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Abstract: A Spatial data preference query ranks the given objects based on the quality and their features in 

nearest neighborhood. Here “feature” refers to a class of objects in a spatial map such as specific facilities or 

services. For example, a real estate agency maintains database which holds the details of flats for rent. Here, A 
customer may want to rank the contents with respect to the appropriateness of their locations, the ranks are 

given by using the top-k spatial aggregate functions with respect to quality of features and nearest 

neighborhood. A neighborhood concept can be specified by the user via different functions. Every customer 

maximum prefers the quality of the flat and more facilities in that flat. The potential customer wishes to view the 

top 10 flats with the largest size and lowest prices, which is nearest to Hospital, School, Bus top, Market etc.  In 

this paper, we define top-k spatial preference queries and branch and bound algorithm. 
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I. Introduction 
A Spatial databases store data that is related to the objects in space. There are two basic ways for 

ranking the objects: 1). Spatial ranking, which orders the objects according to their distance from a reference 

point and 2) Non spatial ranking, which orders the objects by an aggregate function on their spatial values. Top-

k spatial algorithm combines these two types spatial and non spatial ranking. A Spatial database systems 

contains large collection of geographic entities, which apart from spatial attributes contain non spatial data. A 

customer want to rank the contents of this database with respect to the quality of their locations, quantified by 

aggregating non spatial characteristics of other features (e.g. Hospital, School, Market etc.) in the spatial 

neighborhood of flat. Quality may be subjective and query parametric. A neighborhood concept can be specified 

by the user via different functions. 

A set of D best data objects based on the quality of feature objects in their spatial neighborhood. Fig 1 

illustrates three locations (p1, p2, p3) of user interest and two feature sets (v and t) these are within the spatial 

neighborhood of the location. The feature values are labeled with the quality values. The quality values are 
normalized to values in [0, 1]. 

 

 
            (a) Range score,                                                    (b) Influence score      

Fig. 1. Top-k spatial preference queries. 
 

According to above example, a customer wants to retrieve the top-k flats from a spatial database which 

is maintained by the real estate agency. In this case, the score of each is depends on sum of two qualities those 

are size and price.  The customer wants to retrieve the top-k flats which are near to the high quality hospital and 

high quality restaurant. Fig. 1(a) illustrates the locations of the object data set D (hotel) in white and two other 

objects (restaurants) in gray and (cafes) in black. The score p1 of a hotel p is defined in terms of: 1) the 

maximum quality for each feature in the neighborhood region of p, and 2) the aggregation of those qualities. 
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The spatial neighborhood can be specified by the user to restrict the distance of the eligible feature objects. If 

the user wants to rank the flats based on the range score which is nearest neighborhood region to a circular at p 

with radius € and used the aggregate functions SUM, MIN and MAX. SUM function is implemented on Fig. 1 

the maximum quality of gray and black points within the circle of p1 are 0.9 and 0.6 respectively. Then the 

score of P1 is p1= 0.9 + 0.6 = 1.5. Similarly, the maximum quality of gray and black points within the circle of 

P2 are 1.0 and 0.1, so the score of P2 is p2 = 1.0 + 0.1 = 1.1 and p3 = 0.7 + 0.7 = 1.4. Hence, within above 3 
results the p1 (hotel) has the maximum value and has quality. The SUM function attempts to balance the overall 

qualities of all features. 

We are implemented the MIN function on Fig. 1, then the top results becomes P3, with the score P3 = 

Min {0.7, 0.7} = 0.7, it shows that the top result has reasonable high qualities in all features. The MAX function 

is used optimize the quality in a particular feature. For the MAX function the top result is P2, with P2 = Max 

{1.0, 0.1} = 1.0 Top-k spatial preference queries comprise a useful tool for a wide range of location based 

applications. But processing this query is quite complex. Because it may require computing the scores of all data 

objects and select the top-k spatial preference query. It is not always possible to use multidimensional indexes 

for top-k spatial retrieval. First such indexes break down in high dimensional spaces [10]. Second top-k spatial 

preference queries may involve an arbitrary set of user specified attributes (e.g., size and price) from possible 

ones (e.g., size, price, floor etc,). Third, information for ranking s to be combined could appear in different 
databases and unified indexes may not exist for them top-k spatial preference queries [2], [8] focusing on the 

different sources. 

