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Abstract: This tutorial paper reviews the basics of error correcting codes like linear block codes and LDPC. 

The error correcting codes which are also known as channel codes enable to recover the original message from 

the message that has been corrupted by the noisy channel. These block codes can be graphically represented by 

factor graphs. We mention the link between factor graphs, graphical models like Bayesian networks, channel 

coding and compressive sensing. In this paper, we discuss an iterative decoding algorithm called Message 

Passing Algorithm that operates in factor graph, and compute the marginal function associated with the global 

function of the variables. This global function is factorized into many simple local functions which are defined 

by parity check matrix of the code. We also discuss the role of Message Passing Algorithm in Compressive 

Sensing reconstruction of sparse signal. 

Index Terms—Linear block code, factor graph, LDPC, Bayesian networks, belief propogation, Message 

passing algorithm, sum product algorithm, Compressive sensing. 

 

I. Introduction 

This paper provides tutorial introduction to linear block codes, factor graph, Bayesian network and 

message passing algorithm. In coding theory, to enable reliable delivery of bit stream from its source to sink 
over noisy communication channel error correcting codes like linear block codes and LDPC are introduced. 

While the message is sent from source to sink, error is introduced by the noisy channel. Error correcting 

techniques help us to recover the original data from the distorted one. These error correcting codes are 

graphically represented using factor graphs and an iterative decoding algorithm for the same is developed. 

Message passing algorithm which is an iterative decoding algorithm factorizes the global function of 

many variables into product of simpler local functions, whose arguments are the subset of variables. In order to 

visualize this factorization we use factor graph. Here we discuss the message passing algorithm, called the sum 

product algorithm. This sum product algorithm operates in a factor graph and compute various marginal 

function associated with global function.  

Then we link factor graphs with graphical models like Bayesian (belief) networks. Bayesian networks 

show the factorization of joint distribution function (JDF) of several random variables. MacKay and Neal, was 

the first to connect Pearl‟s ‟Belief Propagation‟ algorithm with coding. In message passing algorithm the 
messages passed along the edges in the factor graph are probabilities or beliefs. 

In this paper we tried to unify the work [9], [10],[11],[5],[7],[17].In Section II, we review the 

fundamentals of binary linear block codes, factor graphs and LDPC. Graphical models like Bayesian networks 

are developed as a key to iterative decoding algorithm in Section III. In Section IV we discuss the message 

passing algorithm which decodes the original data from the distorted data. Section V discuss the probability 

domain version of sum product algorithm. Section VI discuss the role of Message Passing Algorithm in 

Compressive sensing reconstruction of sparse signal. Approximate Message Passing(AMP)algorithm for 

compressive sensing was recently developed by David L. Donoho,Arian Maleki and Andrea Montanaria in 

[17].In section VII we conclude. 

 

II. Binary Linear Block Codes 

Linear block codes are conceptually simple codes that are basically an extension of single-bit parity 

check codes for error detection. 

In channel encoder a block of k message bits is encoded into a block of n bits by adding ( )n k

number of check bits. These ( )n k  number of check bits are derived from k  information bits. Clearly n k  

and such a code is called ( , )n k block code. A ( , )n k block code is said to be a ( , )n k  linear block code if it 

satisfies the condition that any linear combination of codeword is still a codeword. A ( , )n k  binary linear block 

code is a finite set 2

nC F of codewords x . Each codeword is binary with length n .C contains 2k
codewords. 

An ( , )n k block code C  is a mapping between a k -bit message vector u  
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1 2[ , ,...., ]ku u u u
                                                                      (1) 

and an n  length codeword vector x  

   1 2=[ , ,...., ]nx x x x
                                                                         (2) 

The code C  can also be viewed as the mapping of k -space to n -space by a k n  generator matrix G which 

is given by: 

G
( )[ | ]k k n k k nI P                                                                         (3) 

Where 
kI  is the identity matrix of order k and P   is the parity matrix. 

The generator matrix is a compact description of how codewords are generated from information bits in a linear 
block code. 

x u G                                                                                 (4) 

The row of generator matrix constitutes a basis of the code subspace. 

