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Abstract : Clustering using the basic version of the K-Means algorithm begins by randomly selecting K cluster 

centers, assigning each point to the cluster whose mean is closest in a Euclidean distance sense, computing the 

mean vectors of the points assigned to each cluster and using these as new centers in an iterative approach. 

This suggests that if we identify points in the dataset which represent the final unchanging means, the task of 
clustering reduces to just assigning the remaining points in the dataset into clusters which are closest to these 

final means based on the Euclidean Distance measure. Taking a cue from the result of the K-Means algorithm 

this paper presents an approach for performing collinear clustering based on the idea that values in a dataset 

can be put into different clusters, depending on which points in the dataset lie at maximum distance from each 

other. The clusters are formed by finding the minimum Euclidean distance of all points in the dataset and these 

maximally separated data points.  

Keywords - Collinear clustering, Maximal distance clustering, Minimum Euclidean distance, Jmin,  Jmax. 

 

I. Introduction 
Clustering is the process of partitioning or grouping a given set of data points into disjoint clusters [1]. 

Clustering organizes objects into groups whose members are alike in some way [2]. A cluster can be thought 

therefore as a collection of objects which are similar between them and are dissimilar to objects belonging to 

other clusters [3]. Clustering is the process of partitioning or grouping a given set of data points into disjoint 

clusters [4]. Clustering organizes objects into groups whose members are alike in some way. So basically the 

goal of clustering is to determine the intrinsic grouping in a set of unlabeled data [5]. It is obvious from the 

above arguments that clustering hinges on the notion of distance. In order to decide whether a set of points can 

be split into sub-clusters, with members of a cluster being closer to other members of their cluster than to 

members of other clusters, we need to say what we mean by “closer to” [6]. Closeness or similarity and distance 
or dissimilarity can be described by the Euclidean distance measure [7]. 

Clustering using the classical K-Means method results in obtaining final fixed points which we call the 

final unchanging means around which all other points in the dataset get clustered [8]. This suggests that if we 

identify points in the dataset which represent the final unchanging means, the task of clustering reduces to just 

assigning the remaining points in the dataset into clusters which are closest to these final means based on the 

Euclidean Distance measure [9]. This paper presents a method for performing clustering based on the idea that 

values in a dataset can be put into different clusters, by locating in the dataset, J points equaling the number of 

required clusters K which lie at maximum distance from each other. The remaining points in the dataset are 

assigned into K clusters formed by finding the minimum Euclidean distance of all points in the dataset and these 

maximally separated J data points.  

 

II. Main Idea Of The Proposed Clustering Algorithm 
The proposed algorithm is one of the simplest unsupervised learning algorithms which may be used to 

solve the clustering problem. The procedure follows a simple and easy way to classify a given data set through a 

certain number of clusters K which are fixed apriori. 

Let D = [J1, J2, …, Jn] represent the „n‟ data values in the data set. The main idea is to find initially two 

points in the dataset which represent the minimum and maximum values. These two points would be the ones 

that are the closest point to the origin representing the minimum of the dataset and the furthest point from the 

origin representing the maximum of the dataset.  

                                                     

                                                           Jmin                          Jmax 

fig. 1. for one dimensional data points                                                                                                                                                                                                 

If the problem is to cluster the dataset into two clusters, then it can be done by finding all the points in 

the dataset which are closest to points Jmin and Jmax based on minimum Euclidean distance measure between all 

the points in the dataset and Jmin and Jmax respectively, giving rise to two clusters, as seen in the example below.  

                 Cluster 1 = [Jmin, J2, J3, …Js] 

                 Cluster 2 = [J4, J5, J6,… Js-1, Js+1, ...Jmax] 
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If the problem defined is to cluster the dataset into more than two clusters, say the required number of 

clusters is 3, then after performing the initial step of finding Jmin and Jmax, we search for the point in the dataset 

that would be equally spaced from Jmin and Jmax. If we imagine a straight line between points Jmin and Jmax, then 
the points that is equally spaced from Jmin and Jmax is the midpoint of Jmin and Jmax. Thus, we can find Jmid of Jmin 

and Jmax by the midpoint formula of the line. This point between Jmin and Jmax can be calculated as: 

 

Jmid = 
2

),( maxmin JJd
 

where d(Jmin, Jmax) represents the distance in Euclidean measure between Jmin and Jmax 

                                                       

 

                                                        Jmin                     Jmid             Jmax.  

 

The Euclidean distance between 2 points is defined as the square root of the sum of the squared differences. 

d(Jmin, Jmax) = 
2

maxmin )( JJ   

 

Since the clustering of collinear data points is being considered, the following formula can also be used to 
calculate the midpoint of the line joining Jmin and Jmax . 

Jmid = 
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Thus, in general, once Jmin and Jmax are found, for any number of clusters K = T, we can divide the interval 

between Jmin and Jmax into equal K-1 intervals. 
 

