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Abstract:In statically-typed object-oriented languages optimization plays an important role to make program 

compilation faster. A number of methods have been used, and a variety of algorithms have been suggested and 

designed for optimization of statically typed object-oriented languages like C++ and Java. One of the important 

considerations inoptimization of statically typed object-oriented language is function de-virtualization. Function 

de-virtualization converts virtual function calls to direct calls, i.e. a virtual function call is replaced by a call to 
the method of some class. The direct calls can be further inlined to enhance the performance. Class hierarchy 

Analysis (CHA) [3] is the well-known technique used to identify the virtual calls in a program that can be 

converted into direct calls. The class hierarchy Analysis starts with a building a Class Hierarchy Graph (CHG) 

that represents the relation between the various classes of program and the visible methods within these classes. 

In fact the most basic data structure for developing optimization algorithms is the CHG, which abstracts the 

Base-derived class relationship that use virtual functions. 
A number of algorithms have been designed for constructingClass Hierarchy Graph (CHG) like the 

one designed by Bacon, D.F[1]that uses the source level information to build CHG. Several alternatives have 

been presented to this approach as well. In this article we will present the method for construction of CHG by 

reusing the RTTI (RuntimeType Identification) generated by the complier. 

 

I. Introduction and Objectives: 
A Class Hierarchy Graph represents the inheritance relationship between the classes and represents the 

various member functions that are inherited/overridden or defined in a class. A Class Hierarchy Graph generally 

consists of three main sets which are;   a set of base classes, a set of derived classes and a set of methods. The 

classes form the nodes of the CHG connected by edges which represent the derivation relationship between the 

classes and the methods which are visible in a class are represented inside the class nodes. 

 Formally a Class hierarchy Graph (CHG) is a three tuple (C, D, and M) were: 

 C is a set of classes which represents the nodes of the CHG. 

 D is a set of derivations, which are ordered pairs of classes forming the edges of the graph 

 M is a set of visible methods that can be invoked through a reference to an object of a particular type. 
Any edge in set is an ordered pair of type <b,d> where bϵC is a base class and dϵC is a derived class. 

Similarly the each visible method Mrin set M is a triplet of the form (c, m, d) where  

 c ϵ C is the class in which Mrrepresents a visible method 

 m ϵ M is the method which in either inherited or declared by c. 

 d ϵ C is the class which defines the m. if the method is declared by the class itself then c=d, or c ϵ is 

inherited from the one of the base classes. 

Consider the code the following code segment in the listing1. 

Class L{ 

Virtual void get () {…some_code…} 

}; 

Class Q : public virtual L{ 
Virtual void get() {…some-code…) 

}; 

Class N : public virtual L { 

}; 

Class O : public M{ 

Virtual void put (){…some-code…} 

}; 

Class P : public N, public O{ 

Void put () {…some_code…} 

}; 

 Listing 1 :A simple set of  C++  class declarations. 

The corresponding Class Hierarchy Graph of the above code fragment is as follows. 
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Figure 1: CHG for listing 1. 

 

 Class Hierarchy Graph has a vast area of applications in design and development of optimization 

algorithms. CHG can be used to compute a set of live classes and live methods [1] which have the application in 

constructing the call graph of a program. The call graph can be used to identify the set of call sites within a 

program and can help to identify the target virtual calls in a program to be de-virtualized. 

The main tasks to be accomplished as the objectives of this work are as follows: 

 To show how RTTI generated by compiler can be reused to construct Class Hierarchy Graph. 

 To design reliable and efficient algorithms for constructing Class hierarchy Graph over existing ones. 

 To know the advantages of Class Hierarchy Graph contraction using this method. 

 To calculate the complexity of algorithms for knowing the cost penalty for constructing Class Hierarchy 

Graph. 

