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Abstract: In the present time, a personal computer has a very high processing power than required for a single 

user system. Hence, it can be effectively used as a multiuser system which serves several users concurrently. 

This can be achieved by N-computing. We will create a multiuser environment on a uniprocessor system; this 

can be achieved, when there is a separate kernel for each user in the same operating system. This concept is 
related to the concept of mapping between user level thread and kernel level thread, which is discussed in this 

paper. Further the system’s performance under various load conditions will be analyzed. In other words we 

want to utilize the full processing power of a personal computer for number of users simultaneously and also 

provide better performance at less cost.  
Keywords: Kernel, mapping, n-computing, thread, uniprocessor. 

 

I. Introduction 
N-computing is technology that allows multiple users to share single computer simultaneously; this 

means that with n-computing we could have one ordinary desktop computer catering for people or more at the 

same time. The effectiveness of parallel computing depends to a great extent on the performance of the 

primitives that are used to express and control the parallelism within programs. It exhibit poor performance if 

the cost of creating and managing parallelism is high. Even a fine-grained program can achieve good 

performance if the cost of creating and managing parallelism is low. Threads are a lighter-weight abstraction; 

multiple threads share an address space and its resources, and communication can be accomplished through 

shared data. Kernel level threads are, effectively, processes that share code and data space, where user level 

threads are implemented at the application level. This research divides responsibility for thread management 

between the kernel and application. Multithreading has emerged as a leading paradigm for the development of 
applications with demanding performance requirement. When number of users increase, so does the number of 

processes and hence number of threads, then performance is a major issue. This can be achieved by better thread 

management by kernel and better mapping of kernel level thread to user level thread which is explained in this 

paper. 

 

II. Thread Management By Kernel 
A thread is a light-weight process. The implementation of threads and processes differs from one 

operating system to another, but in most cases, a thread is contained inside a process. Multiple threads can exist 
within the same process and share resources such as memory, while different processes do not share these 

resources. On a single processor, multithreading generally occurs by time-division multiplexing (as in 

multitasking): the processor switches between different threads. This context switching generally happens 

frequently enough that the user perceives the threads or tasks as running at the same time. On a multiprocessor 

(including multi-core system), the threads or tasks will actually run at the same time, with each processor or 

core running a particular thread or task. Many modern operating systems directly support both time-sliced and 

multiprocessor threading with a process scheduler. The kernel of an operating system allows programmers to 

manipulate threads via the system call interface. Some implementations are called a kernel thread, whereas a 

lightweight process (LWP) is a specific type of kernel thread that shares the same state and information. 

Multithreading has emerged as a leading paradigm for development of application with demanding performance 

requirements (For real time systems, a dynamic uniprocessor scheduling algorithm has an O (n log n) Worst case 

complexity [1].) Generally, threads are located on shared data structure: a shared run queue for ready threads and 
shared communication structures for blocked thread. Access control to the shared resource is maintained 

through lock-based mechanism which ensures safe access to such critical section of core [2]. There are two 

commonly used thread models: kernel level threads and user level threads. Kernel level threads suffer from the 

cost of frequent user-kernel domain crossings kernel scheduling priorities. User level threads are not integrated 

with the kernel; blocking all threads whenever one thread is blocked. The Scheduler Activations model, 

proposed by Anderson et al., combines CPU allocation decisions with application control over thread 
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scheduling. It discusses the performance characteristics of an implementation of Scheduler Activations for a 

uniprocessor BSD system, and proposes an analytic model for determining the class of applications that benefit 

from its use [3]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1:  Thread and process 

Kernel level threads share some of the disadvantages of processes. Switching between them is slow, 

taking an order of magnitude more time than a user level thread context switch. Also they are scheduled by the 

kernel; with no application control .this can be negatively affect performance. For example, if threads have 

different priorities and the priorities are not visible to the kernel, a low priority thread may be scheduled in place 

of a high priority one. User level threads systems control scheduling decisions, but because they are not 

integrated with the kernel, when one thread blocks (e.g. to perform I\O), all of the user level threads sharing the 

process are blocked. This advantage of a multithreaded program allows it to operate faster on computer systems 

that have multiple CPUs, CPUs with multiple cores or across a cluster of machines— because the threads of the 

program naturally lend themselves to truly concurrent execution. In such a case, the programmer needs to be 

careful to avoid race conditions, and other non-intuitive behaviors. In order for data to be correctly manipulated, 
threads will often need to rendezvous in time in order to process the data in the correct order. Threads may also 

