
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 8, Issue 5 (Jan. - Feb. 2013), PP 52-62
www.iosrjournals.org

www.iosrjournals.org 52 | Page

Software Quality Modelling Using Bayesian Networks

Swati Agrawal
1
, P.C.Gupta

2

Computer & Engg. Deptt. Jaipur National University, Jaipur-302018 India

Abstract: This research work provides an introduction to the use of Bayesian Network(BN) models in Software

Engineering. A brief overview of the of BNs is included, together with an explanation of why BNs are ideally

suited to dealing with the characteristics and shortcomings of typical software development environments. This

theory is illustrated using real world models that illustrate the advantages of BNs in dealing with uncertainty,

causal reasoning and learning in the presence of limited data.

Keywords – BN, COCOMO, COQUALMO, CI, CPD, modist.

I. INTRODUCTION
Software project planning is notoriously unreliable. Attempts to predict the effort, cost and quality of

software projects have foundered for many reasons. These include the amount of effort involved in collecting

metrics, the lack of crucial data, the subjective nature of some of the variables involved and the complex

interaction of the many variables which can affect a software project.[1]
Research cover sufficient BN theory to enable the reader to construct and use BN models using a suitable tool.

The statistical nature of BN models automatically enables them to deal with the uncertainty and risk that is

inherent in all but the most trivial software projects.

Two idiosyncratic types of model will be presented. The first group is causal in nature. These take results from

empirical software engineering, and using expert domain knowledge, construct a network of causal influences.

Known evidence from a particular project is entered into these models in order to predict desired outcomes such

as cost, effort or quality.

The second group of models is primarily parameter learning models for use in iterative or agile

environments. By parameter learning we mean that the model learns the uncertain values of the parameters as a

project progresses and uses these to predict what might happen next. They take advantage of knowledge gained

in one or more iterations of the software development process to inform prediction so later iterations.

Background
Before we can describe BN software project models, it is worthwhile examining the problems that such

models are trying to address and why it is that traditional approaches have proved so difficult. Then, by

introducing the basics of BN theory.

II. COST AND QUALITY MODELS
Software process models can be categories as cost models and quality models. Cost models, aim to

predict the cost of a software project. Similarly, since the “size” of a software project often has a direct bearing

on the effort and cost involved, we also include project size models in this category. Quality models are

concerned with predicting quality attributes such as mean time between failures, or defect counts.

Estimating the cost of software projects is notoriously hard. Molokken and Jorgensen (2003) performed

a review of surveys of software effort estimation and predict that the average cost overrun was of the order 30-

40%. One of the most famous such surveys, the Standish Report(Standish Group International 1995) puts the

mean cost overrun even higher, at 89%. Software quality prediction, has been no more successful. Fenton and

Neil (1999) have described the reasons for this failure. Research briefly reproduces these here since they apply

equally to both cost and quality models.

1. The cost and quality models, such as COCOMO (Boehm 2010) and COQUALMO (Chulani & Boehm 1999)
take one or two parameters which are fed into a simple algebraic formula and predict a fixed value for some

desired cost or quality metric. They are therefore unable to attach any measure of risk to their predictions.

Changes in parameters and coefficients can be simulated in an ad-hoc fashion to try to address this, but this is

not widely used and does not arise as a natural component of the base model.[9,11]

2. Parametric models cannot easily deal with missing or uncertain data. This is a major problem when

constructing software process models. Data can be missing because it simply wasn‟t recorded. It can also be

missing because the project is in a very early stage of its lifecycle. Some of the problems appear quite prosaic,

for example ambiguity arises because of difficulties in defining what constitutes a line of code.

3. Traditional models have difficulty incorporating subjective judgments, yet software development is replete

Software Quality Modelling Using Bayesian Networks

www.iosrjournals.org 53 | Page

with such judgments. The cost and quality of a software project clearly depend to a significant extent on the

quality of the development team.

