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ABSTRACT: A number of Call Graph construction algorithms have been designed for construction of Call 

Graphs for object-oriented languages. Each of the Call Graph contraction algorithms were proposed to keep in 

mind the improvements over previous Call Graphs in terms of precision, cost and accuracy. In object oriented 

languages the Call Graphs are generally contracted to represent the calling relationship between the program’s 

methods. The Call Graph forms the bases for deducing the information about the classes and the methods that 
are actually invoked, this information can be used to find call sites were virtual function calls can be replaced 

by direct calls and inline-expansions can be put into work where ever possible. In this paper we present an 

empirical comparison of various well known Call Graph construction algorithms. Here we used Scoot bytecode 

reader as front-end to implement various Call Graph construction algorisms. In the processes Scoot bytecode 

reader is used to read the bytecode of a specific java program then the reachable methods are found for each 

invoked method. For storing information about the classes, methods, fields and statements we created our own 

set of data structures.  

Finally we tested and evaluated the developed algorithms with a variety of java benchmark programs 

to gather the information for the comparison of various Call Graph algorithms which is the goal of this work. 

We have included most of the Call Graph algorithms of popularity in this work. The main aim of the work is to 

consider all the dimensions of the Call Graph construction algorithms like cost, precision, memory and time 
requirements for its construction. The previous works has either not included all the algorithms of fame or have 

left some of their construction constraints untouched. This work will bring an effective empirical comparison to 

the front and will help to reveal that which Call Graph construction algorithm is best and when. The results in 

the work are mainly considered valid for java and other statically typed object-oriented languages. 

  

I. INTRODUCTION 
The Call Graphs are the basic data structures to analyze the calling relationships between program 

methods [1]. A Call Graph is generally a set of directed edges that connects the call sites to their corresponding 

target methods. A Call Graph is a very powerful tool that can be used in a number ways like it can help in 
planning testing strategies, reducing the program size by eliminating the methods that are not invoked, helps 

programmers to understand the nature of larger programs and dubbing etc. depending up on the static or 

dynamic behavior of the program the Call Graphs can be static or dynamic. The dynamic Call Graphs are 

constructed in one run of a program by recording all the target methods. On the other hand a static Call Graph 

represents every possible of a program. Since in a Call Graph a single call site can have multiple target methods 

because the method that is invoked by a specific call site can mainly be determined during run time based on in 

which context the call is made. This is clearly evident in object-oriented languages where the feature like 

inheritance and polymorphism makes the method calls to be very highly dependent on the execution context. 

For getting a set of target methods we can observe a number of executions of a program and a note of all method 

invocations of a call site can be made or we can make a note of such invocations in a single run of a program. 

The dynamic construction of Call Graph tends to under-estimate the number of method invocations by a call site 

and in contrast the static generation of a Call Graph tends to over-estimate it. Theoretically the dynamic Call 
Graphs are not safe and the static Call Graphs are expensive to construct.  

        

II. MOTIVATION AND OBJECTIVES OF THE WORK 
                    In programming world, the Object-Oriented paradigm has gained a wide popularity. Some its 

excited features such dynamic binding, polymorphism and garbage collection are have really made wonders in 

facilitating the programming, but at the same time these features may put adverse effects on program 

performance. In Object-Oriented languages the method call are used very frequently without any concern to 

whether compiler optimization techniques exist or not, and there is a possibility of presence of polymorphic 
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method calls. Therefore developers must consider the preciseness of code. Program analysis helps developers to 

get these problems and movies towards programming languages optimization. 

Whole program analysis also called as Interprocedural Analysis is the analysis of the program source 

code. It is one of the method to enable an optimizing compiler to more precisely model the effects of noninied 

calls, thus enabling it to make less pessimistic assumptions about program behavior and reduce the performance 

impact of noninlined call sites [3]. Interprocedural Analysis produces the summary of the effect if each called 
method at each call site and the summary of effect of each caller at each procedure entry [2]. The 

Interprocedural Analysis not only produces the summary of effects of individual methods but also influence of 

interactions between methods. In general, for Whole Program Analysis Call Graph is one of the important 

prerequisite. A Call Graph acts an information transporter between methods, it can be helpful in eliminating 

virtual method calls, deducing the classes and methods which are never called in program, aliases, strangers and 

singletons as well. Call Graphs also applicable to Software Engineering tools like Eclipse to resolve program 

source code references or as an input to some point-to analysis applications for further analyzing. Call Graphs 

are also used for better understanding of program control flow that in turn increases the human comprehension 

of the program [4]. Call Graphs can also be used for program testing by determining the order of procedures and 

method calls. To conclude we can say that the main application of Call Graph construction is to eliminate the 

dead code by identifying the classes that are never loaded or whose objects are not created methods that are not 

called or the branches that are never used in any program run. It also helps in elimination of polymorphism, 
detection of aliases and strangers and detection of singletons etc. 