require mutually exclusive operations (often implemented using semaphores) in order to prevent common data 

from being simultaneously modified, or read while in the process of being modified. Careless use of such 

primitives can lead to deadlocks. The operating system kernel has complete control over the allocation of 

processors among address spaces including the ability to change the number of processors assigned to an 

application during its execution. To achieve this, the kernel notifies the address space thread scheduler of every 

kernel event affecting the address space, allowing the application to have complete knowledge of its scheduling 

state. . For fixed priority scheduling on uniprocessors, under certain conditions, the system's schedulability is 

maximized when the priorities are chosen in the inverse order of the task's deadlines [4]. The thread system in 

each address space notifies the kernel of the subset of user-level thread operations that can affect processor 

allocation decisions, preserving good performance for the majority of operations that do not need to be reflected 
to the kernel [5]. 

 

III. Thread Scheduling 
Today’s operating systems provide kernel threads for parallel applications and multi-threaded servers. 

Scheduling plays an important role with regard to efficiency and fairness — especially for distributed 

applications, multimedia processing and server processes. A multi-threaded application should be able to specify 

the scheduling strategy for its threads itself. In most modern operating systems the scheduling strategy is hard-

coded into the kernel and cannot be changed by the user. There are a few user-level thread packages available, 
where the users can define the scheduling strategy. Yet user-level threads are not suitable for applications that 

interact with the operating system frequently, such as server processes or distributed applications. In this paper 

we present a concept that allows handling of kernel-thread scheduling from the user level using hierarchical 

schedulers. Each application can have one or more of its own schedulers, which can define the application-

specific scheduling strategy. Thus, the programmer can implement his own scheduling strategy for his 

application or even for subsystems inside the application [6]. 
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In most computer operating systems, the kernel is the central component. It is the bridge between the user and 

applications and the computer hardware. It also is the mechanism that allows the computer to handle multiple 

users and multiple tasks simultaneously. The types of kernels are the monolithic kernel, the microkernel, the 

hybrid kernel, the nanokernel and the exokernel.  The kernel manages all of the computer's system resources. 

This includes long-term storage, the central processing unit (CPU), short-term memory and the input and output 

devices. When an application needs one of these resources, the kernel makes the resource available and 

completes the request.  This handling of resources allows the operating systems to be both multi-user and 
multitasking. The operating system does not actually perform more than one task at a time. Instead, the kernel 

switches tasks at such a high speed that the computer appears to be performing multiple tasks. The kernel also is 

responsible for making sure that resources used by one user or process are not violated the request of another 

user or process. There two main types of kernels are the monolithic kernel and the microkernel. Monolithic 

kernels employ a supervisory method of resource management in which all of the operating system services are 

run in the same address space, called the kernel space. Some monolithic kernels can load and unload executable 

modules. This extends the operating system's capabilities while still maintaining a minimum amount of code 

running in the kernel space at any one time. Micro kernels run only the minimal amount of operating system 

services, such as memory management, thread management and inter-process communication in the kernel 

space. All other services, such as device drivers, user interfaces and file management, are run in the user space. 

The microkernel severely minimizes the amount of code that is running in the kernel mode. 
Every thread has a thread priority assigned to it. Threads created within the common language runtime 

are initially assigned the priority of ThreadPriority.Normal. Threads created outside the runtime retain the 

priority they had before they entered the managed environment. You can get or set the priority of any thread 

with the Thread.Priority property. Threads are scheduled for execution based on their priority. Even though 

threads are executing within the runtime, all threads are assigned processor time slices by the operating system. 

The details of the scheduling algorithm used to determine the order in which threads are executed varies with 

each operating system. Under some operating systems, the thread with the highest priority (of those threads that 

can be executed) is always scheduled to run first. If multiple threads with the same priority are all available, the 

scheduler cycles through the threads at that priority, giving each thread a fixed time slice in which to execute. 

As long as a thread with a higher priority is available to run, lower priority threads do not get to execute. When 

there are no more runnable threads at a given priority, the scheduler moves to the next lower priority and 

schedules the threads at that priority for execution. If a higher priority thread becomes runnable, the lower 
priority thread is preempted and the higher priority thread is allowed to execute once again. On top of all that, 

the operating system can also adjust thread priorities dynamically as an application's user interface is moved 

between foreground and background. 

