
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 8, Issue 6 (Jan. - Feb. 2013), PP 97-101
www.iosrjournals.org

www.iosrjournals.org 97 | Page

Efficient Optimization of Multiple SPARQL Queries

R.Gomathi
1
, C.Sathya

2
,D.Sharmila

3

1(Assistant Professor(Sr.G)/ComputerScience ,Bannari Amman Institute of Technology, Sathyamangalam,India)
2(PG Scholar/Computer Science , Bannari Amman Institute of Technology, Sathyamangalam,India)

3(Professor & Head/Electronics and Instrumentation , Bannari Amman Institute of Technology,

Sathyamangalam,India)

Abstract : A W3C standard for processing RDF data is a SPARQL query language, a technique that is used to

encode data in meaningful manner. We investigate the foundations of SPARQL query optimization by grouping
into individual clusters using common substructures in the multiple SPARQL queries, propose a comprehensive

set of query rewriting rules for the clustered group and finally Query execution provide the final result of

optimized query. The proposed technique is efficient and scalable for multiple SPARQL query.

Keywords - RDF, Multiple SPARQL, Common substructures

I. INTRODUCTION
 RDF is the data format of interlinked data. RDF is a directed, labeled graph data format for representing
information in the Web. RDF is an essence of triple format namely subject, predicate and object.

Figure 1.1 Triple Format Representation

 SPARQL, a query language and a protocol for retrieving RDF data which has been formulated and designed

by the W3C RDF Data Access Working Group. SPARQL is a query language for pattern matching for RDF

graphs. SPARQL syntax is similar to SQL, but SPARQL is more powerful, which enables queries spanning

multiple disparate (local or remote) data sources containing heterogeneous semistructured data.

The SPARQL query language is related to the following specifications:

 The SPARQL Protocol for RDF [SPROT] specification defines the remote protocol for issuing SPARQL
queries and receiving the results.

 The SPARQL Query Results XML Format [RESULTS] specification defines an XML document format for

representing the results of SPARQL SELECT and ASK queries.

SPARQL takes the description of what the application wants, in the form of a query, and returns that

information, in the form of a set of bindings or an RDF graph.

Query optimization is the most critical phase in query processing. Multi Query optimization is a

technique in which multiple query plans for satisfying a query are examined and a good query plan is identified.

Complexity arises in MQO which leads to NP-Hard. There may be many plans to find the best strategy. Cost

based query optimizers evaluate the resource of various query plans and use the basis for plan selection using

algorithms. The search space can become quite large depending on the complexity of the SPARQL query.

Complex queries are becoming common, due to the advent of technological tools that help examine

information from large data stores. These complex queries share a lot of common sub-expressions since i)
extensive views for different query that share a common value ii) There are nested queries that are correlated

where outer query and inner query variables are not common but form a common sub-expression.

Keeping the above challenges we design a framework for MQO with the following contributions:

1. Summarize the similar pattern in the SPARQL query.

2. Summarized patterns will be clustered based on the common substructures.

3. Clustered queries will be rewritten and finally query execution is performed.

4. Experiments prove that the model is very efficient and scalable.

II. RELATED WORK
 Complex queries are becoming common in decision support systems. These complex queries have a

lot of common sub-expressions [1], either within a single query, or multiple queries. Multiquery optimization

exploits common sub-expressions to reduce evaluation cost. Three cost-based heuristic algorithms: Volcano-SH

and Volcano-RU, which are based on simple modifications to the Volcano search strategy, and a greedy

heuristic is used`. A performance study of comparing the algorithms, using workloads consisting of queries from

Subject Object
Predicate

http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/rdf-sparql-protocol/
http://www.w3.org/2001/sw/DataAccess/
http://thefigtrees.net/lee/sw/sparql-faq
http://drupal.org/node/219862
http://www.w3.org/TR/rdf-sparql-protocol/
http://www.w3.org/TR/rdf-sparql-query/#SPROT
http://www.w3.org/TR/rdf-sparql-XMLres/
http://www.w3.org/TR/rdf-sparql-query/#RESULTS
http://en.wikipedia.org/wiki/Query_plan
http://en.wikipedia.org/wiki/Query_plan
http://en.wikipedia.org/wiki/Query_optimizer

Efficient Optimization of Multiple SPARQL queries

www.iosrjournals.org 98 | Page

the TPC-D benchmark. The study shows that algorithms provide significant benefits over traditional

optimization, at a very acceptable overhead in optimization time.

