonly sold in open market place genotypically with PCR methods.

Methods: The study observed the presence of Salmonella isolated from 124 raw meat samples using conventional phenotypic methods and analysing for presence of sitCandfliCvirulence genes. For molecular analysis, the 16S rRNAs of strains of Salmonella were used to confirm the result of the conventional method. DNA extraction and quantification was carried out followed by Polymerase Chain Reaction. The PCR products were subjected to agarose gel electrophoresis.

Result: A total of 124 isolates were collected from animal sources. Of the 124 samples, 30 Salmonella isolates were positive after repeated sub culturing, biochemical and serological tests. Nineteen (63%) of the 30 isolates were positive for16SrRNAs, five (17%) for sitC while thefliC was negative.

Conclusion: The PCR assay has proven to an efficient method for the identification of virulence genes in Salmonellaserovars. The presence of 16SrRNAs andsitC genes showed availability of the virulence genes in retailed raw meat samples commonly sold in Nigeria. More studies are required to track virulence factors among Salmonella isolates in Nigeria.

Keywords: Genes, Nigeria, PCR, Salmonella, Virulence

I. Introduction

Salmonellabelong to the family Enterobacteriaceae, and responsible for most foodborne infections posing a major public health challenge worldwide [1]. Infection with Salmonella can lead to serious and potentially fatal infections including bacteraemia, septic arthritis, meningitis and pneumonia [2]. Faecal-oral transmission of Salmonella occurs most commonly through the consumption of contaminated food causing salmonellosisin humans [3].

Salmonellaentericacontains about 2,600 serovars and are classified into six subspecies with high sequence resemblance[4]. The most frequently isolated serovars from foodborne outbreaks are SalmonellaentericaserovarsS. typhimuriumandS. enteritidis. Salmonella relies on multiple virulence factors, many of which are clustered within Salmonella pathogenicity islands (SPIs) to cause a disease, and five (1-5) SPIs have been identified so far [5]. The 16Sribosomal RNA (16SrRNA) is one of the Salmonellapathogenicity island I virulence genes[6]. The use of 16SrRNA gene sequencing within the regulatory workflow may help to reduce the time and labor involved in the identification and differentiation of Salmonellaenterica isolates. Salmonellaenterica is subdivided into six subspecies: enterica(I), salamae(II), arizonae(IIIa), diarizonae(IIIb), houtenae(IV), and indica(VI), the more commonly isolated subspecies are; (II, IIIa, IIIb, IV) [7], and Subspecies’ I is most responsible for infections in human and domestic animal infections. The Salmonellaserovars are clinically recognized according to the disease they cause; typhoid or enteric are life threatening infections and non-typhoidalserovars which cause self-limiting gastroenteritis [8,9].

The serovars are known to cause majority of infection in both humans and animals resulting in major economic loss. Salmonella outbreaks have been implicated with improper handling of food by food handlers [10], and different Salmonellae pathogens have various host ranges; some isolates infect animal and plant hosts, while others have specific host.
In developed countries up to 5% cases of NTS may be invasive, extra-intestinal disease leading to bacteremia, but in Sub-Saharan Africa the invasive non-yphoidal Salmonella (INTS) is responsible for high morbidity and mortality in adults and children, with an estimated annual incidence of 175-388 cases per 100,000 children and 2000-7500 cases per 100,000 HIV-infected adults [11].

The remarkable feature of fliC alleles is the sequence conservation of distal parts of the gene, thus making the gene of any serotype suitable for easy amplification. Most Salmonella strains possess two structural genes (fliC and fliB) coding for flagellins [12].

The sitC (Salmonella iron transporter C) gene is a virulence gene found in Salmonellaeenterica strains which is involved in iron transport, its broad action includes invasion of macrophages and iron acquisition. The sitC is found in Salmonella Pathogenicity Island 1 (SPI-1) [13, 14].

The advent of molecular methods for diagnosis of infectious diseases has improved the sensitivity, specificity and quality of treatment. PCR studies have shown the specificity of some gene primers such as 16S ribosomal RNA (16sRNA) to detect and discriminate between Salmonella and non-Salmonella species [6]. The common sources of Salmonella include dairy products, beef, poultry, eggs and vegetables. Detection of the virulence genes is essential to understanding of the etiologic agent which may provide insight into their relative pathogenicity, treatment and develop prophylactic strategies for salmonellosis. This study is aimed at identifying Salmonella present among retail raw meat samples in Nigeria using primers; 16sRNA, sitC and fliC virulence genes which are specific to Salmonella detection and diagnosis.

II. Materials and Methods

2.1. Salmonella isolates

A total of thirty samples of raw meat were collected from Mushin market, Lagos between August and September 2013. The samples selected were suspected for possible contamination by Salmonella during the retail handling and processing of raw meats. The collected samples were placed aseptic in a polyethylene bags, labeled and refrigerated at -4°C for about 24 h before processing. The use of pre-enrichment broth of samples was performed as described earlier [16]. We used 25 g of the meat samples to homogenize 225 mL of buffered peptone water broth, incubated at 37 °C for 24 h. The culture from pre-enriched broth was then divided into two aliquots; first aliquot was subjected to conventional cultural method. All the isolates that produced H2S on deoxycholate agar plates were subjected to biochemical tests (IMViC tests; "I"- indole test, M-methyl red test, V-Voges-Proskauer test, and C-citrate test; Klügler Iron Agar (KIA) test, Motility Indole Urea (MIU) test and Simmons’ Citrate test), while the second aliquot was used for DNA extraction by boiling method followed by agarose gel electrophoresis and PCR to confirm the presence of Salmonella.

