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Abstract: The association  rule mining can be divided into two steps.The first step is to find  out  all  frequent  

itemsets,  whose  occurrences  are  greater  than  or  equal  to  the  user-specified threshold.The second step is 

to generate reliable association rules based on  all  frequent  itemsets found  in the  first  step. Identifying  all  

frequent  itemsets  in a large database dominates the overall performance  in the  association  rule  mining. In  

this  paper,  we propose  an  efficient method, INCREMENTAL PINCER, for discovering the maximal frequent  

itemsets. The  INCREMENTAL PINCER  method  combines  the  advantages  of  both  the  DHP  and the  

Pincer-Search   algorithms. The  combination  leads  to  two  advantages. First,  the INCREMENTAL PINCER 

method, in general, can reduce the number  of database  scans. Second, the INCREMENTAL PINCER can filter 

the infrequent candidate itemsets and can use the filtered itemsets to find the maximal  frequent  itemsets. These  

two  advantages  can  reduce  the  overall  computing time  of  finding   the  maximal frequent  itemsets.  In  

addition,  the  INCREMENTAL PINCER  method  also provides an efficient mechanism to construct the 

maximal frequent candidate itemsets to reduce the search space. 

Keyterms: association rules, data mining, frequent itemsets, the INCREMENTAL PINCER method 

 

I. Introduction 
 The  process  of  mining  association  rules  can be  decomposed  into  two  steps  [13]. The first step is 

to find out all frequent itemsets, whose occurrences are greater than or equal to the user- specified  threshold. 

The  second  step  is  to generate reliable association rules  based  on  all frequent itemsets found in the first 

step.The cost  of  the  first  step  is much  more expensive than the second step.  Therefore, much research 

focused on developing  efficient  algorithms  for finding   frequent itemsets. A  well-known Apriori algorithm 

proposed  by R. Agrawal  and R. Sriank [13] was the first efficient method to find   the   frequent   itemsets.  The   

main contribution   of   the   Apriori   algorithm   is   it utilizes the downward closure property, i.e., any superset 
of an infrequent itemset must be an infrequent itemset, to efficiently generate candidate  itemsets  for  the  next  

database  scan. By canning a database k times, the Apriori algorithm can find all frequent itemsets of a database, 

where k is the length of the longest frequent itemset in the database. Many methods based on the Apriori 

algorithm have been proposed in the literature. In general, they  can  be  classified   into  three  categories, 

reduce the number of candidate itemsets,  reduce the number of database scans,and the combination of 

bottom-up and top-down search. Reduce the number of candidate itemsets:   Methods   in   this   category   try   

to Generate a small number of candidate itemsets efficiently in order to reduce the computational cost.The   

hash-based algorithm   DHP proposed by Park et al. [6] is an example. The main contribution of the  DHP  

algorithm  is  it  uses  a hash  table  to filter   the   huge   infrequent   candidate   itemsets before  the  next 

database scan. However, the DHP algorithm needs to perform database scans as  many  times  as  the  length  

of  the  longest frequent itemset in a database. Reduce the number of database scans: Scanning  a database 
iteratively  is time consuming. Thus, methods in this category try to  reduce  database  scans  aim at reducing 

disk I/O costs.  The Partition algorithm proposed by Savasere   et   al.   [1]   generates all   frequent itemsets  

with  two  database  scans. The Partition algorithm divides the database into several   blocks   such  that   each  

block   in  the database  can  be  fitted  into  the  main  memory and can be processed by the Apriori algorithm.  

However,  the  Partition  algorithm examines   much   more candidate  itemsets  than the   Apriori   

algorithm.Brin   et   al.   [17] proposed  the DIC  algorithm  that  also  divides the   database   into   several   

blocks   like   the Partition algorithm. Unlike  the Apriori algorithm, once some frequent itemsets  are obtained, 

the DIC algorithm can generate the candidate  itemsets in different  blocks and  then add them to count for the 

rest blocks. However, the DIC algorithm is very sensitive to the datadistribution of a database. 

The combination of bottom-up and top- down search: Methods in this category are  also based  on the downward  

closure. They obtain the frequent itemsets   from  the  bottom-up direction  like  the  

Apriori  algorithm.   In  the mean   time,  they  use  the  infrequent  itemsets found in the 
bottom-up direction to split the maximal frequent candidate itemsets in the top- down  direction  in  each  round. 