 

A. Parity Check Matrix 

Every linear subspace of dimension k  has an orthogonal linear subspace C
 of dimension ( )n k

such that for all x C  and 'x C , we have , ' 0x x  . ThisC
 is dual code to C . This dual code also has 

a basis, which is called the parity check matrix is given by 

( ) ( )[ | ]T

n k k n k n k nH P I    
                                                               (5) 

   Since we have , ' 0x x   for all x C  and 'x C , it must be the case that for all x C , we have 

 10mH x x C   
                                                                  (6) 

and so we have 

0TH G                                                                              (7) 

The matrix H  is called the parity check matrix of the code C  and has the property that a word x  is in 

the code if and only if x  is orthogonal to every row of H . The matrix H  is called the parity check matrix 

because every row induces a parity check on the codeword. i.e., the elements of the row that are equal to1  

define a subset of the code bits that must have even parity. 
 

B. Factor Graphs 

Factor graph is a generalization of a ”Tanner graph”. In coding theory, tanner graph is a bipartite graph 

which means that there are two kinds of nodes and the same kind of nodes are never connected directly with an 

edge. In probabilistic theory, factor graph is a particular type of graphical model, with applications in Bayesian 

inference, that enables efficient computation of marginal distributions through the sum-product algorithm. 

   Factor graphs are partitioned into variable nodes and check nodes. For linear block codes, the check nodes 

denote rows of the parity-check matrix H  . The variable nodes represent the columns of the matrix H . An edge 

connects a variable node to a check node if a nonzero entry exists in the intersection of the corresponding row 

and column. From this we can deduce that there are m n k  check nodes and n variable nodes [5]. 

Let {1,...., }x n  and {1,...., }c m  be indices for the columns and rows of the m n  parity check 

matrix of the code [5]. L  is a bipartite graph with independent node sets x andc  .We refer to the nodes in x  as 

variable nodes, and the nodes in c as check nodes. All edges in L  have one endpoint in x  and the other in c

.Generally, use i to denote variable nodes, and j to denote parity checks. jV , is the set of variable nodes i that 

are incident to j in L .Similarly, iC  is the set of check nodes incident to a particular variable node i  in L . 

 

Let us take (6, 2) hamming code example [14]: 

Consider 

0 1 1 0 0 0

1 1 0 1 0 0

1 0 0 0 1 0

0 1 0 0 0 1

H

 
 
 
 
 
   

and for any valid codeword x . 
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    

 
    

This expression serves as the starting point for constructing the decoder. The matrix/vector 

multiplication in above equation defines a set of parity check equation: 

 

2 3

1 2 4

1 5

2 6

( ) : 0

( ) : 0

( ) : 0

( ) : 0

chk A x x

chk B x x x
H x

chk C x x

chk D x x

  
 

   
   

  
     

In figure. 1, the factor graph has 4 check nodes, 6 variable nodes, for example, there is an edge 

between each variables
1x , 

3x  and check node A . 

A cycle of length1 in a factor graph is a path of 1  distinct edges which closes on itself. The girth of a 
factor graph is the minimum cycle length of the graph. 

 

 
 

Figure 1: Factor graph corresponding to above parity check matrix 

 

C. Low Density Parity Check Codes 

In information theory, a low-density parity-check (LDPC) code is a linear error correcting code, a 
method of transmitting a message over a noisy transmission channel, and decoded using a sparse bipartite graph. 

The name comes from the characteristic of their parity-check matrix which contains only a few number 

of 1's  in comparison to the amount of 0's .  

LDPC code is similar to any other block code except for the requirement that H   must be sparse [4]. 
Indeed existing block codes can be successfully used with the LDPC iterative decoding algorithms if they can be 

represented by a sparse parity-check matrix. Finding a sparse parity-check matrix for an existing code is 

impractical. So inorder to design LDPC codes a sparse parity-check matrix is constructed first and a generator 

matrix for the code is determined afterwards. 

The biggest difference between LDPC codes and classical block codes is the way they are decoded [4]. 

Classical block codes are generally decoded with Maximum Likelihood like decoding. LDPC codes however are 

decoded iteratively using a graphical representation of their parity-check matrix. 