 

II. RTTI (Runtime Type Identification) InStatically Typed Object- Oriented Languages: 

 
 RTTI provides some information about the object at the run time such as name of its type. RTTI can be 

applied to simple data types such integers, charactersetc. as well to the generic objects.RTTI in C++ and Java is 

the implementation of some more generic concept called Reflection or more specifically Type-Introspection. In 

the original design of C++ BajarneStroustrip does not include the RTTI as a part of it because he thought that 

this mechanism is frequently misused [14]. In contrast the java has better RTTI system making possible to 

declare properties for accessing the objects and the language implements persistency. Almost all the   C++ 

compilershave now RTTI support with them. Standard C++ has typeid() operator for getting the type 

information. The arguments of typeid() operator is an expression which can be a reference or a pointer of an 

object or a type name. It returns a constant reference to a type_info object containing some information about 

the type of an object. The pure object-oriented languages like JAVA have a more advanced RTTI system with 
them. Typically there are two situations when RTTI mechanism is used in JAVA, first is the downcasting to a 

child class and second is the checking the type of an object with the help of anInstanceof operator. 

 

III. Class Hierarchy Graph (CHG)  and the related works 

 
In the history of analysis and optimization of statically typed object-oriented languages three main 

algorithms have been published in the literature, Unique Name [12] Class Hierarchy Analysis [13] and Rapid 

Type analysis [5]. The Unique Name algorithm performs the analysis at the linking time of the program. But both 

Class Hierarchy Analysis and Rapid Type analysis algorithm uses class CHG as the basic building block for 

performing analysis. The main motivation of all the algorithms is to resolve the virtual function calls. The 

Unique Name (UN) was the first published study of virtual function calls by Calder and Gurnwald 1994 [12]. 

They attempted to optimize the C++ programs at link time, and were confined to the information available in 

object files. The Class Hierarchy Analysis (CHA) uses both statically declared typed of an object and the class 

hierarchy of the program to determine the target virtual function calls in a program .Rapid Type Analysis (RTA) 

starts with a call graph generated by performing Class Hierarchy Analysis it uses information about instantiated 

class to further reduce the set of executable virtual functions, thereby reducing the size of call graph [5].there are 

many other algorithms that are related to this work, for example the  Variable Type Analysis (VTA) that is a 

recent work applicable in java. The above mentioned algorithms are the basic and are the corner stone of many 
other such works. 

 

IV. De-virtualization of Virtual Function Calls 

 
 Function De-virtualization is the technique of replacing the virtual function calls by direct calls. The 

primary focus in optimization of statically typed object-oriented languages is the function De-virtualization. 
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Virtual function calls are implemented by using the virtual tables and the virtual table pointers. They potentially 

increase the overhead of calling mechanism and further prevents any form of inlining that could have been 

possible at the call site. A single virtual function call cost a little complexity but when it is called inside a loop 

can degrade the performance logarithmically. Consider the following code in listing 2. 

Class L { 

Public: L () { }; 
~L ()   { }; 

Virtual void get () { …some_code….};  

}; 

Class Q: public L { 

Public:  

B () { }; 

~ B () { }; 

} 

Void foo (void) 

{ 

 Q q, *bptr; 

bptr = &b; 
bptr -> get ();   

} 

Listing 2: simple set of class definition in C++ 

 In the listing 2 it is clear the function call to get(), actually calls to the get function of class L. such 

virtual function calls are usually implemented by Virtual Tables and Virtual Pointers, which increases the 

significant and reduces the inlining chances at the call site. This virtual call to get() method can possibly be 

replaced by a direct function call to get() method in class L in the fallowing manner. 

bptrt ->L::get (); 

 At static time automatic De-virtualization in a compiler the knowledge of class hierarchy is required 

i.e. to know which subclasses have virtual factions that override those declared in their baseclasses/supercalsses. 

For instance in Listing 1 the call to get() method can have the way L::get() by analyzing that Q does not override 
the virtual method get() defined in its baseclass L.  This is known as “Class Hierarchy Analysis” (CHA).The 

basic data structure in the CHA is the Class Hierarchy Graph. 

V. Considerations in building CHG using RTTI 

 
 The complexity of building the CHG depends on the visibility of the class definitions. If all the class 

definitions are visible for example if they are present in a single file, then building CHG is straightforward. 