The  advantage is  that  once  the  maximal   frequent   itemsets are   obtained,    all  subsets   of   the   

maximal frequent  itemsets  arealso  identified. Therefore,  all subsets  of  the  maximal  frequent itemsets  do  

not  need  to  examine   from  the bottom-up   direction.  Without   the  top-down pruning,   they   need   to  scan 
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Transaction Items 

1 A, C, D 

2 B, C, E, F 

3 A, B, C, E, F 

4 B, E 

5 A, C, F 

 

Support Itemsets 
2 AF, BC, BF, CE, EF, ACF, BCE, BCF, CEF, BCEF 

3 A, B, E, F, AC, BE, CF 

4 C 

 

database as many times  as  the  length  of  the  longest   frequent itemset.However, the improvement is not clear 

when the length of the longest frequent itemset is relatively  short.  The Pincer-Search  algorithm proposed   by   

D.   Lin   et   al.   [2]   and   the MaxMiner algorithm proposed by R.J. Bayardo [6] are two examples. In   these   
two   methods, the  generation of the maximal frequent candidate itemsets is not efficient. They may spend a lot 

of time on finding the maximal frequent itemsets. In   this   paper,we  propose an   efficient method,  

INCREMENTAL PINCER,  to  generate the  maximal frequent itemsets in the category of the combination of 

bottom-up and top-down search. The proposed method combines the advantages of both the DHP and the 

Pincer- Search algorithms.Unlike the DHP algorithm, the  

 

II. Incremental Pincer 
 method is very efficient  in  reducing  the  number  of  database scans when the length of the longest 

frequent itemset is relatively long. Unlike  the Pincer- Search  algorithm, the INCREMENTAL PINCER method  
can  filter  the  infrequent itemsets   with the hash technique from the bottom-up direction  and  then  can  use  

the filtered itemsets to  find  the  maximal  frequent  itemsets  in  the top-down direction.  In   

addition, the  

INCREMENTAL PINCER  method  also  provides an efficient mechanism to construct the maximal  frequent  

candidate  itemsets. 

 

Table 1: Database D. 

 

 

 

 
 

 

 

 

 

 

Table 2: All frequent itemsets (the minimum support = 40%). 

 

 

 

 

 
 

III. Related Algorithms 
Many   methods   have   been   proposed   to determine all frequent itemsets in the association  rule  mining  [2,  

3, 4, 6, 8, 9, 14, 15,  17]. Since  our  method  combines  the advantages of the DHP and Pincer-Search 

algorithms, in this section, we briefly describe the Apriori, the DHP, and the Pincer-Search algorithms. 

 

2.1  The Apriori Algorithm 

The Apriori algorithm is given as follows. 

Algorithm Apriori() 
1. Scan D to obtain L1, the set of frequent 1- itemsets; 

2. for (k = 2; Lk-1 Ø; k++) do 

3. Ck = apriori-gen(Lk-1); // Generate new candidates from Lk-1 

4. for all transactions t D do 

5. Ct = subset(Ck, t); // Candidates contained in t 

6. for all c Ct do 

7. c. count++; 

8. Lk = {c Ck | c. count minimum support}; 

9. All frequent itemsets = kLk; end_of_Apriori 

 

In  the  first  round,  the  Apriori  algorithm scans the database to determine L1  (line 1). In the kth round, where 
k 2, the process of the Apriori algorithm can be divided into the following three steps. Step 1. Line 3 constructs 

Ck from Lk-1, th Step  3. Line 9 determines the  Lk,  whose support  is greater  than or  equal  to the user- 

specified minimum support, from Ck. The algorithm terminates when no more candidate itemsets can be 
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constructed for next round. The  algorithm  needs  to  do  multiple database  scans  as  many  times  as  the 

length of  the longest frequent itemset. Therefore, its performance decreases which was determined in the (k-1) 

round. dramatically  when  the  length  of  the  longest 
Step 2. Lines 4-7 scan the database to count the support of each k-itemset in Ck. 