 

III. Graphical Code Model As A Key To 

Iterative Decoding 
Graphical models not only help us to describe Low Density Parity Check (LDPC) codes, but also help 

us to derive iterative decoding algorithms like Message Passing Algorithms [9]. Message Passing Algorithm is a 

kind of probability propagation algorithm that operates in the graphical model of the code. MacKay and Neal, 

was the first to connect Pearl‟s „Belief Propagation‟ algorithm with coding. Here we will discuss graphical 

models like Bayesian Networks. In the factor graph the messages sent across the edges are probability or beliefs 

which can be used to compute the conditional probability of a message symbol x  given the observed channel 

output y  which is the a posteriori probability ( ( | )p x y ). 

Given a set 1 2{ , ,...., }nX x x x  of random variables with joint probability distribution 1 2{ , ,...., }np x x x and 

graphical model attempts to express factorization of this distribution as a product of local functions(conditional 

probabilities) involving various subsets of random variables. 
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Given a directed graph ( , )L V E  , let the parents ( )N x  of vertex x  be  connected to x  through directed 

edges, where ( )N x X .For a Bayesian Network , the joint probability distribution can be written as  

1 2

1

( , ,...., ) ( | ( ))
n

n i i

i

p x x x p x N x



                                         (8) 

If  ix  has no parents i.e. ( )iN x  , then ( | ) ( )i ip x p x  . 

Bayesian Network can be used to describe any distribution, by the chain rule of probability we can write the 

joint probability distribution as  

1 2 1 1 2 2 1 3 3 1 2

1 2 1

( , ,...., ) ( ) ( | ) ( | , )

                            ...... ( | , ,...., )

n

n n n

p x x x p x p x x p x x x

p x x x x 



                            (9) 

Since the last factor 1 2 1( | , ,...., )n n np x x x x  contains all n variables just like the full joint 

distribution, which makes the computation complex. 

 
 

Figure 2: Example taken from [9] Bayesian Network for the (7, 4) Hamming 

code 

 

For instance consider a Bayesian Network for the Hamming code as shown in figure 2.The joint 

distribution using parent-child relationship is  

1 2 7 1 1 2 2 3 3 4 4

5 5 1 2 3 6 6 1 2 4

7 7 1 3 4

( , , ...., ) ( ) ( ) ( ) ( )

                            ( | , , ) ( | , , )

                            ( | , , )

p x x x p x p x p x p x

p x x x x p x x x x

p x x x x



                              (10) 

The first four factors have no parents, so it expresses the prior probabilities of 1 2 3 4, ,  and x x x x , and 

the last three factors express the conditional probabilities that capture the parity checks. Parity check equation is 

satisfied if the parent and child have even parity, i.e. 6 6 1 2 4( | , , )p x x x x satisfies the parity check equation if 

1 2 4 6, , ,x x x x have even number of ones. Factor graph for (7,4) Hamming code in Figure 3. 

 

 
 

Figure 3: Factor graph for (7,4) Hamming code 

 

Since the Bayesian network is a directed graph, the arrows help us to determine how each variable are 

influenced by other variables. 

Elementary operations in a Bayesian Network involve conditioning and marginalization [12]. Conditioning 

involves the notion “What if y were known” 

( ) ( | ) ( ) conditioningp x y p x y p y 
                             (11) 

for events x  and y . Marginalization involves the notion “not wanting to know about”, i.e. Marginal 

distribution is obtained by marginalizing over the distribution of the variables being discarded, and the discarded 
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variables are said to have been marginalized out. Suppose if we want to compute the Marginal distribution [10] 

for the joint probability distribution 
1 2 3 7{ , , ...., }p x x x x  with respect to each variable

ix  

   
{ },

( ) ( ),          1,....
j

i

x j i

p x p x i n


 
                                    (12) 

For example to compute the marginal we have from above equation 

                                    2 3 4 5 6 7

1 1 2 3 4 5 6 7( ) ( , , , , , , )
x x x x x x

p x p x x x x x x x
                   (13) 

For marginalization we convert the global function ( )p x  into product of many local functions. i.e. JDF allows 

the factorization of the form  

1

( ) ( )
m

a a

a

p x p x



                                                               (14) 

Consider the example from [8] .Let 
1 2 3 4 5( , , , , )p x x x x x be a global function which can factorized as  

2

3 4

5

1 2 3 4 5 1 1 2 2

3 1 2 3 4 3 4

5 3 5

( , , , , ) ( ) ( )

                                ( , , ). ( , )

                                ( , )

x

x x

x

p x x x x x p x p x

p x x x p x x

p x x


 



  
  

 

   
   

  



 


 

Factor graph for above equation is shown in figure 4.Factor graph of figure 4 as tree is shown in figure 5. 