 The problem of Basic Graph Pattern (BGP) optimization for SPARQL queries and main memory graph
implementations of RDF data is formalized. The characteristics of heuristics for selectivity based static BGP

optimization is studied. Customized summary statistics for RDF data enable the selectivity estimation [2] of

joined triple patterns and the development of efficient heuristics. Using the Lehigh University Benchmark

(LUBM), the performance of the heuristics for the queries provided by the LUBM is discussed.

 Efficient management of RDF data is an important factor in realizing the Semantic Web vision.

Drawbacks are becoming increasingly pressing as Semantic Web technology is applied to real-world

applications. Current data management solutions for RDF data does not scale properly, and explore the

fundamental scalability limitations [3] of these approaches is examined. Improving performance for RDF

databases using “property tables” is analysed. Vertically partitioning approach is used to study the RDF data.

Further, column-oriented DBMS is used which shows an increase in performance magnitude, with query

processing time is reduced.
 The salient points of RDF-3X are: 1) a generic solution for storing and indexing RDF triples 2) a

powerful yet simple query pro- cessor that leverages fast merge joins to the largest possible extent, and 3)

Choosing optimal join orders is executed using query optimizer through which a cost model based on statistical

synopses for entire join paths is identified. The performance of RDF-3X, [4] in comparison to the previously

best systems, has been measured on several datasets with more than 50 million RDF triples and benchmark

queries that include pattern matching and long join paths in the underlying data graphs.

 BitMat introduces –(i) a compressed bit-matrix structure for storing huge RDF graphs, and (ii) a novel,

light-weight SPARQL join query processing method that employs an initial pruning technique along with

variable-binding-matching algorithm on BitMats [5] to produce the final results. Query processing method does

not build intermediate join tables and works directly on the compressed data. Results show that the competing

methods are most effective with highly selective queries. On the other hand, BitMat delivers 2-3 orders of

magnitude better performance on complex queries over massive data.
 Loosely-structured Exploratory queries requires only minimal user knowledge of the source network.

Exploratory query evaluation usually [6] involves the evaluation of many distributed queries. The optimization

problem for exploratory queries is overcome by proposing several multi-query optimization algorithms that

compute a global evaluation plan which minimizes the total communication cost, a major bottleneck in

distributed queries. The algorithms proposed are necessarily heuristics, as computing an optimal global

evaluation plan is shown to be np-hard. Finally, an implementation of our algorithms and its illustrations shows

their potential not only for the optimization of exploratory queries, but also for the multiquery optimization of

large set queries is presented.

 A set of novel query processing techniques, for large number of XML stream queries involving value

joins over multiple XML streams [7] and documents referred to as Massively Multi-Query Join Processing

techniques is proposed. These techniques enable the sharing of representations of inputs to multiple joins, and
the sharing of join computation. These techniques are also applicable to relational event processing systems and

publish/subscribe systems that support join queries. Experimental results to demonstrate the effectiveness of our

techniques is presented. Thousands of XML messages with hundreds of thousands of join queries on real RSS

feed streams is processed. Techniques gain more than two orders of magnitude speedup compared to the naive

approach of evaluating such join queries.

 Queries with common sequences of disk accesses can make maximal [8] use of a buffer pool. We

developed a middleware to promote the necessary conditions in concurrent query streams, and achieved a

speedup of 2.99 in executing a workload derived from the TCP-H benchmark.