However, if the base classes and the subclasses are in different files and CHG is needed to be constructed makes 
the situation complex. In such cases the compiler depends up the features whereby all the compilation units are 

readily perceptible. For instance the HP and Intel compilers with the option–ipo or +04 or +OWhole-

programe_modefor a host of others. Consider the following code segment in listing 3: 

#include <file1.h> 

Void DoAction(L *ptr) 

{ 

DoOtherAction (ptr->get ()} ; 

<file file1.Cp> 

Class L { 

Public:  

L () { };  
~L () { }; 

Virtual void get () { 

… some_code….}; 

}; 

<file file2.Cp> 

# include <file1.h> 

Class Q: public L { 

Public: 

Q() { }; 

~Q() { }; 

Virtual voidget() { 

…. Some_code….}; 
}; 
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Listing 3: C++ class definitions with overridden virtual function get () and are supposed to be in different files. 

 In above we have two classes L and Q put in two separate files. We assume that the class L is defined in file1.h 

and the derived Class Q is in file2.cp. The file1.cp have a function DoAction() as well. Since the class Q 

overrides the method get () of class L the CHG of above lsiting3 will be as fallows. 

 

 

 
Fig 2: CHG for listing 3. 

 

 Since it would be impossible to statistically infer from CHG that the call toptr ->get () in DoAction() 

can be replaced by ptr -> L::get() as the objects of either  class L or Class Q can be passes as actual parameters 

to the DoAction(). If an object of Class Q is passed as parameter and the call is replaced by ptr -> L::get () then 

it will result some incorrect code. These types of virtual function callinvocations are also De-virtualized by 

using a technique called dynamic De-virtualization.  

 

VI. Building Class Hierarchy Graph (CHG) 
Building Class Hierarchy Graph is a straight forward process once all the required information to build 

it is available. Building CHG using RTTI needs to keep track of some static structures like Virtual Tables, 

Virtual pointers, Class Tables, typeid structures etc. Generally the C++ front end compiler doesn’t emit any 

information to code out class hierarchy. Since most of the compilers support RTTI, and to support RTTI C++ 

front end produces the type structure of the classes that uses virtual functions. This information generated is 

encoded in the form of intermediate code generated by a C++ compiler. When optimizer checks this 

intermediate code, it decodes and constructs the Class Hierarchy Graph from the type structure generated to 

supportthe RTTI. Since every class that makes use of virtual functions (or a class that is derived from a class 
which has virtual functions in it) is given a secret data member in the form of a virtual table. Thesetup of this 

virtual table is done by the compiler at compile time. For each virtual function that may be called by the object 

of the class, there is an entry as a function pointer in the virtual table. For pure virtual functions in ABC the 

virtual table stores NULL pointers. Virtual Table is also created for classes that have virtual base classes. In 

such cases, the virtual Table has a pointer to the shared instance of the base class in addition to the pointers to 

the class’s virtual functions. Another important static structure is the Virtual Table Pointer or _Vptr.The Virtual 

Table pointer or _Vptr, is a hidden pointer that is added by the Compiler to the baseclass. The main purpose of 

the Virtual Pointer is that it points to the Virtual Table of the class. The _Vptr is transparently stored by each 

object of the class with virtual functions. By following this hidden   _Vptr the call to a virtual function by an 

object can be resolved. There may be multiple Vtable (Vitual Table) static structures for multiple or virtual 

inheritance. For class L in listing 1 there is a static structure named e.g.<Vtble_L> that is created. The 
<Vtble_L> consists a number of different fields. Thetypeid structure is pointed by one its field pointers. And 

one of the fields of <Vtble_L> also points to the get () function. The internal class representation of the listing 1 

may look like as shown in fig 4. 

 

 
Fig 4: Vtable, typeid and Base-class structure for listing 1. 
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 On analyzing the Virtual Tables, we can find some useful information there. The most important are 

the static variables of type <Vtble_L>. By checking theseVtable static variables we can deduce the name of 

classes and of those virtual functions which are visible in these classes. Hence the class nodes of fig 2 and the 

virtual functions visible within them can be constructed. Since the supercalss/subclass relationship information 

is not present in Vtable. So the edges of the CHG can’t be inserted from information available in Viable. For 
inserting the derivation edges in the CHG, we have to depend on the typeid structures which are constructed for 

each class and we should note that Vtable points to typeid structure as well. The typeid structure contains the 

type information of the class and is used for C++ calls likedymaic_cast, typeidetc. This information can be 

adopted to extract the supercalss-subclass hierarchy. One of the fields in typeid structure points to the Basecalss 

Tables. The Baseclass Table is nothing but an array of pointers that points directly to the typeid structures of the 

superclass (typeid structure of the superclass of that class which is under consideration) shown in fig 4. 