In this work we will implement the most well known and recent Call Graph construction algorithms 

like CHA, RTA, CTA, and XTA by using Soot byte code reader for java. We are using soot as a standalone tool 

to implement and test the said algorithms with various Java Benchmark Programs and not as a plug-in to 

Eclipse. 

 

The main tasks need to be accomplished as the primary objective of this work: 

 To implement different Call Graph construction algorithms. 

 Using some combination of small and large Java benchmark programs as input to the Call Graph                      

Construction algorithms. 

 Generate Call Graph for Java benchmark programs. 
 Evaluating general results for different Call Graph construction algorithms. 

 Comparing the Call Graphs generated by different algorithms in terms of preciseness, cost of 

construction, time required and other related parameters. 

 

III. INTRODUCTION TO SOOT FRAMEWORK 
  Soot has been developed by the Sable research group of McGill University, who are mainly engaged 

with developing the tools for better understanding and faster execution of Java programs [5]. One of the best 

advantages of Soot is that it provides four levels of Intermediate Representation (IR) for analysis. All the IR 

levels have different levels of abstractions to offer different benefits at analysis. These for IR levels are Jimple, 
Shimple, Baf and Grimp. Soot can be used as a Plug-in to Eclipse or it can be used as a standalone tool as well. 

Different levels of IR have different uses like Baf is Bytecode representation and is somewhat similar to Java 

bytecode, similarly the jimple is stackless 3-address code useful for most of the analysis tasks. We have used 

jimple for our experimental setup. Jimple is prime Intermediate representations of Soot. Jimple is basically a 

typed 3-address statement based representation. Jimple can be created directly in Soot or it can be created by on 

Java source code or Java bytecode/java class files. To translate the bytecode into jimple new local variables 

need to be introduced for the implicitly stack locations and using subroutine elimination to remove jsr 

instructions. Linearization and naming of expression is of core considerations during the translation because the 

statements can refer only 3 local variables or constants. This represents the more convenient representation for 

optimization. In jimple an analysis has to handle only 15 statements in Jimple representation compared to more 

than 200 possible instructions in Java bytecode. Jimple is a hybrid between Java sourece code and Java 

bytecode. Jimple is the best foundation for most of the analysis works that do not require explicit control flow 
and Static Single Assignment (SSA) form of Shimple. In Soot Jimple Intermediate Representation can be found 

in the Packages like Soot.Jimple, Soot.Jimple.toolkit.* particularly in Soot.Jimple.toolkits.scalar and 

Soot.Jimple.toolkits.annotations.*. 

IV. THE BASICS OF VARIOUS CALL GRAPH ALGORITHMS 
A Call Graph forms the foundation for various analysis works. A call graph in general represents the 

calling relationship among the methods. A Call Graph is a finite rooted directed graph G (V, E) where V is a set 

of nodes and each node representing a method and E is a set of edges and each directed edge e (v, u) represents 

a method call from method v to method u. consider the example1 code and its corresponding Call Graph in fig 

1. It clear from the above figure that each caller method can have set of possible callees in the Call Graph and if 
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there are no invocations in the method body then this set could have a size 0. Call Graph construction algorithms 

differ in complexity, cost, and accuracy. The more complex Call Graph algorithms give more accurate and 

precise Call Graphs. 

 

 

 
 

 

 

The following sub-section gives the brief overview and formal definition of various Call Graph 

Construction algorithms which are in consideration of work of Call Graph comparison. 

 

1. Reachabilty Analysis (RA) 
Reachability Analysis is one the simples Call Graph construction algorithms, in fact it was the first 

algorithm for Call Graph construction. It gives associated with giving a Name-based resolution i.e. it considers 

only the method names and has nothing to do with method signatures. This algorithm suffers from the problem 

of generating largest set of reachable methods in comparison to its counterpart algorithms. The only aim of the 

RA is to compute a set Reachables of all the reachable methods. For formal definition of the algorithm we are 
using the nations somewhat similar to the notation in some previous works for the ease of understanding and 

retaining the tradition of notations. Lets us use s.n() notation for a call site that happens to occur in  method boy 

M.m(), and the notation Edges for a set of calling relationships among methods. 

 

The RA algorithms can be expressed as: 

1. Start analysis and consider the main method and other entry points as Reachables. 

2. For all M.m( ) in Reachables and for each call site s.n( ) such that s.n( ) is an expression of type S inside 

the method body M.m( ) 

 

If any C declares n() such that name (S.n( )= name (C.n( )) 

Reachables = C.n( )  
Edges = (M.m( ), C.n( ) ) 

3. Repeat steps 2 until it reaches the stage were no changes can be made to Reachables. 

 

Reachability Analysis finds all the reachable methods in a program and then adds them to the set of 

reachable methods. The RA does not take into account the method’s parameters and return types, only the 

methods names are used to find the set of reachable methods. In spite of the fact that RA is less precise and very 

conservative algorithm it is still used in some applications like removing unreachable methods in link-time. 