 Clustering is the unsupervised classification of patterns into groups (clusters). The clustering problem

[9] has been addressed in many contexts and by researchers in many disciplines; this reflects its broad appeal

and usefulness as one of the steps in exploratory data analysis. Clustering is a difficult problem in common. An

overview of pattern clustering methods is presented. A taxonomy of clustering techniques, identifying cross-
cutting themes and recent advances is also proposed. It also describes some important applications of clustering

algorithms such as segmentation of the image, recognition of object, and information retrieval of information .

III. PROPOSED ARCHITECTURE
 MultiQuery Optimization mainly involves Query Processing, Query Rewriting and Execution as shown in

the figure 3.1.

Query Processing: Query Processing converts the SPARQL query into query graph pattern which is equivalent

to the query. This query graph pattern presents the query execution in sequence and optimization of the query

takes place.

Efficient Optimization of Multiple SPARQL queries

www.iosrjournals.org 99 | Page

Figure 3.1 Steps in MultiQuery Optimization

Query Optimization and Execution: Selecting the best strategy for query processing is Query Optimization.

Algorithm finds the best query processing strategy. The steps involved in the algorithm are as follows:

Step 1: The input query is partitioned into clusters using K-means clustering.

Step 2: Clusters are formed based on the common sub-expression in the queries that are provided as Input.

Step 3: Formed clusters are rewritten into either of Sample 1 and Sample 2 query pattern.

Step 4: The rewritten query is distributed to the input query and the result is Optimized SPARQL Query.

IV. ILLUSTRATION
 A pattern matching query recommended by W3C is SPARQL. There are two types of query variations

we focus on:

Sample 1: Q := SELECT OP WHERE TP.

Sample 2: QOPT := SELECT OP WHERE TP (OPTIONAL TPOPT)+

where OP is the Output Result and TP is the set of Triple Pattern. Let D be the data graph, and TP searches the

triple pattern in D. The difference between the two queries is the OPTIONAL clause.

Figure 4.1 Input Data D.

 Consider the data in the table (4.1) and the SPARQL query in the figure(4.2). The query corresponds to

triples Faculty and Course which has an equivalent value GraduateCourse0 as object. First OPTIONAL field in

the query returns object of predicate Institute, if predicate exists. Second OPTIONAL field in the query returns

object of predicate Student, if its predicate exists correspondingly. When the query is evaluated over the Input

data D, it results in QOPT as shown in the figure 4.3.
SELECT ?FacultyType ?Institute ?Student

WHERE {?x FacultyType ?Faculty ?x Course GraduateCourse0,

OPTIONAL{ ?x Institute ?Organisation }

OPTIONAL { ?x Student ?GraduateStudent }}
Figure 4.2 Example Query QOPT

Figure 4.3 Output QOPT(D)

Efficient Optimization of Multiple SPARQL queries

www.iosrjournals.org 100 | Page

Graphically the query graph pattern in the figure 4.4 will consists of four tuples : V- Vertices, E-Edges,

Constants and Variables. Vertices represents the subject and object of the triple pattern, gray vertices represent

the constants, white vertices represent variables. Predicates are represented in Edges, Dashed edges represent
predicates with OPTIONAL graph pattern QOPT and solid edges represent required graph pattern Q.

 The main problem of MultiQuery Optimization is to set query of Sample 1, compute a new set of QOPT

of Sample 1 or Sample 2 queries. There are two requirements for rewriting a queries: It may produce the same

result for both Q and QOPT or the the query evaluation time should be low.

Figure 4.4 A Query Graph

Illustration of Multi Query Optimization is shown in the figures. Figure 4.5(a) to 4.5(d) shows the
graph patterns of 4 queries and 4.5(e) shows the graph pattern that rewrites all the 4 queries into a single query.