4. Parametric models typically depend on a previous metrics measurement programme. A consistent and

comprehensive metrics programme requires a level of discipline and management commitment which can often

evaporate as deadlines approach and corners are cut. Failure to adjust the coefficients in a parametric model to

match local conditions can result in predictions which are significantly (Briand et. al. 1999; Kemerer 1987) [10].

5. Metrics programmes may uncover a simple relationship between an input and an output metric, but they tell
us nothing about how this relationship arises, and crucially, they do not tell us what we must do to improve

performance. Many attempts have been made to find alternatives to simple parametric models. These include

multivariate models (Neil1992), classification and regression trees (Srinivasan & Fisher 1995), analogy based

models (Shepperd & Schofield 1997; Briand et. al. 1999), artificial neural networks (Finnie & Wittig &

Desharnais 1997) and systems dynamics models(Abdel-Hamid 2008)[2,12,15].

III. Introduction To Bayesian Networks
 A Bayesian Network (BN), (Jensen, 2001) [18], is a directed acyclic graph shown in Figure 1. Nodes

without parents such as the “Probability of finding defects” and “Defects In” nodes in Figure 1 are defined
through their prior probability distributions. Nodes with parents are defined through Conditional Probability

Distributions (CPDs). For some nodes, the CPDs are defined through deterministic functions of their parents

(such as the “Defects Out” node in Figure 1. Conditional independence (CI) relationships are implicit in the

directed acyclic graph: all nodes are conditionally independent of their ancestors given their parents, within

comparison with regression based models there are a number of beneficial features and advantages:

1. One of the most obvious characteristics of BNs is that we are no longer dealing with simple point value

models. In particular, its predictions, in this case limited to the “Defects out” node, is in the form of a marginal

distribution which is typically unimodal, giving rise to a natural “most likely” median value and a quantitative

measure of risk assessment in the form of the posterior marginal‟s variance.

2. The model then uses the prior distributions which can be based on empirical studies of a wide range of

software projects, such as those provided by Jones (1986; 1999; 2003), or by publicly available databases
(ISBSG 2008) [16,20].

3. The nodes in this model are all represented by numeric scales. BNs are not limited to this however. Any set of

states which can be assigned a probability can be handled by a BN.

4. Unlike parametric models, where the underlying variation in software process measurement has been

“averaged” out, this model contains all of the available information. It is therefore not limited to an “average”

project, but can encompass the full range of values included in its priors.

Figure 1 : Bayesian Network with defect detection in a software project

5. Unlike simple regression models the relationship between all the causal factors is explicitly stated. This

means that, in addition to using the model to make predictions, we can set our desired outcome (for example to
how many defects are acceptable in the released product) and the model will be able to tell us how many

“Defects in” are the most likely explanation of this and what our probability of finding a defect must be.

The presence of an observation updates the CPD of its children and, through Bayes theorem, the distributions of

its parents. In this way observations are propagated recursively through the model. BN models can therefore

update their beliefs about probable causes and so learn from the evidence entered into the model.(Jensen (2001)

and Lauritzen & Spiegelhalter (1988).

   

 

|
(|)

P B A P A
P A B

P B
 (1)

Software Quality Modelling Using Bayesian Networks

www.iosrjournals.org 54 | Page

The models presented here are all first order Markov. Informally this means that the future is independent of the

past given the present    1, 1 1| |t t t tP Z Z P Z Z  and in practice it means that we do not need to re-

compute the model afresh each time a new prediction is needed. The first order Markov property reduces the

number of dependencies, making it computationally feasible to construct models with a larger numbers of
timeslices. Consistent propagation is achieved using standard junction tree algorithms(Lauritzen & Spiegelhalter

1988). These algorithms provide exact (as opposed to approximate) propagation in discrete BNs and are

generally regarded as among the most efficient BN propagation algorithms (Lepar & Shenoy 1998).