Consider the Example code of Example 1, for this code on applying RA the set Reachable will be as:  

 

Reachable = { Z.main ( ), X.foo ( ) , Y.foo ( ), Z.foo ( )} 

 

The RA is based on fixed-point approach i.e. it keeps of adding the reachable method to the set 
Reachables until there are no previously added methods in Reachables set to be processed and more changes 

take place in Reachables. 

 

2. Class Hierarchy analysis (CHA) 
CHA is an extended version of RA; it takes Class Hierarchy information into account and gives more 

precise results than simple RA algorithm. Since CHA implementation requires Class hierarchy information 

hence class hierarchy of whole programe must be available before running the CHA algorithm. Like RA the 

result of the CHA is also a set of Reachable method, since CHA is more precise than RA so the set of 

Reachables in CHA is smaller than that generated by RA and for each call site in the program, this set of 

reachable methods decrease. Notations that we require to describe the CHA in addition to that of RA are:  type 

(b) as static type of B, subtypes(type (b)) as the set of sub-types(subclasses) of type(b) including B itself .Like  
 

RA CHA also follows the fixed-point approach and can be described as follows: 

1. Start analysis 

2. For each method M.m( ) in the set Reachables and for each call site S.n() where S.n ( ) is an expression 

of type B inside method body M.m( ); 

For each class C belongs to subyptes( types(b)) 

If any class C decleares n ( ) such that Signature ( B.n ( )=signature (C.n( ) ) 

a. Reachables= C. ( ); 
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b. Edges= (M.m (), C.n()); 

3. Repeat the step 2 until it reaches to the point where no more changes occur to the set Reachables. 

 

The example 2 will shows an example code fragment and the corresponding set Reachables: 

Example 2:      

 
Class X { 

foo(…){………} 

foo_circle(……..){…..} 

} 

 

Class Y extends A{   

 

 foo(…) {…………..} 

foo_tringle(……){……….}  

 

} 

Class Z { 
Z z= new Z(); 

foo(….) {………} 

} 

Class XYZ{ 

Void main(……….){ 

X x=new X( ); 

x.foo(); 

}}      

Reachables = {XYZ.main( ),X.foo(),Y.foo()} 

 

Here the set Reachables clearly smaller than the one we see in case of RA. 
 

3. Rapid Type Analysis (RTA) 
This algorithm was an improvement over the CHA. It takes the class-instantiation information into 

account for computation of Reachable methods a compared to that of only method names in simple RA and 

method names and method signatures in CHA. In addition to that of Class Hierarchy Information the RTA also 

considers the whole program’s class-instantiation details as well. To limit the set of Reachable methods another 

set instantiated classes are used. For RTA algorithm we will use the notation IC for the set of cases that were 

instantiated in the program. The RTA too based on the fixed-point approach. 

 

The RTA can be defined as follows: 

1. Start analysis 

2. For each method M.m() is set of Reachables  and for each constructor Call site new C( ) inside method 
body M.m( ) 

If M.m() is in Reachables   

C is in    IC//IC is for instantiated classes 

3. For each methods M.m ( ) in Reachabels  and for each call site S.n( ) inside method body M.M ( ) 

For each class C belongs subtypes (type(b)) 

If any C declares n( )such that signature (B.())= signature (C. n()) and C belongs to IC 

 

a. add C.n ( ) to Reachables; 

b. add (M.m ( ), C.n () ) to Edges; 

4. Repeat the step 2 and 3 until it reaches to a fixed-point stage. 

 
For the code of example 2 after applying the RTA the Reachables and IC set will be as: 

 

Reachables= { XYZ.main( ), X.foo()}, 

IC= {X, Z}; 

 

4. Class Type Analysis (CTA):  

                 Since the preciseness call graph generated by any algorithm depends upon the number of sets it 

compute. Basically the results generated by any Call Graph construction algorithm is approximated by the 
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number of sets it generate for the program that is why each part of the program like classes methods and other 

entities of the program are associated with a set. The more number of sets an algorithm use the more precise call 

graph will it generate. As we has seen in above section that RA and CHA does not use any sets to compute their 

results, RTA uses one set instantiated classes  to restrict  the number of reachable methods and compute more 

precise call graphs. However the additional overhead that an algorithm must incorporate in order to compute 

these sets can be neglected.   
CTA algorithm connects each class X with a set called Contain (X) to impose a restriction on set of 

possible call targets. This set is supposed to contain the object types that can be found inside the class X. 

basically it contains the Class X itself, all its supertypes, types that are carried by method calls such as return 

types and types which are created inside. For the formal definition of CTA the notations required are 

Contains(X) a set that keeps track of the contained classes of class X, Supertypes(X) as set of all subtypes 

(superclasses) of X. F as the static type of field of f, subtypes(F) as the set of all subtypes(subclasses) of F, 

ParamererTypes( X.m( )) for the set of static types of parameters of method X.m ( ) and ReturnType (St.n()) as 

the set of static return type of method St.n ( ). 