?xY?p and ?qY?p is the common sub-expression in the figures (a) to (d). These common sub-expression will be

rewritten in the figure 4.5(e) using OPTIONAL clause.

Figure 4.5(a) Input Query Q1 Figure 4.5(b) Input Query Q2

Figure 4.5(c) Input Query Q3 Figure 4.5(d) Input Query Q4

SELECT *

WHERE { ?xY1?p,?qY2?p,

 OPTIONAL {?qY3?s, ?sY4?w}

 OPTIONAL {?tY3?x,?tY5?w,?sY4?w}

 OPTIONAL {?xY1?p,?wY5?q,?sY4?w}

 OPTIONAL {?qY3?u, ?sY6?u,?sY4?w}}

Figure 4.5(e) Example query for QOPT

Efficient Optimization of Multiple SPARQL queries

www.iosrjournals.org 101 | Page

Figure 4.5(f) Query Graph Pattern for QOPT

DATASET
 Lehigh University Bench Mark (LUBM) dataset is used for evaluation. This benchmark dataset describes

universities with students and departments with limited predicates. LUBM dataset limits the complexity of

SPARQL queries.

V. CONCLUSION
The problem of MultiQuery Optimization for SPARQL has been studied. Proposed Architecture

involves an algorithm to identify the common sub-expression and partitioned the input set of queries into

clusters. The clusters are rewritten to evaluate and finally optimized query is obtained. The algorithm provides
an efficient, effective and scalable optimization technique. Future work can be extended to general graph

databases.

Acknowledgements
Mrs R.Gomathi completed her under graduation in the year 2003 and post graduation in the year 2011. She is pursuing

her Doctorate in Anna University, Chennai. At present she is working as an Assistant Professor(Sr.Grade) in Bannari

Amman Institute of Technology, Sathyamangalam, Erode Dt. She has over 10 years of teaching experience. She has

published her papers in 2 International conferences, 3 National Conferences and an International Journal.

Mrs C.Sathya completed her B.Tech (Information Technology) in the year 2007 from Hindusthan College of

Engineering and Technology, Coimbatore. She is pursuing her M.E(Computer Science) from Bannari Amman Institute of

Technology, Sathyamangalam. She has published her paper in an International Conference.

Dr D.Sharmila completed her under graduation in the year 1996 and post graduation in the year 2004. She has been

awarded Doctorate in the year 2010 from Anna University, Chennai. At present she is working as Professor and Head of

Electronics and Instrumentation Engineering in Bannari Amman Institute of Technology, Sathyamangalam. She has over

16 years of teaching experience. She has published her papers in 2 National and 5 International Journals. She has also

presented her papers in 9 National and 8 International Conferences.

REFERENCES
[1] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible algorithms for multi query optimization. In SIGMOD, 2000.

[2] M. Stocker, A. Seaborne, and A. Bernstein. SPARQL basic graph pattern optimization using selectivity estimation. In WWW, 2008.

[3] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach. Scalable semantic web data management using vertical partitioning. In

VLDB, 2007.

[4] T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for RDF. In PVLDB, 2008.

[5] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler. Matrix ”bit” loaded: A scalable lightweight join query processor for RDF data. In

WWW,2010.

[6] A. Kementsietsidis, F. Neven, D. V. de Craen, and S. Vansummeren. Scalable multi-query optimization for exploratory queries over

federated scientific databases. PVLDB, 2008.

[7] M. Hong, A. J. Demers, J. Gehrke, C. Koch, M. Riedewald, and W. M. White. Massively multi-query join processing in

publish/subscribe systems. In SIGMOD, 2007.

[8] K. O’Gorman, D. Agrawal, and A. E. Abbadi. Multiple query Optimization by cache-aware middleware using query teamwork. In

ICDE, 2002.

[9] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review.ACM Comput. Surv., 1999.

[10] M. Schmidt, M. Meier, and G. Lausen. Foundations of SPARQL query optimization. In ICDT, 2010.