INDICATOR NODES AND RANKED NODES

Two types of nodes deserve special mention these are indicator nodes and ranked nodes. Indicator

nodes are nodes with no children and a single parent. They are often used in circumstances where the parent is

not directly observable but where some indicator of the parent‟s status can be measured easily (hence their

name).

Indicator nodes can also be used where a large number of causal factors all have a direct impact on a

single child node. The number of entries in the CPD of the child grows exponentially with the number of
parents.

Ranked nodes are nodes whose states are measured on an ordinal scale, often with either three or five

states ranging from “Very Low” through to “Very High”. They are used to elicit subjective opinions from

experts so that they can be entered as observations into the model. In the tool used to build most of the models

described here (Agena Ltd. 2008)[4].

THE MODIST MODEL

Fenton and Neil‟s pioneering paper (Fenton & Neil1999)[13] inspired a number of research groups to

apply BNs to software process modelling. Wooff, Goldstein, and Coolen (2002) have developed BNs modeling

the software test process while Stamelos etal(2003)usedCOCOMO81costfactorstobuild a BN model of software

project productivity. Bibi and Stamelos(2004) have shown how BNs can be constructed to model IBM‟s

Rational Unified Process[8,14]. Fenton and Neil‟s own research group have also gone on to develop a series of
BN models, culminating in the AID tool (Neil, Krause, & Fenton 2003), the MODIST models (Fenton et. al.

2004), and the trials of revised MODIST models at Philips (Neil & Fenton 2005; Fenton et. al 2007a; Fenton et.

al 2007b). A similar model has been developed by Siemens (Wang et. al. 2006).

A greatly simplified version of the MODIST model, with many of the causal factors and indicator nodes

removed, is shown in Figure 2. The subnets are:

• Distributed communications and management. Contains variables that capture the nature and scale of the

distributed aspects of the project and the extent to which these are well managed.

• Requirements and specification. Contains variables relating to the extent to which the project is likely to

produce accurate and clear requirements and specifications.

• Process quality. Contains variables relating to the quality of the development processes used in the project.

• People quality. Contains variables relating to the quality of people working on the project.
• Functionality delivered. Contains all relevant variables relating to the amount of new functionality delivered

on the project, including the effort assigned to the project.

• Quality delivered. Contains all relevant variables relating to both the final quality of the system delivered and

the extent to which it provides user satisfaction (note the clear distinction between the two).

PEOPLE QUALITY SUBNET

Figure 3 shows the variables and causal connections in this subnet. A description of the main variables,

including the model‟s rationale is given in Table 1. All of the variables shown in Figure 3 are ranked nodes,

measured using a five point scale ranging from very low to very high. Observations are not normally entered

directly on the variables described in Table 1. Instead we enter observation at primary causes (variables with no

parents in the BN) and indicators.

Software Quality Modelling Using Bayesian Networks

www.iosrjournals.org 55 | Page

Figure 2 : A simplified version of the MODIST model

USING THE BAYESIAN NET FOR DECISION SUPPORT

What makes the Bayesian resource model so powerful, when compared with traditional software cost

models, is that we can enter observations anywhere to perform not just predictions but also many types of trade-

off analysis and risk assessment.

As an example of this, if we simply set “New functionality delivered” to 1000 function points, the

model produces the predictions shown in Figure 4. This tells us that the most likely duration is 6 to 8 months

(the modal value), although the mean and median values are considerably larger at 21 months and 17 months

respectively
If we fix the number of people at 10 and set the “Process and people quality” to “Very High”, we get a

modal value for the duration of 2 to 4 months, and mean and median values of 10 and 5 months respectively

with a standard deviation of 13 months, making the model far less uncertain in its predictions. These figures are

consistent with typical parametric models. However, this ability to vary the project constraints in any desired

way while producing consistent estimates of the risk, provides far greater insight into the interplay between

variables and allows far greater flexibility than is possible with parametric models.