 

 
Figure 4: Factor graph for above factorization 

 

 
Figure 5:  Above factor graph as tree 

A. Bayesian Inference 

The application of Baye‟s Theorem to update beliefs is known as Bayesian Inference. Bayesian 

Inference is used to compute the posteriori probability according to Baye‟s rule. 

( | ) ( ) ( | )p x y p x p y x
                                              (15) 

( | )p x y is the posterior probability ,which determines the probability of the transmitted codeword given the 

received codeword. 

( )p x is the prior probability. 

( | )p y x is the likelihood, it shows how compatible is the received codeword x  with the transmitted codeword 

y . The channel likelihood ( | )p y x represents the noise introduced by the channel. 
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IV. Iterative Decoding Algorithm 
The class of decoding algorithm used to decode Linear Block Codes and LDPC codes are termed as 

Message Passing Algorithm (MPA) [4]. The reason for their name is that at each round of the algorithm 

messages are passed from variable nodes to check nodes, and from check nodes back to variable nodes in factor 
graph. The MPA is also known as iterative algorithm as message pass back and forth between the variable node 

and check node iteratively until result is achieved or the process is halted. 

 Different MPA are named for the type of message passed or the type of operation performed at the 

nodes [6]. Important subclass of MPA is Belief Propagation Algorithm where the messages passed along the 

edges are probabilities, or beliefs. More precisely, the message passed from a variable node x   to a check node 

c  is the probability that x has a certain value given the observed value of that variable node, and all the values 

communicated to x  in the prior round from check nodes incident to x  other than c . On the other hand, the 

message passed from c   to x is the probability that x  has a certain value given all the messages passed to c  in 

the previous round from variable nodes other than x . 

 

A. Message Passing Algorithm: 

Assume a binary codeword 1 2( , ,...., )nx x x  is transmitted using binary phase shift keying modulation. 

Then the sequence is transmitted over an additive white Gaussian noise (AWGN) channel and the received 

symbol is 1 2( , ,...., )ny y y .Let y x n   where n is an iid vector of Gaussian random variable where each 

component has variance
2 . We assume that 0ix   is transmitted as  1  and 1ix   is transmitted as 1

.The n code bits must satisfy all parity checks and we will use this fact to compute the posterior probability

( | , )i ip x b S y , {0,1}b and iS is the event that all parity checks associated with ix  have been satisfied 

[5]. 

Prior to decoding, the decoder has the following: a parity check matrix H , bipartite graph, n  channel  

outputs y .Let 
jV  be the set of variable nodes connected to check node ,jc \jV i   be the set of variable node 

connected to check node
jc  excluding variable node .ix iC  be the set of check nodes connected to variable 

node ,ix \iC j  be the set of check node connected to variable node ix  excluding 
jc . (~ )vM i  be the 

message from all  variable nodes except ix . (~ )cM j   be the message from all check nodes except
jc . 

The MPA for the computation of Pr( 1| )ix y  is an iterative algorithm based on factor graph. Let us 

imagine that variable node (v-node) represent processors of one type, check node(c-node) represent processors 

of another type and the edge represent message paths.  

In first half of the iteration each v-node ix  processes its input message received from the channel iy

and passes its resulting output message to neighboring c-node because in first pass there is no incoming message 

from the c-node. Now the c-node has got new input messages and it has to check whether the check equation is 

satisfied. And then passes its resulting output messages to neighboring v-node using the incoming messages 

from all other v- nodes connected to c- node jc  excluding the information from ix . This is shown in figure 

6.The information passed concerns 1Pr(check equation  is satisfied | input messages)c .Note that in the 

figure 6 the information passed to v-node 4x  is all the information available to c-node 1c  from the neighboring 

v-node, excluding v-node 4x . Such extrinsic information is computed for each connected c-node/v-node pair at 

each half iteration. 