 

Formally the CTA can be written as: 

 

1. Start analysis 
 

2. For each method X.m() in Reachables 

M belongs to Contains (X) 

Supertypes(X) belongs to Contains (X) 

for each constructor call site new  B( ) inside method body X.m(); 

B belongs to   Contain(X) 

For each X.m( ) inside Class X targeting St.n(); 

Subtypes ( ReturnType (St.n())) belongs to Contain (X) 

For each externally called method X.m() in Class X; 

Subtypes (ParamaterType(X.m( ))) belongs to Contain (X) 

For each field f that declared in Class X 
Subtypes (F) belongs to Contain (X) 

 

3. for each method X.m( ) in Reachables and for each call site S.n( ) inside method body X.m( ); 

for each Class C belongs to subtypes (types (b)) 

if any C declares n( ) such that signature( B.n())= signature ( C.n() )and  

C belongs to Contain (X) 

Add C.n ( ) to Reachables; 

Add (X.m ( ), C.n( ) to Edges; 

 

4. Repeat the step 2 and 3 until it reaches a point where no more changes can occur to the set Reachables. 

It can be observed from the above formal definition that CTA is basically a bi-phased procedure. The 

first phase is called the Data flow phase and the second phase is called the Class Graph construction phase. In 
Data flow phase a set Contains (X) is constructed for each class X. this set includes the Class X, all its subtypes 

and all classes allocated within Class X. in second phase, CTA constructs the Call Graph as per the Data flow 

phase that puts a sort of restriction on the set of reachable methods and generation of more accurate Call Graph. 

 

5. Separate Type Analysis XTA: 
                        XTA is a new comer and one of most focused Call Graph construction algorithms. As mentioned 

above the preciseness of call graph generated by any call graph algorithm depends upon the number of sets it 

uses for construction of the call graph. There is a cost penalty for maintaining more sets by a Call Graph 

construction algorithm, but at the same time the preciseness of the Call graph generated is high.  XTA is based 

on somewhat similar concept. XTA uses a separate set for each method M.m and for field X. this gives it the 

freedom of putting more restriction of the reachable methods. XTA has following constrains: 
a. The main method is always Reachable. 

b. For any method C.m() add C to M.m(); 

c. For any reachable method, for all the constructors of the new “C( )” that happens to occur inside the method 

body M.m ( ) add C to set of reachable methods. 

d. For all reachable methods, for all fields X that can are read, add set of fields to set of methods. 

e. For a reachable method, for its all fields X that are written, add ∩ of set of reachable methods and all 

subtypes (Type(X)) to the set of fields. 
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Since XTA uses distinct sets for all reachable methods and fields we can define the XTA in formal terms as 

follows: 

1. Start analysis while considering main method and all entry points in the set of Reachables. 

2. M.m () is in Reachables; 

3. For all class static methods St, class (St) is in S(M.m()) 

New N is a constructor call site in the method M.m() 

N ∈ S(M.m) and N.New( ) ∈ Reachables AND (M.m(), N.New) ∈ Edges; 

e.n() is a filed access | call site in M.am( ) 

4. for each N ∈ subtypes (  type(e))  AND N ∈ S(M.M()) : N.n()∈ Reachables  AND subtypes (param(N.n()) 

∩S(M.m()) is a ⊆S(N.n() AND  

Subtype( result( N.n()) ∩ S(N.n()) ⊆ S(M.m()) AND (M.m(),N.n())∈ Edges. 

 

When applying XTA to the sample code of Example 2 the following sets are expected to be used: 

 

For each method the following sets will be there: 
 

Similarly for each field: 

 

triangle :{Z}          foo : {X,Y} 

 

 

 

 

 

 

 
 

 

 

  

 

 

 

V. IMPLEMENTATION OF ALGORITHMS AND IMPLEMENTATION ISSUES 
We are using soot (Jimple) frame work for our purpose in order to be in line with other related works. 

In Soot when a Call Graph is available it can be accessed through the environment Class “Scene” by using 

method getCallGraph. The Call Graph call and other related constructs are can be found in the pakage 

Soot.Jimple.toolkits.callgraph. In Soot, a Call Graph as a collection of edges representing all method 

invocations. The method invocations include explicit method invocations, implicit invocations of static 

initializers, implicit calls of thread.run(), implicit call of finalizers, implicit calls by AccessControllers and many 
more. In Soot each edge in a Call Graph has four elements: source method, source statement, target method and 

the kind of edge (e.g. static invocation, virtual invocation, and interface invocation). To quarry the Call Graph in 

more detailed way Soot provides two constructs namely ReachableMethods and TransitiveTargets. To keep tract 

of which methods are reachable form the entry point the ReachableMethods object is used. Contains(method) 

checks whether any specific method is reachable, and the listener() method returns the iterator over the 

reachable method, where as the TransitiveTargets is very important for iterating over all methods possibly called 

from a certain method or any other method it calls. 