 

2.2  The DHP Algorithm 

The DHP algorithm is given as follows. //Step 1 of the DHP algorithm 

Function build_hash_table() 

1. Initialize all hash buckets in the hash table H2 to zero; 

2. for all transactions t D do 

3. Insert and count the supports of all 1- itemsets in a hash tree; 

4. for all 2-item subsets x of t do 

5. H2[h2(x)]++; 

6. L1 = {c | c. count minimum support, c is in the hash tree}; 
end_of_build_hash_table //Step 2 of the DHP algorithm 

Function gen_candidate(L1, H2, C2) 

1. C2  = L1 L1 = {X Y | X, Y L1} 

2. for all 2-itemsets c C2 do 

3. if H2[h2(c)] the minimum support then C2 = C2 {c} end_of_gen_candidate 

In the Apriori algorithm,  it actually counts the support of every itemset in Ck  by scanning the  database   in  

each  round. The   main contribution  of  the  DHP  algorithm  is that it filters the infrequent itemsets in Ck by 

using the hash technique and then counts the support  of frequent itemset is relatively long. every  unfiltered  

itemset  in  Ck. Since  the number  of  the  itemsets  in  Ck   is decreased substantially for  next   database   scan,   

the overall  performance  is  improved. The process of the DHP algorithm can be divided into two steps.  In step 

1, function build_hash_table() identifies  L1  and  builds  a  hash  table  H2  in the  first  database  scan. The 

hash table H2  is built by determining the hash value of each 2- item subset of each transaction by a hash 
function h2, and  then add 1to  the corresponding   hash   bucket. In  step   2, function  gen_candidate()  

generates  C2 and checks  each 2-itemset  in C2 according to  the value of the corresponding hash bucket in 

H2. If the value of the corresponding hash bucket is  smaller  than  the  minimum  support,  this 2- itemset is an 

infrequent itemset and its support does not need to be counted in next database scan. An example of the 

construction of the hash table and the generation of C2  is shown in Figure 1. Like the Apriori  algorithm,  the 

DHP  algorithm  needs  to  scan  a  database  as many  times  as  the  length  of the longest frequent itemset.It   

is   inefficient   if   the length  of the  longest frequent itemset is long. 

 

 
h({x, y}) = ((order of x)*10 + (order of y)) mod 7 

 
 

 
Figure 1: An example of the construction of the hash table and the generation of the C2. 
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3.3  The Pincer-Search Algorithm 

The Pincer-Search algorithm is given as follows. Algorithm Pincer-Search (){ 

 
1. C1 = {all distinct 1-itemsets in D}; 

2. n = the number of 1-itemsets in C1; 

3. MFCS = {n-itemset}; //the set of maximal frequent candidate itemsets 

4. MFS = ; //the set of maximal frequent itemsets 

5. k = 1; //pass 

6. while Ck do 

7. Scan the database and count the supports for MFCS and Ck; 

8. MFS = MFS {frequent itemsets inMFCS}; 

9. Lk = {frequent itemsets in Ck} {subsets of MFS}; 

10. Sk = {infrequent itemsets in Ck}; 

11. if Sk then call MFCS_gen(); 
12. Ck+1 = Lk Lk; 

13. if any frequent itemset in Lk was removed then call recover() to recover Ck+1; 

14. for all itemsets c Ck+1 do 

15. if c any element in MFCS then remove c from Ck+1; The Pincer-Search algorithm can be divided into two 

steps in each round. In step 1, line  7  scans  a  database  to  count  the  supports of   all   itemsets   in   

MFCS   and   Ck in   the bottom-up and top-down directions. In step 2, lines  9-10  classify  all 

itemsets  in Ck  into two groups, frequent and infrequent, in the bottom-up  direction. The  group  

that contains all frequent itemsets is Lk. The other group that 

16. k = k+1; 

17. return MFS;  

end_of_Pincer-Searchfunction MFCS_gen(){ 

1. for all itemsets s Sk do 
2. for all itemsets m MFCS do 

3. if s m then 

4. MFCS = MFCS {m}; 

5. for all items e itemset s 

6. if m {e} is not a subset of any itemset in MFCS then 

7. MFCS = MFCS {m {e}}; 

8. return MFCS; 

end_of_ MFCS_gen function recover(){ 

1. for all itemset l Lk do 

2. for all itemsets m MFS do 

3. if the first k-1 items in l are also in m then 
4. for i form j+1 to |m| do 

5. Ck +1 = Ck +1{l.item1, l.item2, …, l.itemk, m.itemi}; 

end_of_recover 

contains all infrequent itemsets will be used to split the maximal frequent candidate itemsets in MFCS in the 

top-down direction (function MFCS_gen()). The   algorithm   will   be terminated when there are no 

itemsets in MFCS. 