From fig4 we can infer how the derivation edges can be inserted in the CHG. It is clear that Vtable, typeid and 

BasecalssTables encode the class hierarchy information. It is apparent in the fig 4 that Base Table of class Q 

points to the typeid structure of class L, which means that the class L is the basecalss of the class Q. the 

derivation edge from node L to node Q in fig 2 can now be inserted using this information. Considering the 

above facts the algorithm for building CHG is as fallows. 

 
1. BuildCHG( ) { 

2. For each Vtable (vt) created in a file do { 

3. Create a node (nod) for vt if not already created; 

4. Add all virtual functions (vrf) that can access though vtr to nod; 

5. Say tid = typid of vtr; 

6. For each basecalss (bc) of tid do { 

7. Find the hierarchy node (hn) corresponding to bc ; 

8. Add   hn   as a  baseclass of of nod; 

9. Add  nod as  a subclass of hn; 

10. } 

} 
} 

Listing 5: Basic Algorithm to build CHG. 

 In the case of multiple inheritance multiple Vtalbes are created for the same class. In such a case were 

multiple Vtalbes are created for the same class the algorithm in listing 5 becomes slightly complex. Therefore 

algorithm can be modified such that all nodes constructed for the same class can be merged into a single node 

and to maintain derivation edge information accordingly. Consider the following code: 

Class L { 

L ( )  { } 

~L () { } 

Virtual void get () { 

….. some_code…. 

} 
}; 

Class Q { 

Q ( ) { } 

~Q ( ) { } 

 Virtual void get ( ) {  

Some_code }; 

}; 

Class N:public L, public Q { 

{ 

N ( ) { }; 

~N ( ) { }; 
Virtual void get ( ) { 

….some-code…}; 

}; 

Void foo(void) 

{ 

N ob, *bptr; 

bptr = &ob; 

bptr ->get ( ); 
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} 

Listing 6: multiple inheritance in C++. 

 There will be two Vtalbes say <Vtble_N1> and <Vtble_N2> for the class N, and the typeid structure 

say <typeid_N> of class N will be shared by both the Vtables. Since BuildCHG( ) algorithm creates a node for 

each for Vtable hence two nodes separate will be created for <Vtble_N1> and <Vtble_N2>. Both the Vtables 

will contain the same information for the class N therefore created two separate nodes for each <Vtble_N1> and 
<Vtble_N2> will be the wasteful. So it is suggested and understood to merge this type of nodes to create a 

single node. If we apply the above algorithm to the listing 6 it will result the following CHG. 

 
Fig 5: class hierarchy graph of listing 6 after applying CHG algorithm. 

 
 Since an additional node is created for the second Virtual table, this is a wasteful because both the 

Vtables and their corresponding nodes carry the similar information. Therefore it is better to merge these nodes 

for class N. 

 We can make some changes to the algorithm using some basic assumptions to the algorithm in listing 

5. The basic draw back to the algorithm is that is creates the redundant nodes which is a wasteful to keep in 

CHG. To overcome node redundancy problem we can make use of method signatures to identify the nodes with 

similar information. Once the nodes with similar information are identified it will be easy to merge them into 

single node. The following listing shows such an algorithm for building CHG without node redundancy. 

1. BuildCHG( ) { 

2. Set i=0; 

3. for each Vtable (vt) created in a file do { 

4. Create a node (nod) for vt if not already created; 
5. Assign NodNumber(i) to nod; 

6. Add all virtual functions (vrf) that can be accessedthoughvtr to nod; 

7. Say tid = typeid of vt; 

8. for each basecalss (bc) of tid do { 

9. Find the hierarchy node (hn) corresponding to bc; 

10. If not found go to step 3; 

11. for each function vrf in nod and vrp in previous node do{ 

12. If sig(vrfp)= sig(vrfn) // vrfp and vrfn are virtual functions in previous node and new node respectively 

13. If bases(nod)=bases(NodP) 

14. MergeNodes(nodP,nod);// nodp is previous node with NodeNumber(i-1) 

15. Else  
16. Add   hn   as a  baseclass of of nod; 

17. Add  nod as  a subclass of hn; 

18. } 

19. } 

20. } 

21. } 

 

Listing 7: Modified algorithm to build CHG. 