2.2. Serological test

The Serological testing was performed using the Salmonella test kit (Oxoid), with 25 mg samples were homogenized with 225 mL buffered peptone water medium and incubated for 15-18 h at 37 °C. 1 mL of pre-enriched broth culture were transferred to 9 mL of selenite cysteine enrichment broth culture and incubated at 37 °C for 24 h. One drop of the selenite cysteine enrichment broth culture using a Pasteur pipette were dropped within one circle on the reaction card and mixed with 1 drop of the Oxoid Salmonella Latex Reagent to the broth on the card. The suspension was mixed thoroughly using a clean mixing stick or inoculating loop, and then rocked the reaction card gently for 2 or 3 times. The agglutination was examined within a maximum of 2 min.

2.3. Genomic DNA extraction

Three colonies of each isolate were picked and suspended in 200 μl of distilled water and mixed by vortexing. Genomic DNA was extracted by the boiling method and briefly 1.5 ml of the sample in broth was centrifuged at 10,000rpm for 5 minutes. The supernatant was discarded and the pellets were washed twice with sterile water. After this, 200 μl of sterile water was added to the pellicles, the pellets were vortexed to homogenize and boiled in a dry bath at 100°C for 10 minutes. This was followed by vortexing and centrifugation at 12,000rpm for 5 minutes. The supernatant was transferred into another pre-labelled eppendorf tube by gentle aspiration using a micropipette. The supernatant contains the DNA needed for PCR assay, and was stored at -20°C. The concentration and purity of the extracted DNA was estimated using a nanodrop spectrophotometer and the integrity of the DNA was assessed by 1% agarose gel electrophoresis.

2.5. Primers: 16SrRNA (F-5’ TGT TGT GGT TAA TAA CCG CA 3’ and R- 5’ CAC AAA TCC ATC TCT GGA 3’), sitC (F-5’ CAG TAT ATG CTC AAC GCG ATG TGG GTC TCC 3’ and R-5’ CGG GGC GAA AAT AAA GGC TGT GAT GAA C 3’) and Flagellin (F-5’ AAG GAA AAG ATC ATC WAY 3’ and R-5’ TTA ACC CAG TAA AGA GAG 3’).

2.5. Polymerase chain reaction (PCR) procedure using 16sRNA, sitCand fliC primers: PCR was conducted in a volume of 25 μl containing 2 μl of genomic DNA from the salmonella isolates, 12.5 μl master mix, 2 μl of each primer specific for 16sRNA, sitC and fliC gene and 8.5 μl of deionized distilled water (DDW). The cycling
conditions for amplification in a Gene Amp PCR System 9700 thermal cycler (Applied Biosystem, India) was as follows: 16SrRNA primer-initial denaturation step of 95°C for 3 mins followed by 30 cycles consisting of 30 sec at 95°C, 30s at 54.1°C, and a final extension step of 1 min at 72°C, sitC - 94°C for 3 mins followed by 30 cycles consisting of: a denaturation step of 2 mins at 94°C, 1 min at 55°C and final extension step of 1 min at 72°C, flIC primer: 94°C for 2 mins followed by 35 cycles each consisting of 30s at 94°C, 30s at 55°C and an extension step of 72°C for 1 min. The above PCR cycling conditions were based on the preliminary experiments performed to optimize amplification of salmonella target sequences. Following electrophoresis, the gel was stained with ethidium bromide and photographed under transilluminator ultraviolet (UV) light. A 100 bp DNA ladder (MBI Fermentas USA) were used as markers for determining the molecular weight of PCR products ([17]). The amplified products were electrophoresed for the presence of desired bands on 1.5% agarose gel.

III. Result
3.1 PCR identification of Salmonella using the 16SrRNA primer
Nineteen (63%) isolates of the thirty (30) samples showed amplification for the 16SrRNA gene using the primer set 16SrRNA (F- 5’ TGT TGT GGT TAA TAA CCG CA 3’ and R- 5’ CAC AAA TCC ATC TCT GGA 3’). The molecular weight of the amplicon was 574 bp as shown in plate 1. The positive control (Salmonella typhimurium) also contained the amplified 574 bp DNA fragment. Plate 1 which showed Lanes 1 to 4 is a representative of the amplification result for the 16SrRNA gene.

Plate 1: Representative sample of amplified 574-bp DNA fragment of the 16SrRNA gene. Lane M = 1 kilobase pair ladder, Lane + = positive control, Lane 5 = negative, Lane 1 to 4 positive.

