A New Approach in Diagnosis of Palatally Impacted Maxillary Canine in Orthodontic Patient by Cone Beam Computed Tomography (CBCT) - A Case Report

Dr. Rajesh Kishnani¹, Dr. Rakhi Bharat²
¹(Department of Orthodontics, Sri Aurobindo College of Dentistry & PG Institute, Indore, M.P., India.)
²(Department of Orthodontics, Sri Aurobindo College of Dentistry & PG Institute, Indore, M.P., India.)

Abstract: In recent years cone beam computed tomography (CBCT) has become a widely accepted radiographic tool for diagnosis, treatment planning and follow-up in dentistry. 3D imaging has improved diagnostic efficiency and the practice of dentistry in a variety of ways; from routine evaluation to complex analysis of unusual pathology and congenital deformities, the technology available today makes dentistry better, and easier, and more accurate.

The most recognized need for CBCT imaging in orthodontics is that of impacted canine evaluation. In this article a patient having impacted left maxillary canine is evaluated by the 3D CBCT and found beneficial particularly in terms of anatomical detail root resorption and the labiolingual relationships of the impacted tooth with the roots of neighboring teeth, in addition to determining the pathway for biomechanical resolution. Linear and angular measurements on CBCT images are accurate and precise and can be used to assess the exact position of palatal displaced canines.

Key words: CBCT, Impacted Canine, CBCT in Orthodontics.

I. Introduction

Diagnosis and treatment planning of palatal displaced canines (PDCs) has until recently been based on palpation in combination with conventional two dimensional (2D) radiographs. Since there are several disadvantages with 2D images, including distortion, inability to detect resorption of adjacent teeth, superimposition of structures, errors in projection, imaging artifacts, and variation in magnification, the application of computed tomography (CT) scanning has been suggested.

Its clinical utility has been limited, however, because of the cost and the high radiation dose. To address this, cone-beam computed tomography (CBCT) was introduced in the 1990s. CBCT allows the acquisition of three-dimensional volumes of the dental arches and surrounding tissues at a high spatial resolution and a low radiation dose. Three dimensional imaging is the volumetric imaging which gives the information in depth length and width. CBCT is a compact faster and safer version of regular CT it provides high-resolution imaging, diagnostic reliability, and risk-benefit assessment. It is an accurate tool for many clinical oral-maxillofacial indications, with lower radiation doses than computerized tomography.

For orthodontics, one single CBCT scan can effectively generate all the images needed for orthodontic diagnosis including the lateral cephalograph, the panoramic radiograph, the antero-posterior cephalogram, temporomandibular joint tomograms, and many other oblique/cross-sectional slices previously unavailable in flat planar films at a relatively equivalent radiation dose, for a set of orthodontic X-ray initial records.

Possibly the most recognized need for CBCT imaging in orthodontics is that of impacted canine evaluation. The prevalence of impacted maxillary canines is approximately 0.9% to 3.0%. The ratio of palatal to labial impactions has been shown to be as high as 9:1.

In the past, orthodontists have used the tube shift technique to compare two periapical radiographs taken at different beam angles to determine the facial/lingual position of the impacted canine. This same lingual, opposite buccal rule is helpful in determining whether the impacted canine is labial or lingual to the incisor roots; however, the degree of displacement is difficult to determine. CBCT imaging is precise in determining not only the labial/lingual relationship but also more exact angulations of the impacted canine. These 3D images are beneficial in determining the proximity of adjacent incisor and premolar roots, which can be invaluable in
A New Approach in Diagnosis of Palatally Impacted Maxillary Canine in Orthodontic Patient by

determining the ease of uncovering and bonding and the vector of force that should be used to move the tooth into the arch with a lesser chance of adjacent root resorption.

Figure: 1

Mesioangular angle of PDC measured on a coronal view

Figure: 2 Extra-Oral Photographs

Frontal view Oblique view Lateral view

Extra-oral findings
The Extraoral clinical examination demonstrated she had a convex profile, protrusive upper lip, lip incompetence and shallow mentolabial sulcus (Fig-1)

Figure: 3 Intra-Oral Photographs

Frontal view Left lateral view Maxillary occlusal view

Intra-oral findings
The intraoral clinical examination revealed that the molar relationship on the right side is Angle Class II, and end on left side due to the rotation of maxillary 2nd premolar.

Retained maxillary deciduous canine also present on left side, Bimaxillary protrusion. The overjet and overbite is 4 mm. Both of the upper and lower dental arch form are ovoid and symmetrical in shape mid line of both arches are coinciding (Fig-3)

II. Case report
A 20yr old female patient came to the department of orthodontic and Dentofacial orthopedic in SAIMS College of dentistry Indore with the chief complained of forward placement of upper and lower frontal teeth.
A New Approach in Diagnosis of Palatally Impacted Maxillary Canine in Orthodontic Patient by

Radiographic findings
Occlusal and IOPA x-ray shows impacted left maxillary canine
The panoramic radiograph showed the absence of all the third molars, root canal treated mandibular 2nd premolar on both side and impacted maxillary canine on left side.
The cephalometric findings revealed a skeletal Class II jaw relation, increased ANB angle,
The soft tissue analysis showed an acute naso-labial angle and protrusive upper and lower lips.

Figure: 4 Routine radiographs (giving 2-D image) for diagnosis of impacted canine

Periapical radiograph occlusal radiograph Panoramic radiograph Lateral Cephalogram

For CBCT imaging of impacted canine in this patient KODAK-CS-9300 CBCT MACHINE has been used. CBCT scans are far better than conventional panoramic radiographs in verifying the orientation and location of the impacted canine and its relationship to neighboring structures. This technique makes identification of the exact position and shape of impacted canines possible, which is crucial in treatment planning. Furthermore, it is very helpful in evaluating damage to adjacent teeth and the amount of surrounding bone.

Figure: 5 CBCT images showing the palatal position of tooth 23. the relationship between teeth 22, Sagital CBCT image displaying the proximity of 23 to the root of 22.

Diagnosis
The patient was diagnosed with a skeletal Class II pattern and dental Class -I on right side end on left side with bimaxillary protrusion and vertical grower.

Treatment objectives
The treatment objectives are to (1) Achieve Class I molar on both side (2) Correction of bimaxillary protrusion (3) Alignment of left permanent canine in upper arch (2) Improve the lip posture

Treatment plan
In-Orthodontic treatment after alignment and leveling of the upper and lower arches, surgical exposure of palatally impacted canine has been done. And begg’s bracket bonded with ligature tie, this ligature tie helps the canine for retraction and exposure in oral cavity...when canine exposed, Kalra’s K-9 spring8 attached to canine for proper alignment in arch.

Figure: 6 surgical procedures for exposure of impacted canine

Exposure of impacted Canine bonding of bracket ligature tie suturing flap
A New Approach in Diagnosis of Palatally Impacted Maxillary Canine in Orthodontic Patient by

III. Conclusion

CBCT in relation to the treatment of impacted teeth are more beneficial particularly in terms of anatomical detail, root resorption and the labiolingual relationships of the impacted tooth with the roots of neighboring teeth, in addition to determining the pathway for biomechanical resolution. Linear and angular measurements on CBCT images are accurate and precise and can be used to assess the exact position of palatal displaced canines.10

References

[8]. Varun kalra, the k-9 spring for alignment of impacted canine. Jco/October 2000; 34; 606-609.
[10]. Julia Naoumova; Heidrun Kjellberg; Reet Palmc Cone-beam computed tomography for assessment of palatal displaced canine position: A methodological study-Angle Orthodontist, 2014; 84; 459-466.