Figure 3: The “People quality” subnet of the MODIST model

THE DEFECT MODEL

As with the MODIST model, the defect model (Neil & Fenton 2005) is too large to be shown here in full. The

core of the model is shown in Figure 5.

Separate subnets governing: the scale of new functionality, specification and documentation quality,
design and development quality, testing and rework quality, and features of the existing code base, all feed into

this core defect model. Unlike the MODIST model, the defects model does not require all of its subnets to be

included. The defects model is designed to model multiple phases of software development where not all aspects

of the full software development process are present in each development phase.

Software Quality Modelling Using Bayesian Networks

www.iosrjournals.org 56 | Page

Table 1: Details of subnet for people quality

Variable

Names

Description

Overall

management

quality

This is a synthetic node that

combines „Communications

management adequacy‟, sub-

contractment adequacy‟ and

„interaction management

adequacy‟. If any of these three is

poor then general value of „overall

management quality‟ will be poor.

Overall staff

quality

This is the quality of non-

management staff working on the

project.

Overall people
quality

This is a synthetic node that
combines „overall management

quality‟, and „overall staff

quality‟.

The model operates as follows. A piece of software of a given size, in this case measured inn thousands of lines

of code (KLOC) gives rise to a certain number of defects. Some of these defects will be the result of

inaccuracies in the specification and requirements.

Figure 4 : Probability distribution of “Project duration” for 1000 FPs

The model shown in Figure 5 actually comes from a model validated at Philips (Neil & Fenton 2005;
Fenton et. al 2007a; Fenton et. al 2007b). This differed from the original defects model in several important

respects.

Project size was measured in KLOC. The original defects model used function points (FPs) as its size

measure. However, FPs were not widely used at Philips and it seemed unlikely that they could be introduced

purely to validate this model.

Initialling the model was simply modified to deduce the number of FPs from the KLOC. This led to

problems because it introduced a level of uncertainty in the FP measure which was not originally present. FPs

also include a measure of problem complexity which is absent from the KLOC measure.

The second big change from the defects model was that many of the original indicator nodes were converted to

causal factors.

Figure 5 : The core of the defects model

Software Quality Modelling Using Bayesian Networks

www.iosrjournals.org 57 | Page

The model has been extensively trialed at Philips, with considerable success. The R2 correlation between

predicted and actual defect values is in excess of 93%. It is of course possible to construct regression models

with similar, or even higher correlations, but only by including most of the data as training data, which implies

an extensive metrics collection programme. (Fenton et. al 2007b).

IV. The Productivity Model
While the MODIST and defects models were successful in practical applications they contain some

limitations. Overcoming or reducing these limitations became the motivation for the Productivity Model. This

model provides unique features which were not available in previous models:

1. This model permits custom prior productivity rates and custom prior defect rates. Companies typically gather

some data from their past projects. Productivity and defect rates are among the easiest to extract from project

databases.

2. This model enables trade-off analysis between key project variables on a numeric scale. All the key project

variables, namely: functionality, software quality and effort are expressed as numbers.

3. This model enables customised units of measurement. Previous models captured key variables expressed in

fixed units of measurement.
4. The impact of qualitative factors can be easily changed by changing weights in node expressions. We provide

a questionnaire which can help determine users‟ opinions on the relationships between various model variables.

5. This model allows target values for numeric variables to be defined as intervals, not just as point values. For

example, this model can answer the question: how can we achieve a defect rate between 0.05 and 0.08 defects/

FP for a project of a specific size and with other possible constraints.

6. Numeric variables in this model are dynamically discretised. This means that setting intervals for numeric

variables occurs automatically during model calculation.

There are three steps which need to be followed before the Productivity Model can be used in performing

analyses:

Step 1: Calibrate the model to the individual company. This step involves adding new detailed factors or
removing those which are not relevant.