We adopted the worklist approach as used in previous works for implementation of various Call Graph 

construction algorithms to make implementation simpler and more understandable. As mentioned in above 

algorithms the entry points are considered be reachable at the start of analysis. So the worklist also starts with 

nodes for all entry points like main, start, run etc. as each node for a method is added to the Call Graph, the 
edges from the call site in the node is also added. For every target node of an edge that is not already in call 

graph, it is added to the call graph and to the worklist as well. For CTA algorithm we started with initializing 

worklist with main( ) method and a set of methods which are almost called in every program such as 

java.lang.Object.client() and java.lang.System.initilizeSystemClass(). Once the worklist is initialized we 

proceed with removing the first method in worklist and supposed it as a source node of the Call Graph. Then all 

of its statements are searched for each call site that is found, it corresponding methods are obtained. Then the 

edges are added from every source node to all reachable methods and they are added to worklist as well for 
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further processing. These steps are repeated for all the worklist members until there is not any previously added 

member and the worklist is empty. For implementation of other algorithms we used the results of previous 

algorithms as input to them with and added some additional features to them we got some significant 

performance improvements. For example while implementing RTA we used the resultant Call Graph as 

generated using CHA as input to it, as we know that all the classes are visited during CTA construction, by 

using additional feature like instantiated classes we get RTA.  Every time a new feature is added a new set is 
used for that feature like the one we used for instantiated classes.  The similar sort strategy of adding various 

new features as per the requirement of the algorithm is used for the other algorithms as well. 

An important thing to note is what work list consists of.  

While comparing call graphs both qualitative and quantities measures need to be consider. If call 

graphs are produced using the same tool the quantities comparison can be done easily and is a straight forward 

process, however qualitative differences are hard to get. For instance we can easily get the total number of edges 

of the number of reachable methods the graph form program starting point, but due to the large nature of 

programs getting the qualitative measures is really a hard job. There may be programs which contain the call 

sites that are never executed, like we have unused portion in the library, or there may be a function that if 

executed would a large module of program, but no actual execution reaches to the function in a call graph a 

single spurious edge to a function leads the entire the unused module to be included in the method is modeled as 

a lake, and each call edge as a connecting river [6].  
 

VI. EXPERIMENTAL SETUP AND NATURE OF BANCHMARKS 

Following table1 gives the brief description about the benchmarks used. All the experiments were run 

on Intel(R) Atom (TM) CPU 270 1.60GHz processor, 2 GB memory PC with Linux and Sun JVM 1.4.1.07 and 

off course running Soot and Eclipse frameworks, even though we have used only Soot for implementation and 

analysis purposes.  

We have used the experiments on eight SPEC javm98 suite[7] as is done in most of the previous 

related works in addition we used some new benchmarks to make our results more authentic and applicable to 

the program size of any kind. 
The bytecode reader used in the implementation process is the Soot, and the Intermediate 

Representation used is Jimple the prime intermediate representation of Soot.  Soot is a Java optimization 

framework for analyzing and transformation of Java bytecode. Soot can be used as standalone tool to optimize 

or inspect class files, as well as framework to develop optimizations or transformations on Java bytecode [7]. To 

evaluate the implementations using Soot we used twelve benchmarks cited in table 1 along with their 

descriptions. To access the performance of Soot we can measure the Elapsed time and memory requirements of 

the benchmark programs and later can be used as performance metrics. Since the best way of comparing call 

graphs generated during interprocedural static analysis is to compare them with dynamic call graphs. The 

dynamic call graphs are constructed by recording the call sites that are executed and all the target functions that 

are called from each of them[6] more precisely static call graphs approximates the dynamic call graphs, and is 

defined by the abstract equivalent [5].we have tried a little to include the dynamic version of XTA in our work 
so that static and dynamic nature of call graphs can be compared, however the main the main metrics that are 

used in this work are the number of nodes were each node represents a reachable method, Number of Edges 

where each edge represents a calling relationship between methods, time elapsed that is the time taken from the 

initiation and the completion of Call Graph construction, Used memory, this is done by using Java garbage 

collection, we tried to free that memory occupied by various objects that are no longer in use, and measure the 

consumed memory for each Call Graph construction algorithm. 

 

VII. EXPERIMENTAL COMPARISONS AND OUTCOMES. 
Using Soot we tested the Call Graph algorithms with the benchmarks listed in table 1 multiple times, 

and then we compare the average resultant Call Graphs computed using CHA, RTA, CTA and XTA as per the 

set metrics defined in section VI. 

a) Number of Call Graph Nodes 

Different studies have revealed different results when comparing different Call Graph algorithms. The results 

we were able to produce are briefly shown in the Table 2. The Table 2 vital statistics that we were able to collect 

during various runs of the benchmarks on different Call Graph algorithms as presented in the table 2. From table 

2 we can simply infer the following facts: 

1. On comparing the RTA with CHA the average number of reachable methods that are reduced by RTA is 

approximately 4.065%, provided that minimum numbers of reduced reachable methods are 0.959% and the 

maximum are 12.584%. 
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2. On comparing the CTA with CHA the average number of reachable methods that are reduced by CTA is 

6.551%, provided that the minimum numbers of reachable methods reduced are 2.001% and the maximum 

numbers of reachable methods reduced are 13.971%. 