 
Figure 6: Sub graph of tanner graph corresponding to row in a H matrix. The arrow indicate message passing 

from c-node 1c  to v-node 4x . 



Message Passing Algorithm: A Tutorial Review 

www.iosrjournals.org                                                                18 | Page 

In the other half iteration, each v-node processes its input message and passes its resulting output 

message to neighboring c-node using channel samples and incoming messages from all other c- nodes connected 

to v- node ix  , excluding check node
jc . This is shown in figure 7.The information passed concerns

1Pr(  | input messages),  {0,1}x b b  .Note that in the figure 7 the information passed to c-node 3c  is all 

the information available to v-node 1x  from the channel sample 1y  and through its neighboring c-nodes, 

excluding c-node 3c .Such extrinsic information is computed for each connected v-node/c-node pair at each half 

iteration. 

 
Figure 7: Sub graph of tanner graph corresponding to column in a H matrix. The arrow indicates message 

passing from v-node 1x  to c-node 3c . 
 

Now the c-node has got new messages from the v-node and it has to check whether the check equation 

is satisfied and passes all the information to v-node. And then every bit in v-node ix  is updated by using the 

channel information and messages from neighboring c-nodes, without excluding any c-node 
jc information. 

After every one complete iteration it will check whether valid codeword is found or not. If the estimated 
codeword is valid then  

ˆ 0H x   

Then the iteration terminate otherwise continue. 

 

V. Probability Domain Spa (Sum Product Algorithm) Decoder 

Let us consider AWGN channel with ix be the 
thi transmitted binary value. Then the 

thi received 

channel sample is i i iy x n  , where in  are independent and normally distributed as
2

(0, )  .Then it is easy to 

show that 
2 1Pr( | ) [1 exp( 2 / )]i ix x y yx     

                                        (17) 

where { 1}x 
.
 For 1,....,i n , find probability iP  such that set Pr( 1| )i i iP x y  .Initially these 

probabilities iP is sent from variable node to check node as ijq i.e. set (0) 1ij iq P  and (1)ij iq P  for all 

,i j  for which 1ijh  . Then update the check nodes and check whether the check equation is satisfied. In order 

to update the variable node message jir is sent from c-node to v-node. 

To develop an expression for ( )jir b , we need the following result [7]. Consider a sequence of m

independent binary digits ix , for which Pr( 1)i ix p  then the probability that 1{ }m
i ix  contains an even 

number of 1's  is   

1 1
(1 2 )

2 2

m

i

l i

p


 
                                                         (18)

 

As a preliminary calculation, suppose two bits satisfy a parity check constraint 1 2 0x x  , and it is 

known that 1 1( 1)p P x  and 2 2( 1)p P x  .Let 1 11q p  and 2 21q p  .Then probability that the 

check is satisfied is 
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1 2 1 2 1 2

1 2 1 2

( 0) (1 )(1 )

                      2 1

                       

P x x p p p p

p p p p

      


    



                                         (19) 

which can be written as 

1 2 1 2 1 1 2 22 ( 0) 1 (1 2 )(1 2 ) ( )( )P x x p p q p q p        

                          (20) 

Now suppose that l  bits satisfy an even parity check constraint

 
1 2 ...... 0lx x x   

                                                             (21)
 

Then for known probabilities 1 2{ , ,..., }lp p p corresponding to the bits 1 2{ , ,..., }.lx x x Generalizing to 

find the probability distribution on the binary sum 1 2 ......l lz x x x   
 

1

2 ( 0) 1 (1 2 )
l

l i

i

P z p


   
                                                       (22) 

Or                                                      

1

1
( 0) (1  ( )

2

l

l i i

i

P z q p


   
                                                   (23)

 

In view of this result, together with the correspondence (1)i ijp q , we have  

'

' \

1 1
(0) (1 2 (1))

2 2
j

ji i j

i V i

r q


  
                                                (24) 

Since, when 0ix  , the bits
'{ : ' \ }i jx i V i must contain an even number of 1's in order for check equation

jc to be satisfied. Clearly,  

(1) 1 (0)ji jir r 
                                                               (25)           

 

Half iteration of message passing for the computation of ( )jir b  is shown in figure 8. 