Figure 6 : The core of the Productivity Model

Step 2: Nominate a typical past project from the past project database. The user nominates a past project

developed by this company which is closest to the project to be modelled.

Step 3: Estimate the difference in the current project. This step involves assessing how the current project is

different from the project(s) nominated in step 2.

USING PRODUCTIVITY MODEL IN DECISION SUPPORT

Let us suppose that a software company has to deliver software consisting of 500 function points but

constrained to 2500 person-hours of effort. Suppose that in similar projects in the past the defect rate was
typically 0.15 defects per function point, productivity rate was 0.2 function points per person-hour and the effort

was 2000 person-hours.

Now let us further assume that the company is not able to improve the process and people for this

project. Thus we need to perform trade-off analysis between key project variables. We might remove a

constraint for the product size. This would result in predicting lower product size containing lower total number

of defects. But sacrificing product size would rarely be a good solution. We rather analyze how much more

effort is required to achieve the target for the number of defects. The model now predicts that this company

should spend around 7215 person-hours on this project to achieve the lower number of residual defects after

Software Quality Modelling Using Bayesian Networks

www.iosrjournals.org 58 | Page

release. The majority of the increased effort should be allocated to specification and testing activities.

In addition to the higher project complexity, suppose we also assume that there is the highest possible deadline

pressure. In this case, increased deadline pressure causes the developers to work faster and thus become more

productive (0.176 FP/ person-hour). However, it also means they are less focused on delivering software of

similar quality and thus their revised defect rate is expected to further increase (0.073 defects/FP).

Let us now assume that in addition to the previously entered known project factors they anticipate

receiving input documentation of higher quality. The model predicts that with increased quality of input
documentation we should expect to be more productive (0.180 FP/ person-month) and deliver better software

(0.067 defects/FP).

MODELLING PRIOR PRODUCTIVITY AND DEFECT RATES

The PDR model aims to estimate prior productivity and defect rates which are then passed as inputs to

the Productivity Model. This model has a Naïve Bayesian Classifier structure (Figure 7). Observations are

entered into qualitative factors describing the software to be developed (white ellipses). The model then

estimates the log of productivity and defect rates. Finally, dependent variables (productivity and defect rates) are

calculated on their original scale.

Figure 7 : PDR Model

After running both models we observe that the observations entered into the PDR model significantly change

the predictions provided by the Productivity Model. Predicted revised effort is about 3.5 times higher in scenario

1 (10740 person-hours) than in scenario 2 (3074 person-hours). However, it would be wrong to conclude from

this that we should only use application generators and multiple platforms, while avoiding 3GLlanguages and

mainframe platforms.

V. Agile Development Environments
The models discussed so far mostly apply to large, traditional, waterfall style development

environments. Agile methods eschew extensive specification and design phases in favour of rapid prototyping,

iterative development, extensive customer feedback and a willingness to modify requirements in the face of

changing business circumstances. Agile development environments present two problems for traditional models.

The first problem is that the lack of a formal requirements gathering phase makes it very difficult to quantify the

size of the project [5]. The second problem that traditional models face concerns data gathering and entry. The

defects model described in an earlier section can require over 30 individual pieces of data in order to be fully

specified. Although not all data is required in all phases of development, there will normally be a need to gather

several separate numbers or subjective values.

This combination of intelligent model adaptation, and learning using minimal data input, is only

possible because of the empirically derived priors and the causal relationships elicited from domain experts. The
BN models already represents a very wide range of possible development environments. Rather than “training”

the model, data is needed to simply “nudge” the model towards a set of variable states that are consistent with

the environment being modelled.