3. On comparing the XTA with CHA the average number of reachable methods reduced by XTA are 

approximately 20.526%, provided the minimum number of reachable methods reduced are13.429% and 

maximum number of reachable methods reduced are 30.294%. 

b) Number of Edges in Call Graph 
On comparing the number of edges in Call Graphs computed using different algorithms are shown in Table 

3.The Major summary for the number of edges generated using different algorithm are as: 

1. In contrast to the CHA the RTA reduces the number of edges approximately at the average of 4.087%, 

provide the minimum numbers of edges reduced are about0.289% and the maximum number of edges 

reduced are about 15.953%. 

2. In contrast the CHA the number of edges reduced by the CTA are approximately 16.876%, provided that 

the minimum number of reduced edges by CTA are 2.716% and the maximum number of edges reduced are 

about 25.968%. 

3. XTA when compared with the CHA comes with more precise results, it reduces the number of edges 

approximately with an average of 22.730%, when the minimum number of edges reduced is about4.663% 

and the maximum number of edges reduced is about 64.44%. 

c) Time Elapsed 

Time consumed by an algorithm depends on the how fast the worklist can be constructed and depends 

on Soot framework and the nature of benchmark and the Call Graph algorithm used. The time requirement for 

each algorithm with corresponding benchmark that we are able to estimate is shown in Table 5.When comparing 

the time requirements for each algorithm in Soot we were able to collect following statistics: 

1. The time requirements for RTA are little more than that of CHA, when computed RTA needs 

approximately 1.297 more time than CHA, this may because of additional overhead of construction of extra 

sets for Call Graph construction. 

2. On comparing the CTA with CHA, we can observe that CTA is slower than the CHA, and more precisely 

we can say that CTA 3.629 times faster than CHA. 

3. When comparing the XTA with the CHA there is a significant time variation, we was able to found that 
XTA is on average  12.453 slower than that of CHA. This is because of its more struggles towards 

preciseness and extra overhead of maintaining more sets for construction of Call Graph. 

d) Memory Utilized by Call Graph algorithms 
Soot uses a very different memory management scheme than other bytecode readers. Depends on 

memory requirements for various data structures and for how longs they need to be kept in the memory for 

further use the memory requirements of benchmarks can be made. In Soot garbage collectors can remove certain 

data structures for example class hierarchy information in Soot is kept in memory after Soot configuration. 

Table 6 shows some of the facts about memory requirements of various Call Graph construction algorithms in 

Soot. 

VIII. CONCLUSION 
In this work we have seen how various Call Graph algorithms differ from each other in various 

respects. We have analyzed that how Soot behaves with these algorithms. We can say that Soot is a Java 

optimization framework which is analyzed with a lot of functions [9].the Table 7 shows the overall results 

obtained from various Call Graph algorithms. According to the Table 7 we can see that compared to CHA the 

RTA has better results in terms of reduction of number of edges. That average percentage number of Nodes 

(reachable methods) reduced by RTA compared to CHA is 4.065%. similarly when CTA is put in front of CHA 

and the number of reduced Nodes( reachable methods) is 6.551% and in compared to CHA XTA  shows 

significant results and reduces the number of Nodes (reachable methods) with average percentage of 20.526%.  

there are cases with many benchmarks when the performance of RTA is not good as per the expectations for 

example for Jack program the percentage of reduced reachable nods in just 0.959% and in Javac it is only about 

1.376% but in the same time RTA has more significant performance like in programs JFreeChart and 
mpegaudio it reduces the number of reachable methods with a percentage of 12.584% and 8.824%. CTA as per 

the Table  7 goes far behind in reducing the number of reachable methods both in individual benchmark and on 

average as well for example in JFreeChart benchmark it can reduce the number of Nodes up to 13.971%. XTA 

goes an extra mile in reduction process it can recdce the number of  Nodes in Call Graph up to 20.526% on 

average, and individually we can see for Javac program it reduced the Nodes up to 30.294 on average. The 

Table 7 shows the time penalty for each of the algorithms as we move towards the higher preciseness we can see 
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the time requirements of algorithms also increase. RTA is 1.297 times slower than CHA and CTA is around 

3.6929% slower than CHA and comparatively the CHA is 12.453 faster than XTA. 

The number of edges that is present in the Call Graph computed by each algorithm brought some 

interesting results to the front. When we see the number of edges reduced by RTA as compared to CHA, the 

RTA reduces the number of edges with percentage about 4.087%  similarly CTA reduces the number of edges a 

percentage of about 16.876% and  XTA comes again with good results and the number of reduction percentage 
is about 22.526% as compared to that of CHA. However the for this improvement the memory penalty is there. 