  The algorithm in listing7 assigns a Node Number using NodeNumber (i) function to every node in 

Class Hierarchy Graph. This Node Number will help to locate the previous Nodes in Class Hierarchy Graph. If 

the class hierarchy node (hn) is found corresponding to the baseclass (bc) the algorithm starts comparing the 
function signature in the new node (nod) and previous node (nodP) we assume that each function signature 

assigned a unique number. In addition to function signatures we compare the baseclasses of current and previous 

nodes to make sure they are identical and are worth to be merged. Then we begin to merge the nodes using 

MergeNode(nodP,nod) function otherwise we simply add the node to the CHG. If we apply this algorithm to the 

code in listing 6 we will get the CHG in fig 6. 
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VII. What happens when RTTI is disabled: 
 Some compilers have the facility to disable the RTTI, for example compilers such as g++ have the 
support for the options like –fno-rtti for instance to deactivate the RTTI information for the code that will not 

use RTTI functionally. In such cases when the code is known not use RTTI functionally, the compiler still has 

the ability to generate the RTTI information for optimizer. But, the proceeding passes of the optimizer can 

destroy the RTTI information after De-virtualization had been put into action. The final executable will not 

contain thenRTTI information as expected from a –fno-rrti option. 

 

VIII. Complexity of the algorithm 
 The main purpose of this article is not the study thecomplexityofalgorithms in detail but still we can 

analyze the worst-case time complexity of the BuidCHG () algorithm. Let’s use the notation O(X) instead of O 
(| X|), this type of notation is used by Bacon D.F [5] for notational simplicity.  For worst-case complexity let’s 

assume that sets and mappings data structures are implemented with data structures data allows insert and delete 

operations to be performed in O(log n)  time, were n is the size of set.  

 The if statements in the line number 12 and 14 in the inner most loop compares the function signatures 

and base class of two adjacent nodes. This can be done in constant time because the function signatures too are 

represented by unique numbers as we have assumed in the algorithm. However if the total number of functions 

are (TF) then time complexity of building unique signatures will be O (TFlogTF). The number of virtual 

functions in a node is the upper bound to the inner most for loop at line number 11 thus operations within this 

loop can be performed at the cost of O(log nvrf) were (nvfr)is the total number of virtual functions in a node.  

The for loop at line number 8 explores the base classes pointed by typeid, hence the maximum number of 

iterations performed will be the number of base classes that a typeid points to, hence the worst-case complexity 
will O(log nbc) were (nbc) will be the number of base classes pointed by a typeid. The upper most for loop is to 

explore the each Vtable. Since the number of Vtalbes provides the upper bound to the number of iterations 

performed. If denote the the total number of Vtables by N(Vtables) then total number of steps in the algorithm 

can be expressed as 

O(∑ N(Vtables) nbc log nbc)) 

To observe we use maximum number of Vtables 

ϵ=max |N(Vtables)| 

 And the maximum number of base classes pointed by the typeid of Vtableβ=max|nbc|  

Then we can re-write the worst-case running time expression as  

O(∑ϵβlogβ) 

This is equal to 

O(Cϵβlogβ)were C is the set of Vtables. 
 

IX. Conclusion 
 In this article we presented methodfor constructing the CHG that uses information emitted by the C++ 

compiler for RTTI. This method has several advantages over the existing ones.The main advantages are that the 

front end of C++ compiler needs not to generate any extra information for constructing Class Hierarchy Graph 

in the optimizer. The informationthat is generated for RTTI is reused for construction of CHG. The RTTI 

information is maintained by most C++ compilers, as this method has ability to provide a global mechanism for 

constructing CHG. it is always good to carry de-virtualizations at a late phase, this method can be put into use 

bypostlink-time optimizersor tools that checksobject code, so as to enable such tools or optimizers to perform 
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the De-virtualization at a very late phase. This method canefficiently be used to carve out the CHG from the 

executable/object files, and for this we do not have to depend and any addition information. Since this algorithm 

is generic enough, so other compilers can easily adopt it as well. 
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