Efficient front end scheduling for simultaneous multithreading, where priority given to a thread can be 

overridden if it suffers from an excessive amount of incorrectly speculated instructions, is presented. Simulation 

results demonstrate that the proposed scheme not only significantly reduces the number of wrong-path 

instructions but also improves the instruction throughput. The overall performance of a simultaneous 

multithreading (SMT) processor depends on many factors including how threads are selected and the number of 

threads from which to fetch  instructions .Further, how to allocate the limited fetch slots to the selected threads 

must be judiciously decided: if instructions fetched from a thread reside in the instruction window for too many 

cycles before they are issued ,they occupy entries of the window that could be used by instructions of other 
threads ,ultimately limiting the Instruction-Level Parallelism (ILP) and the Thread-Level Parallelism (TLP) 

which can be exploited [7]. As multithreaded applications become common, scheduling inside applications 

plays a very important role for efficiency and fairness. There are different categories of applications that 

especially profit from specific scheduling strategies: 

1. Calculating applications with small working set. These applications often consist of many threads. Threads 

rarely block. Scheduling can be important to make the working set fit into the cache. 

2. Calculating applications with large working set. These applications consist of many threads, which are often 

blocked because of page faults. Scheduling can be very helpful to minimize the working set and to prevent page 

thrashing. 

3. Distributed user applications that communicate across a network, for example through message passing, 

virtual shared memory, or object invocation. These applications consist of many threads, which are often 
blocked in kernel while waiting for a response from other application parts. Application-specific scheduling on 

one node can help to minimize the idle time of other nodes. 

4. Servers (daemon processes). Servers consist of many threads, which are often blocked (for example when 

waiting for the network). Scheduling is very important to guarantee fairness between different jobs and to gain 

maximum efficiency. 

5. Multimedia applications with different real-time demands. In many cases correct scheduling decisions are 

only possible if the quality-of-service parameters of the application are available. 
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User-level scheduling with kernel threads allows the user to implement the optimal scheduling strategy for his 

application, for his modules or even between his applications. Especially applications that operate with a lot of 

system interaction, such as distributed applications, servers and applications with large working sets need to 

define their own scheduling strategies to achieve higher efficiency [6]. 

 

IV. Mapping Of Kernel Thread To User Thread 
 Threads can be supported either at user level or in the kernel. Neither approach has been fully 

satisfactory. User-level threads are managed by runtime library routines linked into each application so that 

thread management operations require no kernel intervention. The result can be excellent performance: in 

systems, the cost of user-level thread operations is within an order of magnitude of the cost of a procedure call. 

User-level threads are also flexible; they can be customized to the needs of the language or user without kernel 

modification. User-level threads execute within the context of traditional processes; indeed, user-level thread 
systems are typically built without any modifications to the underlying operating system kernel. The thread 

package views each process as a “virtual processor,” and treats it as a physical processor executing under its 

control; each virtual processor runs user-level code that pulls threads off the ready list and runs them. In reality, 

though, these virtual processors are being multiplexed across real, physical processors by the underlying kernel. 

“Real world” operating system activity, such as multiprogramming, I/O, and page faults, distorts the 

equivalence between virtual and physical processors; in the presence of these factors, user-level threads built on 

top of traditional processes can exhibit poor performance or even incorrect behavior. Kernel is unaware of it. 

When one thread gets blocked, even though there are Runnable threads, they do not get a chance to run Kernel 

threads: Scheduled by kernel; in kernel's view, it is like a process only, but a lightweight process. Each such 

thread is a schedulable entity. User threads on top of kernel threads: Here kernel is aware of the threads that are 

running in the user space. So user level threads can make blocking calls and kernel can run other threads from 
the same process. Also, if a one user level thread blocks, then the kernel thread on which the user thread was 

running, is also blocked; and if that kernel thread was the only thread that was running on a processor, then the 

processor becomes unusable. If the user level thread is blocked, to have multiple kernel threads and context 

switch between them, then if all the kernel threads are blocked (because the corresponding user level thread 

blocks), then none will be running in the system. Instead of this, i.e., In this case, we can avoid the need to 

create multiple kernel threads right. The operating system kernel provides each user-level thread system with its 

own virtual multiprocessor, the abstraction of a dedicated physical machine except that the kernel may change 

the number of processors in that machine during the execution of the program [5]. There are several aspects to 

this abstraction: 
•The kernel allocates processors to address spaces; the kernel has complete control over how many processors to 

give each address space's virtual multiprocessor. 