Specifically, we contribute the branch and bound (BB) algorithm and Feature join (FJ) algorithm for efficiently 

processing the top-k spatial preference query. 

 

II. Background Knowledge 
Object ranking (ordering) is a popular retrieval task in various applications. The tuples in relational 

databases are ordered using aggregate functions on their attribute values [2]. Consider a real estate agency 

database maintaining information regarding flats available for rent. A customer wishes to view top ten flats with 

the largest sizes and lowest prices. Here, the score of each flat is expressed by the sum of two attributes: size and 
price. Ranking (ordering) in spatial databases is often associated to the nearest neighbor (NN) retrieval. The NN 

returns set of nearest objects to a given query location that satisfies a condition (e.g., restaurants). The set of 

interesting object is indexed by an R-tree [3]. Then the index can be traversed in a branch and bound fashion to 

obtain the answer [4]. It is not always possible to use multidimensional indexes for top-k spatial preference 

retrieval. So such indexes break down in high dimensional spaces [5], [6]. Solutions for top-k spatial preference 

queries   [2], [7], [8], [9] focus on the efficient merging of object rankings that may arrive from different 

sources. 

 

2.1 Spatial Query Evaluation on R-Trees 

Several approaches have been proposed for ranking spatial data. In order to handle spatial data 

efficiently, an effective indexing mechanism is required. One of the most popular spatial access method is the R-
Tree [3] which indexes minimum bounding rectangles (MBRs) of spatial objects. 

 
Fig. 2 Spatial queries on R-Trees 

 

Fig 2 shows a set of interesting points D= {P1, P2…P8) indexed using an R-tree. A spatial range query 

returns the objects in D that intersect the given query region W. For example, consider a range query that asks 

for all objects within the shaded area in Fig 2. Starting from the root of the tree, the query is processed by 
recursively following entries having MBRs that intersect the query region. For instance, e1 does not match 

intersect the query region. The sub tree pointed by e1 cannot contain any query result. In contrast, e2 is followed 

by the algorithm and the points in the corresponding node are examined recursively to find the query result p7. 

A variant of an R-tree is a R-tree [14]. Here each non-leaf node entry develops an aggregate [10] value (MAX) 

for some attribute measures in its sub tree. For instance, a MAX an R-tree can be constructed over the point set 

given in Fig. 2, if the entries e1, e2, e3 contain the maximum measure values of sets {P2, P3}, {P1, P8, P7}, {P4, 
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P5, P6}, respectively. Assume that the measure values of P4, P5, P6 are 0.2, 0.1, 0.4, respectively. In this case, the 

aggregate measure augmented in e3 would be max {0.2, 0.1, 0.4} = 0:4. In this paper, we employ MAX a R-

trees for indexing the feature data sets (e.g., restaurants), in order to accelerate the processing of top-k spatial 

Preference queries. 

Given a feature data set F and a multidimensional region R, the range top-k query selects the tuples 

(from F) within the region R and returns only those with the k highest qualities. Hong et al. [11] indexed the 
data set by a MAX a R-tree and developed an efficient tree traversal algorithm to answer the query. Instead of 

finding the best k qualities from F in a specified region, range score considers multiple spatial regions based on 

the points from the objects data set D, and attempts to find the best k regions. 