The   Pincer-Search   algorithm   also   uses the downward closure. The downward closure  consists  of  two  

properties.The  first property  is  that  all  supersets  of  the infrequent itemsets must also be infrequent. This 

property   is  used   in   many   typical bottom-up algorithms of the association rule mining, such as the Apriori 

algorithm. The second property is that all subsets of a frequent itemsets must also be frequent. This property  

can  be  used  in  a top-down   algorithm   of  the   association   rule mining.  The Pincer-Search  algorithm is 

very efficient when the length of the longest frequent itemset of a database  is long. However,  its disadvantage 
is that the initialization of the maximal frequent candidate  set is not efficient. It may spend a lot of time on 

finding the set of maximal frequent itemsets. Given the database shown in Table 1 as an example, we have C1 

={A, B, C, D, E, F} and the set   of   maximal   frequent   candidate   itemsets MFCS = {ABCDEF}.After the 

first round, the infrequent  1-itemset  is D, and  MFCS  becomes {ABCEF}. Assume   that   AB  and  AE  are 

infrequent 2-itemsets in the second round. Consider   the   2-item   subset   AB   in   ABCEF, 

{ABCEF}  will  be  split  into  {BCEF,  ACEF}. Consider  the  2-item  subset  AE  in  ACEF,  the {ACEF} will 

be split into {CEF, ACF}. Thus, 
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Algorithm INCREMENTAL PINCER() 

1. In the first round, scan the database D to count the support of all 1 itemsets and build a hash table H2; 

2. C2 is filtered by the H2; 
3. call construct_maximal_frequent_candidate_itemsets (C2,  H2); 

4. In the second round, divide the database into several blocks; 

5. for all blocks b D do 

6. Count the supports of itemsets in C2 and MFCS; 

7. call process_collision(C2, H2) to process the collisions of the hash bucket; 

8. Move the maximal frequent itemsets from MFCS to the hash tree; 

9. Apply the Pincer-Search algorithm to the rest of rounds; end_of_algorithm 

 

Function construct_maximal_frequent_candidate_itemsets( C2,  H2) 

1. Cmax = {x = x1x2x3….xn | x1x2, x1x3, x1xn C2, where n > 2}; 

2. m = 3; MFCS = ; 
3. for all x = x1x2x3…xn Cmax do 

4. Push x into the stack initially; 

5. while the stack is not empty do 

6. Popup an element x from the stack; 

7. while m n do after the second round, MFCS in the top-down direction would be {BCEF, ACF}. 

 

IV. The Incremental Pincer Method 
Our method, INCREMENTAL PINCER, combines the  advantages  of  both  the  DHP  and  Pincer- 

Search  algorithms. In  the  INCREMENTAL PINCER  method,  it  uses  the  hash  technique  of the  DHP  
algorithm   to  filter  the infrequent itemsets  in  the  bottom-up  direction.Then   it uses   a   top-down technique  

that  is  similar   to the Pincer-Search algorithm to find the maximal frequent   itemsets.The main fference 

of  the  top-down  techniques  between the  INCREMENTAL  PINCER  method  and   the Pincer-Search 

algorithm is that the INCREMENTAL  PINCER   method   provides   a more  efficient mechanism to initialize 

the set of maximal frequent candidate itemsets than that of the Pincer-Search algorithm. By combining the 

advantages of the DHP and Pincer-Search algorithms, the number of database scan and the search space of items 

can be reduced. The algorithm of the INCREMENTAL PINCER method is given as follows 

 

8. k = h2(xixm), for i = 2, 3,…, m  1; 

9. if (H2(k) < minimum support) then 

10. Split x1x2x3….xn into two (n-1)- itemsets, x1x2x3…xi…xm-1xm+1…xn and x1x2x3…xi-

1xi+1…xmxm+1…xn; 
11.   if is_maximal_candidate_itemset(x1x2x3…xi-1xi+1…xmxm+1…xn)= true then push x1x2x3…xi-

1xi+1…xmxm+1…xn  into the stack; 