•Each address space’s user-level thread system has complete control over which threads to run on its allocated 
processors, as it would if the application were running on the bare physical machine. 

• The kernel notifies the user-level thread system whenever the kernel changes the number of processors 

assigned to it; the kernel also notifies the thread system whenever a user-level thread blocks or wakes up in the 

kernel (e.g., on I/O or on a page fault). The kernel's role is to vector events to the appropriate thread scheduler, 

rather than to interpret these events on its own. 

•The user-level thread system notifies the kernel when the application needs more or fewer processors. The 

kernel uses this information to allocate processors among address spaces. However, the user level notifies the 

kernel only on that subset of user-level thread operations that might affect processor allocation decisions. As a 

result, performance is not compromised; the majority of thread operations do not suffer the overhead of 

communication with the kernel. 

• The application programmer sees no difference, except for performance, from programming directly with 
kernel threads. 

There are two types of threads to be managed in a modern system: User threads and kernel threads. 

User threads are supported above the kernel, without kernel support. These are the threads that application 

programmers would put into their programs. Kernel threads are supported within the kernel of the OS itself. All 

modern OS support kernel level threads, allowing the kernel to perform multiple simultaneous tasks and/or to 

service multiple kernel system calls simultaneously. In a specific implementation, the user threads must be 

mapped to kernel threads, using one of the following strategies: 
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Figure 2: Mapping between user level thread and kernel level thread 

 

 Many-To-One Model 
In the many-to-one model, many user-level threads are all mapped onto a single kernel thread. Thread 

management is handled by the thread library in user space, which is very efficient. However, if a blocking 

system call is made, then the entire process blocks, even if the other user threads would otherwise be able to 

continue. Because a single kernel thread can operate only on a single CPU, the many-to-one model does not 

allow individual processes to be split across multiple CPUs. Green threads for Solaris and GNU Portable 

Threads implement the many-to-one model. 

 

 One-To-One Model 
The one-to-one model creates a separate kernel thread to handle each user thread. One-to-one model 

overcomes the problems listed above involving blocking system calls and the splitting of processes across 

multiple CPUs. However the overhead of managing the one-to-one model is more significant, involving more 

overhead and slowing down the system. Most implementations of this model place a limit on how many threads 

can be created. Linux and Windows from 95 to XP implement the one-to-one model for threads. 

 

 Many-to-Many Model 
The many-to-many model multiplexes any number of user threads onto an equal or smaller number of 

kernel threads, combining the best features of the one-to-one and many-to-one models. Users have no 

restrictions on the number of threads created. Blocking kernel system calls do not block the entire process. 

Processes can be split across multiple processors. Individual processes may be allocated variable numbers of 

kernel threads, depending on the number of CPUs present and other factors. One popular variation of the many-

to-many model is the two-tier model, which allows either many-to-many or one-to-one operation. IRIX, HP-
UX, and Tru64 UNIX use the two-tier model, as did Solaris prior to Solaris 9. 

Threads are the vehicle for concurrency in many approaches to parallel programming. Threads can be 

supported either by the operating system kernel or by user-level library code in the application address space, 

but neither approach has been fully satisfactory. The effectiveness of parallel computing depends to a great 

extent on the performance of the primitives that are used to express and control the parallelism within programs. 

Even a coarse-grained parallel program can exhibit poor performance if the cost of creating and managing 

parallelism is high. Even a fine-grained program can achieve good performance if the cost of creating and 

managing parallelism is low. One way to construct a parallel program is to share memory between a collection 

of traditional UNIX-like processes, each consisting of a single address space and a single sequential execution 

stream within that address space [5]. 

 

V. Multitasking On Uniprocessor 
Multitasking is the ability of a computer to run more than one program, or task , at the same time. 

Multitasking contrasts with single-tasking, where one process must entirely finish before another can begin. 
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MS-DOS is primarily a single-tasking environment, while Windows 3.1 and Windows NT are both multi-

tasking environments. On a single-processor multitasking system, multiple processes don't actually run at the 

same time since there's only one processor. Instead, the processor switches among the processes that are active 

at any given time. Because computers are so fast compared with people, however, it appears to the user as 

though the computer is executing all of the tasks at once. Multitasking also allows the computer to make good 

use of the time it would otherwise spend waiting for I/O devices and user input--that time can be used for some 

other task that doesn't need I/O at the moment 
Within the category of multitasking, there are two major sub-categories: preemptive and non-