VI. Extreme Programming Project Velocity Model
Extreme Programming (XP) is an agile development method that consists of a collection of values,

principles and practices as outlined by Kent Beck, Ward Cunningham and Ron Jeffries (Beck 2010;[7] Jeffries,

Anderson & Hendrickson 2000) [17]. These include most notably: iterative development, pair programming,

collective code ownership, frequent integration, onsite customer input, unit testing, and refactoring.
This is the Project Velocity Vi for iteration i. Assuming that the next iteration, i + 1, is the same length,

the customer selects the highest priority uncompleted user stories whose estimated efforts sum to Vi. These user

stories are then scheduled for iteration i + 1. The project velocity can therefore be thought of as the estimated

productive effort per iteration.

Software Quality Modelling Using Bayesian Networks

www.iosrjournals.org 59 | Page

The BN used to model project velocity is shown in Figure 8. To model the relationship between total effort E i

and the actual productive effort Ai, there is a single controlling factor that we call Process Effectiveness, ei. This

is a real number in the range[0,1]. A Process Effectiveness of one means that all available effort becomes part of

the actual productive effort. The actual productive effort is converted into the estimated productive effort (or

project velocity) Vi, via a bias bi, which represents any consistent bias in the team‟s estimations.

Only Ei and Vi are ever entered into the model. The model shown in Figure 8 is what is known as a 1.5

TBN (for 1.5 time slice temporal BN). It shows the interface nodes from the previous time slice and their
directed arcs into the current time slice. This is essentially the full model, it is not a cut down core such as the

ones presented for the MODIST and defect models. Notice the tiny size of this mode compared to the others.

This is due to the fact that it is only trying to predict one thing, Vi, and that is does so, not by taking into account

all possible causal factors, but by learning their cumulative effect on the process control parameters: l i and ri.

The model works as follows. Initial estimates for the amount of available effort Ei are entered into the

model for each iteration. At this stage the number of iterations is unknown, so a suitably large number must be

chosen to be sure of covering the entire project. Using empirically derived industry priors for l0, r0, e0 and b0 the

model then makes generic predictions for the behaviour of Vi. This enables the project management to see how

many user stories are likely to be delivered in each iteration. The model correctly reproduces rapidly rising

values for Vi over the initial iterations - a phenomenon that has been observed in multiple studies (Ahmed, Fraz,

& Zahid 2003; Abrahamsson & Koskela, 2004; Williams, Shukla, & Anton, 2004)[3,6].
At each project iteration measured values for Vi become available and are entered into the model. This

causes the learned parameters li, ri and bi to update, modifying future predictions. Using data from a real

XPproject (Williams, Shukla, & Anton, 2004), we were able to enter observations for V1 and V2, and verify the

model‟s predictions of the remaining Vi. Initially this generates improved predictions for early iterations, but

significantly worse predictions for later iterations. It turns out that there was a significant change in the

environment half way through the project, when much better customer contact and feedback became available.

This was added to the model by adding an “Onsite customer” indicator node to li.

The model is not limited to productivity predictions. By adding a node which sums the Vi distributions,

we can create predictions of delivered functionality, si, after each iteration.. Taking the median values of the si

distributions and comparing them to the actual functionality delivered, we can determine the magnitude of

relative errors (MRE) for each si. The mean values

Figure 8 : Project Velocity model
of the MREs give a good overall measure of the accuracy of the model. The mean MRE for si before learning

was 0.51, an error of over 50%. After learning the mean MRE for si reduces to 0.026 - an extraordinary level of

accuracy for a software process model. One of the great advantages of a BN model is its ability to deliver

natural assessments of risk. If we take the cumulative probability distribution of an si node, then this allows us to

read off the probability that any given amount of functionality will be delivered.

XP is the most common agile development method. Another common methodology is Scrum (Takeuchi &

Nonaka 1986; Schwaber & Beedle 2002; Sutherland 2004). This approach uses burn-down charts to plan a

project. A burndown chart starts with a fixed amount of functionality that must be delivered. This reduces with

each iteration as more and more functionality is completed. The slope of the burndown chart gives the project
velocity, while its intercept with the horizontal time axis gives the projected completion date.