 

Figure 8: Illustration of message passing half iteration for the computation of ( )jir b
 

Consider the factor graph shown in the figure 9 for the computation of 21( )r b
 

 

Figure 9: Computation of 21( )r b
 

In figure 9 to calculate 21( )r b from 2c to 1x , we consider the all v-nodes connected to 2c excluding 1x i.e. 2x

and 4x  . 
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21 22 42

21 21

1 1
(0) (1 2 (0)) (1 2 (0))

2 2

(1) 1 (0)

r q q

r r

   

 

 

Then we have to update variable nodes by considering the previously calculated ( )jir b  and channel 

sample and develop an expression for ( )ijq b using the following description: APP (a-posterior probability) 

( | , )i ip x b S y can be rewritten using the assumption of code bit independence and Baye‟s rule as 

( | , )  ( | ) ( | , )i i i i i ip x b S y K p y x b p S x b y   
                                (26) 

This equation is derived from Baye‟s theorem: 

( | ) ( | ) ( | )P C BA P A C P B CA
                                                           (27)

 

where K is a constant for both 0,1b  .The first term in equation (26) is 

 

2 1( | 1) [1 exp( 2 / )]

        

   Likelihood

i i ip y x P yx      



                                            (28)

 

The second term in equation (26) is the probability that all parity checks connected to ix are satisfied 

given y and ix b . 0 1{ , ,..... }i i i miS S S S is a collection of events where 
jiS is the event that 

thj  parity node 

connected to ix is satisfied. Again by independence of code bits 1( ,...., )nx x this can be written as: 

0 1( | , ) ( , ,..... | , )

                       ( | , )
i

i i i i mi i

ji i

j C

p S x b y p S S S x b y

p S x b y


  

                                                       (29)

 

where ( | , )ji ip S x b y is the probability that the 
thj  parity check connected to the bit ix is satisfied 

given ix b and y .If 0b  this the probability that the code bits other than ix connected to the 
thj  parity 

check have an even number of 1's .If 1b   the other code bits must have odd parity. 

'

' \

1 1
( | 0, ) (0) (1 2 (1))

2 2
j

ji i ji i j

i V i

p S x y r q


    
                                     (30) 

From equation (26) we can write 

(0) ( 0 | , )ij i iq p x S y 
                                                     (31) 

So equation (26) can be re written as 

   

'

' \

(0) (1 ) ( (0))
i

ij ij i j i

j C j

q K P r


  
                                                 (32)

 

Similarly 

'

' \

(1) ( (1))
i

ij ij i j i

j C j

q K P r


 
                                                   (33)

 

The constants ijK are chosen to ensure that (0) (1) 1ij ijq q 
 

 

Figure 10: Illustration of message passing half iteration for the computation of ( )ijq b
 

Half iteration of message passing for the computation of ( )ijq b  is shown in figure 10. 
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Consider the factor graph shown in the figure 11 for the computation of 
12 ( )q b

 
 

 

Figure 11: Computation of 12 ( )q b
 

 In figure 11 to calculate 12 ( )q b from 
1x to 2c , we consider the information from the channel and from 

the c-nodes connected to 1x excluding 2c i.e. 3c . 

12 12 1 31

12 12 1 31

(0) (1 ) (0)

(1) ( ) (1)

q K P r

q K P r

 


 

In order to fix the value for variable node we calculate ( )iQ b  using the information from the channel 

and from all the check nodes connected to ix . 

(0) (1 ) (0)
i

i i i ji

j C

Q K P r


  
                                                   (34)

 

and 

(1) (1)
i

i i i ji

j C

Q K P r


 
                                                          (35) 

Where the constants iK are chosen to ensure that (0) (1) 1i iQ Q  . 

For 1,2,....,i n ,set  

1 ,   (1) (0)
ˆ

0 ,  

i i

i

if Q Q
x

else


 
                                                           (36) 

If the estimated codeword is valid then, 

ˆ 0TxH                                                                     (37) 
 And the iteration will stop else it will continue iterating till stopping criterion is fulfilled. 