 

2.2 Feature based spatial queries 

Xia et al. [12] solved the problem of finding top-k sites (e.g., restaurants) based on their influence on 

feature points (e.g., residential buildings). As an example, Fig. 3a shows a set of sites (white points), a set of 

features (black points with weights), such that each line links a feature point to its nearest site. The influence of 

a site pi is defined by the sum of weights of feature points having pi as their closest site. For instance, the score 

of p1 is 0.9 + 0.5 = 1.4. Similarly, the scores of p2 and p3 are 1.5 and 1.2, respectively. Hence, p2 is returned as 

the top-1 influential site. 
 

 
 (a) Top-k influential                      (b) Max- influential               (c) Min- distance. 

Fig. 3 Influential sites and optimal location queries. 

 

Related to top-k influential sites query are the optimal location queries studied in [13], [14]. The goal is 
to find the location in space that minimizes an objective function. In Figs. 3(b) and 3(c) features points and 

existing sites are shown as black and gray points, respectively. Assume that all feature points have the same 

quality. The maximum influence optimal location query [13] finds the location with the maximum influence (as 

defined in [12]) where as the minimum distance optimal location query [14] searches for the location that 

minimizes the average distance from each feature point to its nearest site. The techniques proposed in [12], [13], 

[14] are specific to the particular query types described above and cannot be extended for our top-k spatial 

preference queries. The novel spatial queries and joins [15], [16], [17], [18] have been proposed for various 

spatial decision. 

 

III. Preliminaries 
Let Fc be a feature data set, in which each feature object s € Fc is associated with a quality w(s) and a 

spatial point. We assume that the domain of w(s) is the interval [0, 1]. As an example, the quality w(s) of a 

restaurant s can be obtained from a ratings provider. 

Let D be an object data set, where each object p € D is a spatial point. In other words, D is the set of 

interesting points (e.g., hotel locations) considered by the user. 

Given an object data set D and m feature data sets F1, F2 . . . Fm, the top-k spatial preference query 

retrieves the k points in D with the highest score. Here, the score of an object point p € D is defined as 

 

∏
Ө 

(p) = AGG {∏
Ө 

(p) ׀c € [1, m] } 

Where AGG is an aggregate function and ∏Ө 
(p) is the (Cth)

 component score of p with respect to the 
neighborhood condition Ө and the (Cth)

 feature data set Fc. Typical examples of the aggregate function AGG are 

SUM, MIN, and MAX. 

The component score function, ∏Ө 
(p) taken is the range score function. The range score, ∏c 

rng
 (p) is 

taken as the maximum quality w(s) of points s € Fc that are within a given parameter distance € from p, or 0 if 

no such point exists. 

 

∏c
rng 

(p) = max ({w(s)׀ s € Fc ^ dist (p, s) € €} U {0}) 
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3.1 Branch and Bound Algorithm 

A brute force approach for processing the top-k spatial preference query computes the score of every 

point p € D in order to obtain the query results. Brute force approach is expensive as it examines all objects in 

D and computes their component scores. The algorithm proposed here can significantly reduce the number of 

objects to be examined. The key idea is to compute, for non leaf entries e in the object tree D, an upper bound T 

(e) of the score for any point p in the sub tree of e. If T < €, then need not access the sub tree of e, thus 
numerous score computations can be saved. 

Branch and bound algorithm is a pseudo code of the proposed algorithm based on this idea. BB is 

called with N being the root node of D. If N is a non leaf node. Lines 3-5 compute the scores T (e) for non leaf 

entries e concurrently. T (e) is an upper bound score for any point in the sub tree of e, with the component 

scores TC (e) known so far, derive T+ (e), an upper bound of T (e). If T+ (e) € €, then sub tree of an e cannot 

contain better results than those in Wk and it is removed from the set V. In order to obtain points with high 

scores early, sort the entries in descending order of T (e) before invoking the above procedure recursively on the 

child nodes pointed by the entries in V. If N is a leaf node, compute the scores for all points of N concurrently 

and then update the set Wk of the top-k results. Since both Wk and € are global variables, their values are 

updated during recursive call of branch and bound algorithm. 