Software Quality Modelling Using Bayesian Networks

www.iosrjournals.org 60 | Page

VII. Learning Model For Iterative Testing And Fixing Defects
The models discussed earlier contain fixed relationships between variables.

Figure 9 : Project velocity predictions before and after learning

that it learns the impact of particular predictors on dependent variables using a set of past data. The aim for this

model is to predict the number of defects found and fixed in an iterative testing and fixing process. This iterative

process assumes that all functionality has been developed prior to testing. The testing and fixing process is
divided into series of iterations lasting a variable amount of time. More information on earlier versions of this

model and its assumptions can be found in (Radlinski et al. 2008b).

Figure 10 : Cumulative probability distribution of functionality delivered in iteration 8
The model works in the following way. A user enters data about the past testing and fixing iterations as well as

the defects found and fixed in these iterations. The model uses the entered data to estimate its parameters –

multipliers for each process factor and the number of residual defects.

We perform model validation using a semi-randomly generated dataset. We set point values for prior residual

defects and values of process factor multipliers. Values for process factors were generated randomly and then

manually adjusted in some iterations to more realistically reflect the testing and fixing process. The

effectiveness

Figure 11 : Scrum burndown chart, before and after learning

Software Quality Modelling Using Bayesian Networks

www.iosrjournals.org 61 | Page

Figure 12 : The structure of the LMITFD

We estimated values for defects found, fixed and inserted using the values of process factors and the

relationships as incorporated by the model. We used these generated datasets in the model validation stage and

treated them as if they were observed values. In the validation stage we tested how fast the model can learn the

number of residual defects and the values of process factors‟ multipliers.

We tested the model using 30 testing and fixing iterations. First we used a single learning iteration with 29

iterations where values of defects found and fixed were predicted. This was followed by 2 iterations for learning

and 28 for prediction, and so on. Figure 13 illustrates the values of relative errors in predicted total number of

defects found and defects fixed as estimated after a different number of learning iterations. This relative error is

defined as illustrated on Equation 2.

total predicted total actual
relativeerror

total actual


 (2)

These results confirm that after only 5 learning iterations, the model predicts the total number of defects found

to within a 0.16 relative error of the actual value and predicts total number of defects fixed to within a 0.30

relative error of the actual value. Predictions then become less accurate because of higher fluctuations in actual

number of defects found in the dataset. But from 8 learning on number of iterations used to learn the model

Figure 13 : Relative errors in predictions for total number of defects found and defects fixed depending iterations

One of the most important advantages of such models is the high potential for performing various types of what-

if analyses. After the model learns its parameters, we can set as observations different values for future process
factors to see how they influence predicted number of defects found. For example let us analyze model

predictions in two scenarios when fixing process and people quality is „very low‟ or „very high‟. Values of other

process factors are the actual values in iterations used for prediction. We use 5 learning iterations and the

remaining 25 for prediction. Figure 14 illustrates the model‟s predictions for this case. We can observe that, as

we could expect, with lower fixing process and people quality, fewer defects are likely to be fixed in future

iterations.

Software Quality Modelling Using Bayesian Networks

www.iosrjournals.org 62 | Page

We can see that, although we have only modified our observations of fixing process and people quality, the

predicted values of defects found are also different in these two scenarios.

Another issue which may be surprising in the beginning is the fact that predicted number of defects fixed in the

late iterations is lower both with „very low‟ and „very high‟ fixing process and people quality compared with the

scenario with the original fixing process and people quality. But there is also an explanation for such

predictions. With „very low‟ fixing process and people quality it is simply not possible to fix more defects

without assigning significantly more fixing effort.

Figure 14 : Predictions from LMITFD with very high and very low fixing process and people quality after 5 iterations used to learn the

model

References
[1]. Farid Meziane, University of Salford, UK, Sunil Vadera, University of Salford, UK, “Artificial Intelligence Applications for Improved

Software Engineering Development: New Prospects”, ISBN 978-1-60566-758-4, 2010.