 

A.Probability -domain Sum Product Algorithm: 

1) Compute prior-probabilities for the received vector y  

1 1

0

0 1

[1 exp( 2 / )]

1

i i

i i

P y N

P P

  

 

 

2) Initialization 
0

1

1ij i

ij i

q P

q P

 



 

        For all ,i j for which 1ijh   

3) Iteration 

         For max1:n I do 

4) Horizontal Step (Check node updates) 

          For 1:j m  do 

          For i Vj  do 

0

' \

1 0

11 1
(1 2 )

2 2

1

j

ji

i V i

ji ji

ijr q

r r



  

 


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             end 

             end 

5) Vertical Step (Variable node updates) 

              For 1:i n  do 

               For ij C  do 
0

' \

1

' \

0

1

(1 ) ( )

( )

i

i

ij ij i

j C j

ij ij i

j C j

ji

ji

q K P r

q K P r





 





  

                    The constants
ij

K are chosen to ensure that 0 1 1ij ijq q 
 

                 end  

                 end 

  6) Marginalization 

                        
b

iQ ‟s are updated as 

                  For 1.....i n  do 
0 0

1 1

(1 )
i

i

i i i ji

j C

i i i ji

j C

Q K P r

Q K P r





 





  

                          Where the constants 
i

K are chosen to ensure that
0 1 1i iQ Q  . 

7) Verification 

                  For 1.....i n  do 

                         If 
1 0( )i iQ Q  then ˆ 1ix   

                              else  ˆ 0
i

x   

                                end 

8)   If ˆ 0TxH   or the number of iterations equals the maximum limit,  

                                 stop  
                                 else go to step 4. 

                         end 
 

VI. Compressive Sensing 
Compress sensing concept asserts that a sparse signal can be reconstructed from far fewer samples or 

measurements than that is specified by the Nyquist theorem. This section discusses how Message Passing 

Algorithm in its simplified form is applied to compressive sensing reconstruction. 

Consider a signal 
Nf  , acquired via n -linear measurements, 

                 
, ,     1,.....j jy f j n 

                                                        (38) 

we try to correlate the signal we wish to acquire with the measurement vector
N

j  .CS 

accomplishes reconstruction of an N  dimensional  signal f from n measurements, where n N

.Equation (38) can also be written as matrix product, 

                
y f

                                                                         (39) 

where 
ny  is called the measurement vector and 

n N  is the sensing or measurement matrix 

with vectors 
1 ,...... n  

 stacked as rows. In this undersampled situation, CS relies on the fact that most of the 

signals can be approximated in some convenient basis. We can approximate f with small number of non-zero 

coefficients by finding a suitable orthonormal basis[16].  

Using linear algebraic notations, 
Nf   can be expressed as a linear combination of the basis 

vectors  1 2... N    

   1

N

i i

i

f x



                                                                        (40) 
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where ,i ix f   are the sparse coefficients of f  in the basis. Equation (40) can be rewritten as a 

matrix product, 

f x 
                                                                          (41) 

where 
Nx  is the vector of coefficients, 

N N  is the matrix with basis vectors 

1 2, ,..., N     as columns. 

The k -sparse approximation of the signal f  is obtained by sorting the coefficients of x  in 

descending order and keeping the largest k  elements, while setting the rest of the elements to zero. 
N

kx 

denotes the vector containing only the largest k  coefficients of x .The approximation 
N

kf   of f  is 

obtained as  

k kf x
                                                                         (42) 

A signal is said to be compressible if the sorted magnitudes of ix  decay quickly. Compressible signals 

can be well approximated such that for k N  the error 
2 2

k kf f x x  
 

is small. CS attempts to 

optimize the acquisition process. Compressive sensing allow us to take small amount ( )n N of linear and 

non-adaptive measurements as in equation (39) 

We recover the signal by determining the sparsest vector 
Nx   that is consistent with the 

measurements y . We get the sparsest solution by solving the Basis Pursuit or 1 -minimization problem.  