 
The following shows the branch and bound algorithm implementation. 

Wk: = new min-heap of size k (initially empty); 

€: =0;                  Δ kth score in Wk 

Algorithm BB (Node N) 

1:   V: = {e׀e € N}; 

2:   If N is non leaf then 

3:      for c: = 1 to m do 

4:     compute Tc (e) for all e € V concurrently; 

5:     remove entries e in V such that T + (e) € €;  

6:      sort entries e € V in descending order of T (e); 

7:      for each entry e € V such that T (e) > γ do 

8:     read the child node Ń pointed by e; 
9:      BB (Ń); 

10:  else 

11:    for c: = 1 to m do 

12:   compute Tc  (e) for all e €V concurrently; 

13:   remove entries e in V such that T + (e) ≤ €;  

14:  update Wk (and €) by entries in V; 

 

Upper bound  scores Tc (e) of non leaf entries (within the same node N) can be computed concurrently 

(at line 4). Upper bound score is to be computed such that 1) the bounds are computed with low I / O cost , and 

2) the bounds are reasonably tight, in order to facilitate effective prunning. To achieve this, only level-1 entries 

(i.e., lowest level non leaf entries) in Fc are utilized for deriving upper bound scores because: 1) there is much 
fewer level-1 entries than leaf entries, 2) high-level entries in Fc  cannot provide tight bounds. 

 

3. 2 Feature Join Algorithm 

Feature join algorithm is an alternative method for evaluating a top-k spatial preference query to 

perform a multyway spatial join [23] on feature trees F1, F2, Fm  to obatin combinations of featurepoints which 

can be in the neighborhood of some object from D. We first introduce the concept of a combination to be pruned 

and finally elaborated the algorithm used to progressively identify the combinations that correspond to query 

results. 

 

The following algorithm shows the feature join algorithm, 

Wk: = new min-heap of size k (initially empty); 

€ := 0; Δ kth score in Wk 

 

Algorithm FJ (Tree D, Trees F1, F2 . . ., Fm) 

1:  H: = new max-heap (combination score as the key); 

2:  insert (F1.root, F2.root. . . Fm. Root) into H; 

3:  while H is not empty do 

4:  deheap (f1, f2.  . . Fm) from H; 

5:     if for all c 1€ [1, m], c fc points to a leaf node 
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6:      for c: = 1 to m do 

7:      read the child node Lc pointed by fc; 

8:      Find_ Result (D: root, L1,. . . , Lm); 

9:     else 

10:    fc : = highest level entry among f1, f2; . . . ; fm; 

11:    read the child node Nc pointed by fc; 
12:    for each entry ec € Nc do 

13:    insert (f1, f2, . . . ,ec . . . ,fm) into H if its score is Greater than € and it qualifies the query; 

 

Algorithm Find_ Result (Node N, Nodes L1,... Lm) 

1:   for each entry e € N do 

2:      if N is non leaf then 

3:      compute T (e) by entries in L1,.. ., Lm; 

4:      if T (e) > € then 

5:      read the child node N’ pointed by e; 

6:  Find_ Result (N’, L1, . . ., Lm); 

7:      else 

8:      compute T (e) by entries in L1,...,Lm; 

9:      update Wk (and €) by e (when necessary); 

 

IV. Conclusion 
Top-k spatial preference queries, provides a novel type of ranking for spatial objects based on qualities 

of features in their neighborhood. But processing these queries is quite complex. The brute force approach 

computes the scores of every data object by querying on feature data sets. This method is expensive for large 

input data sets. The alternative technique, branch and bound algorithm, the algorithm BB derives upper bound 

scores for non leaf entries in the object tree and prunes those that cannot lead to better results. The Feature join 

algorithm performs a multi way join on feature trees to obtain qualified combinations of feature points and then 
search for relevant objects in object tree. Feature join is the best algorithm in cases where the number m of 

feature data sets is low and each feature data set is small. 
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