12. else discard x1x2x3…xi-1xi+1…xmxm+1…xn; 

13 ifis_maximal_candidate_itemset(x1x2x3…xi…xm-1xm+1…xn) = true 

14. then continue processing x1x2x3…xi…xm-1xm+1…xn; 

15.  m = m+1; 

16. else x1x2x3…xi…xm-1xm+1…xn  is discarded; 

17. break; 

18. if (m = n and the length of x > 2) then MFCS= MFCS + {x}; 

19. return MFCS; end_of_construct_maximal_frequent_candidate_i temsets 

Function is_maximal_candidate_itemset(itemsetx){ 
1. for all itemset s in the stack do 

2. if all items in x are also in s then return false; 

3. else return true;end_of_is_maximal_candidate_itemset 

 

Function process_collision(C2, H2) 

1. for all blocks bD do 

2. for all H2(k) minimum support do 

3. for all ci C2 that hashed into H2(k), where i = 1, 2,…, n don 

5. then use the infrequent 2-itemset cj mto split itemsets in MFCS; 

4. Remove the infrequent 2- itemset cj from C2;end_of_ process_collision 
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4. if ( H 2 (k ) support (ci ) support 

(c j ) minimum support, j 1,2,...,n )  
i  1    

 

 

 

 
 

 

In  algorithm  INCREMENTAL PINCER(), lines 1-2 use the hash technique to filter the infrequent itemsets in 

C2 in the bottom-up direction. Line 3 constructs the set of maximal frequent candidate  itemsets  MFCS. 

Line  6 counts  the  supports  of  itemsets  in  MFCS  and C2.   Line 7 splits the maximal frequent 

candidate itemsets if some conditions are satisfied. Line  8  moves  the  maximal  frequent itemsets  from  

MFCS  to  the  hash  tree. Line 9 performs the Pincer-Search  algorithm  to get the maximal frequent itemsets. 

We first explain how function construct_maximal_grequent_candidate_itemset s() works.  Line 1  

constructs  Cmax   with  all 2-itemsets that have the same first item in C2. Lines   3-19   generate   the   set   of   

maximal frequent   candidate   itemsets,   MFCS. The generation   process   is   as   follows. Assume that  an  

itemset   x  in  Cmax is  denoted   as x1x2x3…xn. Consider  the  first  m  items  in x1x2x3….xn, for m = 3, …, 
n, and examine the 2-item  subset  xixm   of  x,  for  i  =  2,  3,…,  m 1. If   the   number   of   2-itemsets   in   

the corresponding  hash  bucket  of  xixm  is  smaller than minimum support, i.e., xixm  is not in C2, 

splitx1x2x3….xn into x1x2x3…xi…xm- 1xm+1…xn and x1x2x3…xi-xi+1…xmxm+1…xn. Itemsets 

x1x2x3…xi…xm-1xm+1…xn  and x1x2x3…xi-1xi+1…xmxm+1…xn are then compared with elements in the 

stack. We have the following four cases. Case  1. All items in x1x2x3…xi…xm-1xm+1…xnandx1x2x3…xi- 

1xi+1…xmxm+1…xn  are also in any element in   the   stack. Bothx1x2x3…xi…xm-1xm+1…xn 

andx1x2x3…xi-1xi+1…xmxm+1…xn are   discarded. An itemset  is  popped  up from the stack and the 

generation process continues.Case 2.Only  items   in  x1x2x3…xi…xm-1xm+1…xn   are  also  in any  element  

in  thestack.Itemset  x1x2x3…xi…xm-1xm+1…xn is   discarded.The   generation  process continues to examine 

xi+1xm  of x1x2x3…xi-1xi+1…xmxm+1…xn.Case 3.Only items in x1x2x3…xi-1xi+1…xmxm+1…xn  are 

also in any element in the stack. Itemset x1x2x3…xi-1xi+1…xmxm+1…xn is discarded. Thegeneration process 

continues to examine the xixm+1 of x1x2x3…xi…xm-1xm+1…xn.Case  4.Otherwise,  itemset  x1x2x3…xi- 
1xi+1…xmxm+1…xn   is   pushed   into   the stack and the generation process continues toexamine xixm+1 

of x1x2x3…xi…xm-1xm+1…xn.The generation process is continuing until m  =  n.Then  we  get  a  maximal  

frequent candidate   itemset. Once   one   maximal frequent  candidate  itemset  is  generated,  one of the 

itemsets in the stack is popped up and the generation process is applied until the stack is empty.An example  of 

the generation  process is shown in Figure 2.Let C2  = {AB, AC, AD, AE,  AF,  BC,  BF,  CD,  CE,  CF}.Cmax  

is{ABCDEF}. Consider the first 3 items ABC in ABCDEF.Since BC is in C2,  we examine ABCD in 