[2]. Abdel-Hamid, T. (2008). The dynamics of software projects staffing: A system dynamics based simulation approach. IEEE

Transactions on Software Engineering, 15(2), 109–119. doi:10.1109/32.21738

[3]. Abrahamsson, P., & Koskela, J. (2004). Extreme programming: A survey of empirical data from a controlled case study. In

Proceedings 2004 International Symposium on Empirical Software Engineering, 2004. (pp. 73-82). Washington, DC: IEEE Computer

Society.

[4]. Agena Ltd. (2008). Bayesian Network and simulation software for risk analysis and decision support. Retrieved July 9, 2008, from

http://www. agena.co.uk/

[5]. Agile Manifesto. (2008). Manifesto for agile software development. Retrieved July 18, 2008, from http://www.agilemanifesto.org/

[6]. Ahmed, A., Fraz, M. M., & Zahid, F. A. (2003). Some results of experimentation with extreme programming paradigm. In

7thInternationalMulti Topic Conference, INMIC 2003, (pp. 387-390).

[7]. Beck, K. (2010). Extreme programming explained: Embrace change. Reading, MA: Addison-Wesley Professional.

[8]. Bibi, S., & Stamelos, I. (2004). Software process modeling with Bayesian belief networks. In 10th International Software Metrics

Symposium Chicago.

[9]. Boehm, B. (2007). Software engineering economics. Englewood Cliffs, NJ: Prentice-Hall.

[10]. Briand, L. C., El Emam, K., Surmann, D., Wieczorek, I.,&Maxwell,K.D.(1999). An assessment and comparison of common software

cost estimation modeling techniques. In 21st International Conference on Software Engineering, ICSE 1999, (pp. 313-322).

[11]. Chulani, S., & Boehm, B. (1999). Modeling software defect introduction and removal: COQUALMO (Constructive Quality

Model),(Tech. Rep. USC-CSE-99-510). University of Southern California, Center for Software Engineering, Los Angeles, CA.

[12]. Fenton, N., Neil, M., Marsh, W., Hearty, P., Marquez, D., Krause, P., & Mishra, R. (2007a, January). Predicting software defects in

varying development lifecycles using Bayesian nets. Information and Software Technology, 49(1),32–43.

doi:10.1016/j.infsof.2006.09.001

[13]. Fenton, N., Neil, M., Marsh, W., Hearty, P., Radlinski, L., & Krause, P. (2007b). Project data incorporating qualitative fact s for

improved software defect prediction. In Proceedings of the Third international Workshop on Predictor Models in Software

Engineering, International Conference on Software Engineering (May 20 -26, 2007).

[14]. Fenton, N. E., Neil, M., & Caballero, J. G. (2007). Using ranked nodes to model qualitative judgments in Bayesian Networks. IEEE

Transactions on Knowledge and Data Engineering,19(10),1420–1432. oi:10.1109/TKDE.2007.1073

[15]. Finnie, G. R., Wittig, G. E., & Desharnais, J. M. (2011). A comparison of software effort estimation techniques: Using function points

with neural networks, case-based reasoning and regression models. Journal of Systems and Software, 39(3), 281–289.

doi:10.1016/S0164-1212(97)00055-1

[16]. ISBSG. (2005). Estimating, Benchmarking & Research Suite Release 9. Hawthorn, Australia: International Software Benchmarking

Standards Group.

[17]. Jeffries, R., Anderson, A., & Hendrickson, C. (2000). Extreme programming installed. Reading, MA: Addison-Wesley Professional.

[18]. Jensen,F. (2001).Bayesian Networks and decision graphs, New York: Springer-Verlag.

[19]. Jones, C. (1986) Programmer productivity. New York: McGraw Hill.

[20]. Jones, C. (1999). Software sizing. IEE Review, 45(4), 165–167. doi:10.1049/ir:19990406