The algorithm that reduces more number of nodes and the edges elapses more time and consumes huge amount 

of memory. The details of which are present in the Table 7. 

 

IX. FUTURE WORKS 
It is better to compare the static Call Graphs to their dynamic counter parts. This work can be extended 

to some more Call Graph algorithms like VTA, and K-CFA [119]. Furthermore we can compare the framework 

used for implementation with other available alternatives to get even more accurate and precise results. We have 

the option of using Soot and ASM for construction of Call graphs and then better comparisons. In addition 
testing and comparing Call Graphs on different frame works will make results more general so that they can be 

applied on any optimization framework. Some new dimensions in terms of metrics like line number, number of 

variable, number of successors can be added for each Call Graph node and these metrics can be added to get a 

new Call Graph whose every node correspond to a different kinds of metrics. 
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XI. LIST OF TABLES AND GRAPHS 
 

Table 1:  Benchmark Descriptions 

 
S.No. Benchmark Description 

1. compress A high-performance application to compress or uncompress large files; 

based on the Lempel-Zev method 

Web reference:  

www. Specbench.org.Javaclient/serverbenchmarks 

2. jess A Java Expert shall systembased on NASA’s CLIP system. 

Web reference: www.Specbench.org.Javaclient/serverbenchmarks 

3. db Perform database functions on a memory-resident database 

Web reference: www.Specbench.org.Javaclient/serverbenchmarks 

4. javac JDK 1.0.2 JAVA compiler   Web reference: 

www.Specbench.org.Javaclient/serverbenchmarks 

5. mpegaudio MPEG-audio file compression application. 
Web reference: www.Specbench.org.Javaclient/serverbenchmarks 

6. mtrt Dual-threaded version of raytrace. 

Web reference: www.Specbench.org.Javaclient/serverbenchmarks 

7. jack A java presser generator with Lexical analyzers (now JavaCC). 

Web reference: www.Specbench.org.Javaclient/serverbenchmarks 

8. ANTLR A language tool that provides a framework for construction of 

recognizers, interpreters, compilers, and translators. 

9. BLOAT It is a Java bytecode optimizer and analysis tool. 

10. EMMA It is an open-source toolkit for measuring and reporting Java code. 

11. JFreeChart It is an open-source java chart library, supporting a wide range of chart 

types. 

 

Table 2: number of Reachable Methods (Nodes) in CHA, RTA, CTA and XTA Call Graphs. 

 

Benchmark CHA RTA CTA XTA RTA/CHA CTA/CHA XTA/CHA 

compress 365 350 339 303 4.110 7.123 13.429 

jess 1122 1104 1020 943 1.604 9.091 15.954 

db 411 396 379 350 3.650 7.786 14.842 

javac 1599 1577 1567 1198 1.376 2.001 25.078 

mpegaudio 680 620 611 474 8.824 10.147 30.294 

mtrt 601 586 581 464 2.496 3.328 22.795 

jack 730 723 702 576 0.959 3.836 21.096 

ANTLR 780 762 751 561 2.308 3.718 28.077 

BOLT 2890 2755 2714 2312 4.671 6.090 20.000 

EMMA 1409 1379 1339 1187 2.129 4.968 15.756 

JFreeChart 2090 1827 1798 1704 12.584 13.971 18.469 

AVERAGE         4.065 6.551 20.526 

 

Chart 1: Comparison of Number of nodes in different Call Graphs. 
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Table 3: Number of edges in Call Graphs generated by CHA, RTA, CTA and XTA. 

 

benchmark CHA RTA CTA XTA RTA/CHA CTA/CHA CHA /XTA 

compress 1191 1001 978 897 15.953 17.884 24.685 

jess 3913 3844 3674 3333 1.763 6.108 14.822 

db 1498 1377 1109 1012 8.077 25.968 32.443 

javac 8063 8003 7844 7687 0.744 2.716 4.663 

mpegaudio 2150 1991 1897 1680 7.395 11.767 21.860 

mtrt 2089 1989 1670 1599 4.787 20.057 23.456 

jack 2899 2844 2609 2430 1.897 10.003 16.178 

ANTLR 2996 2922 2567 2345 2.470 14.319 21.729 

BOLT 21430 21368 19002 17998 0.289 11.330 16.015 

EMMA 4778 4728 4601 4313 1.046 3.704 9.732 

JFreeChart 16877 16786 6451 6001 0.539 61.776 64.443 

AVERAGE         4.087 16.876 22.730 

 

Chart 2: Comparison of Number of Edges in different Call Graphs. 

 

 
 

Table 4: Total number of Nodes and Edges in each Call Graph. 