ABCDEF.Since BD is not in C2, ABCDEF is split into ABCEF and ACDEF. Compare  ABCEF  and  ACDEF  

with elements in  the  stack,  we  have  case  4. ACDEF  is pushed   into   the   stack   and   the generation 

process is continuing on ABCEF. Since BE is not in C2, ABCEF is split into ABCF and ACEF. Compare 

ABCF and ACEF with elements in the stack, we have case 2. ACEF is  discarded. A   maximal frequent 

candidate  itemset, ABCF, is obtained.  Since the   stack is   not  empty, itemset  ACDEF  is  popped  up  from  
the  stack and   the generation   process   continues   in   a similar manner.Finally,allmaximal frequent candidate 

itemsets, ABCF, ACD, and ACE are generated form ABCDE 

 

 



 A comprehensive method for discovering the maximal frequent set 

www.iosrjournals.org                                                             37 | Page 

 

In INCREMENTAL PINCER method, the collision of the hash buckets cannot be avoided by using the hash 

technique.The collision may result in an infrequent itemset be used to construct the maximal frequent candidate 
itemsets.  For example, assume that C2 = {AB, AC, AD, AE, AF, BC, BF, CD, CE, CF} is given. One of the 

maximal frequent candidate itemsets of C2 is ABCF. Assume that AC, a frequent itemset, and AF, an 

infrequent itemset, are hashed into bucket2. Since AC and AF are in the same bucket, AF cannot be filtered and 

will be used to construct the maximal frequent candidate itemsets.Function process_collision() provides a 

solution of this problem.In the following, we explain how it works.First, it divides the database into several 

blocks. In the second round, the   supports  of elements  in  C2   and  MFCS  are  counted.The number  of  2-

itemsets hashed into bucket k in H2 is denoted as H2(k).Assume that there are n 2- itemsets, c1, c2,…, cn, in 

C2, are hashed into bucket  k.  An infrequent  itemset cj can be identified by the following equation:n 

H 2 (k ) support (ci ) support (c j ) 

minimum support,  j 1,2,...,n , (1)i  1 

where the  supports of ci  and  cj   among the  k blocks are denoted as support(ci)  and support(cj), respectively. 
Ineach block scanning,   all  infrequent   itemsets  in   C2are identified  and  are  deleted  from  C2.The 

identified infrequent itemsets are used to split itemsets in MFCS as well.We now give an example to explain 

Equation (1). Assume that H2(k) is 100 and the minimum support is 50.  After scanning several blocks 

in the database, support(AC) is 70 and support(AF) is   10. By   applying   Equation   (1),   100 

(70+10)+10 = 30 < the minimum support. Thus, we can identify AF is an infrequent itemset and AF can be 

discarded. The  purpose  of  dividing a database into several blocks is that some infrequent itemsets in C2 may 

be determined earlier  when some  blocks are  scanned.The maximal  frequent  candidate itemsets that contain 

these  infrequent itemsets  cannot  be  counted further. Therefore, the division may lead us to identify those 

maximal frequent candidate itemsets  that  contain  infrequent  itemsets  earlier and reduce the time of finding 

the maximal frequent itemsets. 

 

V. Experimental Results 
To evaluate the performance of the proposed method, we have implemented the INCREMENTAL 

PINCER method in VB.NET language along with the DHP and the Pincer-Search algorithms on a Pentium III 

800 MHz PC with 512MB of main memory. The program designed by IBM Almaden Research Center is used 

to generate synthetic databases [5]. This program has been widely used by many researchers [1, 2,6, 7, 8, 9, 12, 

14, 17].By setting up parameters of the program, we can generate desired databases as benchmarks to evaluate 

the performance of our method. Table 3 shows the meanings of all parameters  used  in  the  program. In  our 

experiments,  we  set  N  =  1000  and  L  =  2000. Table 4 shows the values of other parameters, T, D and I. The 

number of the hash buckets is500,000. We designed two tests. In the first test, we compare the relative 

performance and the number of database scans for the three algorithms on five databases shown in Table 4. 
The results of the first test are shown in Figure 

 

3 and Figure 4. 