preemptive (or cooperative). In non-preemptive multitasking , use of the processor is never taken from a task; 

rather, a task must voluntarily yield control of the processor before any other task can run. Windows 3.1 uses 

non-preemptive multitasking for Windows applications. Programs running under a non-preemptive operating 

system must be specially written to cooperate in multitasking by yielding control of the processor at frequent 

intervals. Programs that do not yield sufficiently often cause non-preemptive systems to stay "locked" in that 

program until it does yield. An example of failed non-preemptive multitasking is the inability to do anything 

else while printing a document in Microsoft Word for Windows 2.0a. This happens because Word does not give 

up control of the processor often enough while printing your document. The worst case of a program not 

yielding is when a program crashes. Sometimes, programs which crash in Windows 3.1 will crash the whole 

system simply because no other tasks can run until the crashed program yields. Preemptive multitasking differs 
from non-preemptive multitasking in that the operating system can take control of the processor without the 

task's cooperation. (A task can also give it up voluntarily, as in non-preemptive multitasking.) The process of a 

task having control taken from it is called preemption. Windows NT uses preemptive multitasking for all 

processes except 16-bit Windows 3.1 programs. As a result, a Window NT application cannot take over the 

processor in the same way that a Windows 3.1 application can. A preemptive operating system takes control of 

the processor from a task in two ways: 

 When a task's time quantum (or time slice) runs out. Any given task is only given control for a set amount of 

time before the operating system interrupts it and schedules another task to run. 

 When a task that has higher priority becomes ready to run. The currently running task loses control of the 

processor when a task with higher priority is ready to run regardless of whether it has time left in its quantum 

or not. 
At any given time, a processor (CPU) is executing in a specific context. This context is made up of the 

contents of its registers and the memory (including stack, data, and code) that it is addressing. When the 

processor needs to switch to a different task, it must save its current context (so it can later restore the context 

and continue execution where it left off) and switch to the context of the new task. This process is called context 

switching . When Windows NT switches tasks, it saves all of the registers of the task it's leaving and re-loads 

the registers of the task to which it's switching. This process also enables the proper address space for the task to 

which Windows NT is switching. In a single processor multi-programming system, multiple processes are 

contained within memory (or its swapping space). Processes alternate between executing (Running), being able 

to be executed (Ready), waiting for some event to occur (Blocked), and swapped-out (Suspend). A significant 

goal is to keep the processor busy, by “feeding” it processes to execute, and always having at least one process 

able to execute. The key to keeping the processor busy is the activity of process scheduling, of which we can 

categories three main types:  

 Long-term scheduling: the decisions to introduce new processes for execution, or re-execution. 

 Medium-term scheduling: the decision to add to (grow) the processes that are fully or partially in memory.  

 Short-term scheduling: the decisions as to which (Ready) process to execute next. 

The performance of the various architectures is examined on a uniprocessor system. Three workloads are 

examined: no disk-I/O, moderate disk-I/O and heavy disk-I/O. These three workloads highlight the differences 

among the architectures. The design of real-time systems is usually approached by decomposing the system in a 

set of tasks that are scheduled on set of processing resources. Real time requirements impose constraints on the 

necessary computational resources. For these reasons, the scientific community has focused on establishing the 

conditions by which the task set is schedulable on a set of processing resources by some scheduling policy under 

given real time requirements. For fixed priority scheduling on uniprocessor, under certain conditions, the 

system's schedulability is maximized when the priorities are chosen in the inverse order of the task's deadlines, a 
similar condition has also been shown for dynamic scheduling on uniprocessor, where under certain conditions 

schedulability is maximized when higher priorities are given to the tasks with lower absolute deadlines. This 

scheduling policy is known as the earliest deadline first scheduling policy.  
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Figure 3: Uniprocessor environment 
 

VI. Conclusion 
We’ve all become accustomed to the PC model, which allows every user to have their own CPU, hard 

disk, and memory to run their applications. But personal computers have now become so powerful that most 
people can’t possibly use all the processing power they purchase. N-Computing is a modern take on the time-

honored concept where multiple users share the processing power of a single computer. This approach has 

several advantages over the traditional PC model, including lower overall costs, better energy efficiency, and 

simplified administration. Our proposed solution and further analysis would increase performance of any 

uniprocessor system. The n-computing solution works because today’s PCs are so powerful that the vast 

majority of applications only use a small fraction of the computer’s capacity. The proposed system will be more 

efficient and provide better performance at less cost and it also consumes less power.  
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