 

Benchmark 

 

CHA RTA CTA XTA 

Number 

of 

Methods 

Number 

of Edges 

Number 

of 

Methods 

Number 

of Edges 

Number 

of 

Methods 

Number 

of Edges 

Number 

of 

Methods 

Number 

of  

Edges 

Compress 365 1191 350 1001 339 978 303 897 

jess 1122 3913 350 3844 1020 3674 943 3333 

db 411 1498 396 `1377 397 1109 350 1012 

javac 1599 8063 1577 8003 1567 7844 1198 7687 

mpegaudio 680 2150 620 1991 611 1897 474 1680 

mtrt 601 2089 586 1989 581 1670 464 1599 

jack 730 2899 723 2844 702 2609 576 2430 

ANTLR 780 2996 762 2922 751 2567 561 2345 

BOLT 2890 21430 2755 21368 2714 19002 2312 17998 

EMMA 1409 4778 1379 4728 1339 4601 1187 4313 

JFreeChat 2090 16877 1827 16786 1798 14879 1704 6001 
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Table 5: Comparison of time elapsed by CHA, RTA, CTA, and XTA. 

 

benchmark CHA RTA CTA XTA 
RTA Vs 

CHA 

CTA Vs 

CHA 

XTA Vs 

CHA 

compress 0.051 0.067 0.475 0.985 1.314 7.090 19.314 

jess 0.122 0.14 0.259 0.847 1.148 1.850 6.943 

db 0.062 0.08 0.349 2.02 1.290 4.363 32.581 

javac 0.172 0.352 0.562 1.948 2.047 1.597 11.326 

mpegaudio 0.081 0.097 0.317 1.302 1.198 3.268 16.074 

mtrt 0.61 0.86 1.969 2.663 1.410 2.290 4.366 

jack 0.091 0.121 0.624 0.955 1.330 5.157 10.495 

ANTLR 0.094 0.112 0.413 1.065 1.191 3.688 11.330 

BOLT 0.857 0.967 2.567 5.013 1.128 2.655 5.849 

EMMA 0.192 0.211 0.832 2.528 1.099 3.943 13.167 

JFreeChart 0.657 0.732 2.947 3.641 1.114 4.026 5.542 

AVERAGE         1.297 3.629 12.453 

 

Chart 3: comparison of Time Elapsed by various algorithms for construction of call Graph 

 

 
 

Table 6: Memory used in( MB) by various Call Graph algorithms. 

 

benchmark CHA RTA CTA XTA 

compress 48 50 53 184 

Jess 69 70 71 266 

Db 53 54 58 192 

Javac 69 70 73 296 

mpegaudio 57 60 60 202 

Mtrt 55 59 59 195 

Jack 59 63 63 299 

ANTLR 60 65 65 204 

BOLT 88 91 91 452 

EMMA 78 83 83 420 

JFreeChart 165 172 178 552 

AVERAGE 72.81818 76.09091 77.63636 296.5455 
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Chart 4: The amount of memory used in MB’s by various Call Graph algorithms. 

 

 
 

Table 7: overall comparison of various algorithms 

 

benchma

rk 

 

RTA/C

HA 

%age of 

Nodes 

reduced 

RTA/C

HA 

%age of 

Edges 

reduced 

CHA/R

TA  

average 

Time  

Elapsed 

CTA/C

HA 

%age of 

Nodes 

reduced 

CTA/C

HA 

%age of 

Edges 

reduced 

CHA/C

TA 

average 

Time 

Elapsed  

XTA/C

HA 

%age of 

Nodes 

reduced 

XTA/C

HA 

%age of 

Edges 

reduced 

CHA/X

TA 

average 

Time 

Elapsed 

compress 4.110 15.953 1.314 7.123 17.884 7.090 13.429 24.685 19.314 

jess 1.604 1.763 1.148 9.091 6.108 1.850 15.954 14.822 6.943 

db 3.650 8.077 1.290 7.786 25.968 4.363 14.842 32.443 32.581 

javac 1.376 0.744 2.047 2.001 2.716 1.597 25.078 4.663 11.326 

mpegaud

io 8.824 7.395 1.198 10.147 11.767 3.268 30.294 21.860 16.074 

mtrt 2.496 4.787 1.410 3.328 20.057 2.290 22.795 23.456 4.366 

jack 0.959 1.897 1.330 3.836 10.003 5.157 21.096 16.178 10.495 

ANTLR 2.308 2.470 1.191 3.718 14.319 3.688 28.077 21.729 11.330 

BOLT 4.671 0.289 1.128 6.090 11.330 2.655 20.000 16.015 5.849 

EMMA 2.129 1.046 1.099 4.968 3.704 3.943 15.756 9.732 13.167 

JFreeCh

art 12.584 0.539 1.114 13.971 61.776 4.026 18.469 64.443 5.542 

AVERA

GE 4.065 4.087 1.297 6.551 16.876 3.629 20.526 22.730 12.453 

 

 

Chart 5: the overall comparison chart. 

 

 