 
Figure 3 shows the execution time of these three algorithms for test databases with various 

 minimum supports. In Figure 3, our method is a   little   slower   than   the   DHP  algorithm on 

T10I4D100K   when   the   minimum   support   is 1%. In   this   case,   the execution time of the DHP algorithm 

and the INCREMENTAL PINCER method are 4 and 6 seconds, respectively. The reason is that the length of 

the longest itemset is two for T10I4D100K when the minimum support is 1%, i.e., only two database scans are 
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required for   T10I4D100K.  The   INCREMENTAL PINCER method and the DHP algorithm all required  

two  database scans.However,   the INCREMENTAL  PINCERmethod  needs to spend  some  time  on  

constructing  the maximal frequent candidate itemsets  based on C2. Therefore, it takes more time than the 
DHP algorithm.For other test cases, the INCREMENTALPINCER method outperforms the DHP and the Pincer-

Search algorithms.The summary reasons are given as follows.1.In contrast with the DHP algorithm,  the  

INCREMENTAL PINCER  method finds the frequent  itemsets  not  only  in  the bottom-up direction but 

also in the top-down direction. The execution  time  is improved  since the  number  of  database  scans  is  

reduced.  The number of database scans is shown in Figure 4. The number of database scans   required   by  the 

DHP   algorithm   is  the   length   of  the   longest frequent  itemset. In  general,  the  number  of database 

scans of the INCREMENTAL PINCER method is half of that of the DHP algorithm when the minimum support 

= 0.25% and 0.5%. 

2.In   contrast   with   the   Pincer-Search algorithm,  the  INCREMENTAL PINCER  method still has 

better performance than the Pincer-Search algorithm  even  though  the  number  of  database scans required by 

the INCREMENTAL PINCER method is the same as the Pincer-Search algorithm. There are two reasons. First, 
the INCREMENTAL PINCER  method  uses  the  hash table  to  filter  the  huge  infrequent  2-itemsets  in the  

C2   instead  of  actually counting the supports of  all  2-itemsets. Second,  it  constructs  the maximal frequent   

candidate   itemsets   by   using the  hash  technique  instead  of  the combination of  all  distinct  1-itemsets  in  

a  database.The search space is  reduced  substantiallyIn  the second test, we evaluate the performance of the  

INCREMENTAL  PINCER  method  and the DHP algorithm  on  the  test  databases with  various  database  

sizes. The  results of the second test  are  shown  in  Figure  5. The   performance of   the   Pincer-Search 

algorithm  is  not included since it takes too much time to get the execution  results for test databases. In Figure 

5,  the number of transactions  in the test databases  is set from  100K  to  500K  and  the  minimum support is 

0.75%. From Figure 5, we can see that both the execution time of INCREMENTAL PINCER and DHP 

increases when the number of transactions increases. However, the execution time of the  DHP  algorithm  is  

near  linear  to  the size of  test databases. The INCREMENTAL  PINCER   method   is   not so   sensitive   to   

the   size   of   a   database compared  to  the  DHPalgorithm 
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VI. Conclusions 
In  this  paper,  we  have  proposed  an  efficient hash-based  method,  INCREMENTAL  PINCER, for 

discovering the maximal frequent itemsets. The  method  combines  the  advantages  of  the DHP  and  the  

Pincer-Search  algorithms. The combination leads to two advantages. First, the INCREMENTAL   

PINCERmethod, in general,  can  reduce  the  number  of  database scans. Second, the  INCREMENTAL 

PINCER method  can  filter  the  infrequent  itemsets  and can   use   the   filtered   itemsets   to   find   the 

maximal  frequent  itemsets.In addition,  an efficient mechanism to construct the maximal frequent candidate 

itemsets is provided. The experimental  results  show  that  our method has better   performance   than   the   

DHP   and   the Pincer-Search algorithms for most of test cases. In   particular, our method has significant 

improvement over the DHP and the Pincer- Search algorithms when the size of a database is large and the length 

of the longest itemset is relative long. 
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