1

min   

s.t y , ,   1,....,k k

x

x k n  





                                           (43) 

where 
1

: .i

i

x x
 One sufficient condition for the signal recovery via 1 -minimization is that 

measurement matrix   should satisfy the Restricted Isometry Property (RIP)[11] i.e. it should approximately 

preserve the Euclidean length of k -sparse signals, i.e. 
2 2

2 2

k kx x 
 

. 

A random measurement matrix , efficiently captures the information of a sparse signal with few 

measurements. Sparse error correcting codes such as LDPC codes recommends the use of sparse compressed 

sensing matrices to encode the signals [18].  

 

A. Message Passing for Compressive Sensing 

Message Passing Algorithm can be applied for compressive sensing reconstruction of sparse signal. 

Consider a CS estimation problem [11] shown in figure.12.Here 
NX  is the vector to be estimated.

nZ is the measurements and 
nY  is the noisy measurements. 

 

 

Figure.12:Generalized CS estimation problem. Here 
NX  is the vector to be estimated.

nZ is the 

measurements and 
nY  is the noisy measurements. 
 

When a random input vector X  with i.i.d. components is transformed by a matrix   , we get the 

measurements Z .These measurements when transmitted over a noisy channel gets corrupted. Here the noise is 

characterized as a channel, which is represented as a conditional probability ( | ).p y z . Goal is to estimate X

from Y  given the matrix , the prior ( )Xp x , and the noise ( | )p y z  [11]. 

To find the posterior distribution i.e. the probability of random vector X given the measurements Y is, 

1 1

( | ) ( ) ( | )
N n

i j j

i j

p x y p x p y z
 

 
                                                      (44) 
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where ( )j jz x  .Estimation of 
ix is possible by the marginalization of ( | )p x y through the 

following Message Passing Algorithm rules. 

1

\

' \

( ) ( ) ( )

( ) ( | ) ( )

i

j

t t

ij i i j i i

j C j

t t

ji i j j ij i

i V i

q x p x r x

r x p y z q x dx
















                                               (45) 

The integration is performed over all the elements of x except 
ix . The probability densities  of the 

messages exchanged via MPA is tracked by density evolution (DE).DE allows to predict the condition for the 
successful decoding. 

In the CS framework X takes value in 
N ,so it is difficult to keep track of probability densities 

across the iterations of MPA.MPA can be simplified through various Gaussian approximations[11].One such 

approximation to MPA is  Approximate Message Passing(AMP) Algorithm[17]. Here we can track the 

evolution of mean square error(MSE) from iteration to iteration through recursive equations called State 

Evolution (SE)[17], which provide reliable estimates of the reconstruction error and  predicts that when it has a 

unique fixed point the AMP algorithm will obtain minimum MSE estimates of the signal[11].  

In AMP, since the messages exchanged are Gaussian we need to track only the means and variances 

through the factor graph[17]. 

Approximate Message Passing algorithm (AMP) exhibits low computational complexity of iterative 

thresholding algorithms and reconstruction power of the Basis Pursuit. Algorithm starts with 
0 0x  and then 

proceeds according to the following iteration, 
1 ( ),t t t

t

a

x A z x  
                                                              (46) 

1 1 1

1

1
( )t t t t t

tz y Ax z A z x


   


   

                                                (47) 

where t is the soft thresholding function , 
t Nx   is the current estimate. 

t nz  is the residual.

A
 is the transpose of the matrix A . 

It is similar to iterative thresholding algorithm which is given by 
1 ( )                                   

                                              

t t t

t

t t

x A z x

z y Ax

  

 

                               (48) 

  The only difference is the second term included in  the right hand side of the equation (47). 
 

VII. Conclusion 
In this paper, we tried to unify various papers associated with message passing algorithm. We have 

reviewed the fundamentals of error correcting codes, factor graphs, Bayesian networks, sum-product algorithm 

and compressive sensing. Here the joint distribution function is factorized as a product of local functions and 

then marginalized by message passing algorithm. Bayesian Inference is used to compute the posterior 

probability for channel decoding. Then we have the probability domain version of sum product algorithm that 

computes the a-posteriori probabilities (APPs).We also tried to give a small insight to Approximate Message 

Passing Algorithm which was derived from MPA for compressive sensing reconstruction. 
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