Plate 2: Agarose gel electrophoresis of amplified 750-bp DNA fragment of the sitC gene. Lane M = 100 base pair marker, Lane - = negative control, Lane + = positive control, Lanes 3, 6, 23, 25, 28 = positive (5).
Molecular detection of Salmonella serovars in Retail Raw Meat samples using 16SrRNA, sitC

Plate 3: Agarose gel electrophoresis of flagellin gene using flagellin/fliC primer. Lane M = 100 base pair marker, Lane –ve = negative control, Lane +ve = positive control (which showed no amplification for the gene), Lanes 1 to 30 = negative.

IV. Discussion

Strains of *Salmonella* are considered as important pathogens and a leading cause of bacterial food-borne illness popularly known as Salmonellosis and is a major public health problems. Genomic variations play an important role in bacterial identification, it is necessary to use molecular techniques known to be sensitive and specific to identify suspected *Salmonella* serovars[18].

In this study, PCR method based on the 16SrRNA/sitC and fliC targeting *Salmonella* virulence genes were used to determine 30 isolates of *Salmonellae*in Nigeria. The results showed that 63% of 16SrRNA and 17% of the isolates matched with the *Salmonella typhimurium*. The PCR analyses of the virulence genes demonstrated suitable target gene for discriminating among *Salmonella* serotypes. Studies have also shown that this method is rapid and reproducible in identification of isolates[19]. The results showed that these methods can potentially be applied for identification of *Salmonella typhimurium*

Various primers sets targeting *Salmonella*16SrRNA, sitC and fliC genes have been designed for research purposes [20, 21]. 16SrRNA primer can be used for the detection of *Salmonella* in food samples (Lin and Tsen. 1996). The 16SrRNA primer amplified DNA from most of the *Salmonella* strains successfully. Recent study on the molecular epidemiology and in vitro antimicrobial susceptibility of *Salmonella* isolated from poultry in Kashmir valley, India showed that all the isolates of *Salmonella* were tested by genus-specific polymerase chain reaction (PCR), using the 16S ribosomal RNA (rRNA) primers [22, 23].

Out of a total of 30 suspected *Salmonella* isolate samples used for this study, the 16SrRNA primer set amplified 19 samples as positives with an amplicon size of 574bp, and this corroborated earlier work done [13] that non-typhoidal *Salmonella* isolates from human, animal and food products in The Gambia and Senegal for the presence of twelve virulence genes including sitC. The sitC gene was found in at least 70% of the isolates tested [13], and this showed a significant association between the sitC virulence gene and resistance to commonly used antibiotics in West African region. Our worked on the other hand showed 17% of sitC gene with amplicon size of 750bp. This also corroborated earlier reported use of sitC gene in differentiation and detection of *Salmonella typhi* rim range of animal and human origin, and this gene was found to be associated with severity of salmonellosis in humans [24, 20].

We did not observe fliC gene amplification in any of the samples suggesting that the identified *Salmonella* species may lack fliC gene or may be due to inadequate primer amplification.

Adequate sanitary measures have led to a decrease in cases of typhoidal *Salmonella* in developed countries and most cases are associated with travellers returning from endemic areas in developing countries. In sub-Saharan Africa such as the Gambia and Senegal, non-typhoidal *Salmonella*(NTS) becoming a major cause of invasive disease in infants, young children, and HIV-infected adults and are associated with substantial mortality [13].

In Nigeria, morbidity associated with illnesses due to *Salmonella* continues to be on the increase and, in some cases, resulting in death [25]. Proper characterization of *Salmonella* isolates is essential for investigations of *Salmonella* outbreaks as non-typhoidal *Salmonella* strains have reached epidemic proportions in many countries despite improvements in sanitation and hygiene [26]. In view of limited adherence to high standards of hygiene,
the probability of bacterial contamination of food at various stages of processing is always very high [27]. *Salmonella* species used for research purposes are usually isolated from contaminated food and clinical samples which are mostly due to faecal-oral routes[4].

This result showed a recognisable distribution of 16S rRNA and sitC virulence genes in *Salmonella* species gotten from meat samples sourced from Nigeria. The most prevalent gene was 16S rRNA(63%), and this suggests that 16S rRNA can be used for the identification and confirmation of *Salmonella* in food samples using the PCR method.

V. Conclusion

Infection caused by *Salmonella* species remains an important public health problem especially in developing countries. This study showed that virulence genes are present in non typhoidal *Salmonella* isolates found in Nigeria. The 16S rRNA is a suitable molecular tool to diagnose *Salmonella* in animal products. Identification of *Salmonella* serovars through screening of virulence genes by PCR methods can have benefits in public health specifically for rapid diagnosis, development of treatment and epidemiological investigations. More studies are required to track availability and emergence of virulence factors in *Salmonella* isolates in Nigeria.

Acknowledgement

The Authors thanked the management of Nigerian Institute of Medical Research, staff and Director of Molecular Biology and Biotechnology laboratory for their unflinching technical support. Our sincere appreciation also goes to Mrs. C.E Adamauf Lagos University Teaching Hospital who supported the work morally and financially.

Conflict of Interest

Authors declare that they no conflict of interest.

References


Molecular detection of Salmonella serovars in Retailed Raw Meat samples using 16S rRNA, sitC