For K = T, there will be T-2 = Xm points which divide the interval between Jmin and Jmax into equal lengths and 

spaces. Xm represents the mth point which divides Jmin and Jmax into equal lengths or spaces and Xm ranges from 

1, 2… K-2. Then the points that divide the interval between Jmin and Jmax into equal spaces or lengths can be 

found by using the formula 

 

JXm = Jmin +Xm 
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The points that divide the interval between Jmin and Jmax into equal spaces or lengths can also be calculated as 
given by the following formula: 

JXm = Jmin +Xm 
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which can be further simplified as follows: 

maxmin
)1()1(

1 J
K

X
J

K

X
JX mm

m 




















  

 

If JXm  D, i.e., there is no value JXm in the database D, then find a value say Jc in the dataset D which is closest 

to JXm using minimum Euclidean distance measure and assign Jc to JXm. 

Assign remaining points in the data set according to the minimum Euclidean distance respectively to Jmin, JXm 

and Jmax. 

Consider a collinear clustering problem where K = T = 4. On implementing the algorithm, we will get the 

dataset of equally spaced points as [Jmin, JX1, JX2, Jmax] 

Once these points [Jmin, JX1, JX2, Jmax] are calculated, the remaining points in the dataset are put into clusters 

formed by the 4 points by finding the minimum Euclidean distance between the remaining points and the 4 

equally spaced points [Jmin, JX1, JX2, Jmax]. We can then have 4 clusters for example as shown below: 

 

Cluster 1 = [Jmin, J2, J3,…Js] 

Cluster 2 = [JX1, J4, J5, J6,… Js-1, Js+1] 

Cluster 3 = [JX2, J7, J8, J9,… Js-2, Js+2… Js+10] and 
Cluster 4 = [J11, J12, J13,… Js-2, Js+4,... Js+11… Jmax] 
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III. The Collinear Clustering Algorithm 
Algorithm:- The collinear clustering algorithm for partitioning based on the maximum distance 

between objects in the cluster. 

Input:- The number of clusters K and a database containing n objects. 

Output:- A set of K clusters 

1. Find Jmin and Jmax. from D 

 

2. For K = T 

              JXm = Jmin  +  Xm 








1

),( maxmin

K

JJd
 

              where Xm = X1, X2, X3 ….. Xk-2 

 

3. If JXm  D, then find a value say Jc in the dataset D which is closest to JXm using minimum Euclidean 
              distance measure and assign Jc to JXm 

 

4. Assign remaining points in the dataset according to the minimum Euclidean distance respectively to 

              Jmin, JXm and Jmax. 

 

5. Output K clusters. 

 

IV. Experimental Results 
For a given one dimensional dataset  

D = {2, 4, 10, 12, 3, 20, 30, 11, 25} and given clustering requirement as K = 2 clusters, after implementation, 

the two clusters were successfully found out to be: 

Cluster 1 = {2, 3, 4, 10, 11, 12} and 

Cluster 2 = {20, 25, 30}.  

 

The same dataset for 3 clusters yields the results as: 

 

Cluster 1 = {2, 3, 4}  

Cluster 2 = {10, 11, 12, 20} and 

Cluster 3 = {25, 30} 
 

The same problem for 4 clusters after implementation yields the result as: 

 

Cluster 1 = {2, 3, 4}  

Cluster 2 = {10, 11, 12} 

Cluster 3 = {20, 25} and 

Cluster 4 = {30} 

 

The same problem for 5 clusters after implementation yields the result as: 

 

Cluster 1 = {2, 3, 4}  

Cluster 2 = {10, 11} 
Cluster 3 = {12} 

Cluster 4 = {20, 25} and 

Cluster 5 = {30} 

 

The illustration of the working of this algorithm is presented below for the same dataset D = {2, 4, 10, 12, 3, 20, 

30, 11, 25} and number of clusters K = 4 

 

4.1 Working Steps 

Step 1:  Jmin = 2 and Jmax = 30 

Step 2:  For K = T = 4 = number of clusters required 

 
 Since required clusters K = 4, we will have: 

 T-2 = Xm = 4-2 = 2 equally spaced points and  

 K-1 = 4-1 = 3 intervals 
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              Xm ranges from 1, 2… K-2. 
 i.e., having obtained the initial 2 points Jmin and Jmax, we have K-2 equally spaced points for K clusters, 

              which in this case are 2 equally spaced points X1 and X2 for 4 clusters. 
 

 X1 = 1 = first equally spaced point in the interval between Jmin and Jmax 

 

 X2 = 2 = second equally spaced point in the interval 

 

              JXm = Jmin  +  Xm 








1

),( maxmin

K

JJd
 

 

 JX1 = 2 + X1









3

28  = 2 + 1









3

28  = 11.333 

 

              JX2 = 2 + X2









3

28  = 2 + 2









3

28 = 20.667 

 

Step 3: We see that JX1 = 11.333 and JX2 = 20.667 do not correspond to any of the values in the dataset D.  

So we assign a value Jc1 in the data set which is closest to  

JX1 = 11.333 and a value Jc2 in the data set which is closest to JX2 = 20.667.  

By using minimum Euclidean distance measure, we find that Jc1 = 11 and Jc2 = 20. We now assign these values 

Jc1 and Jc2 to JX1 and JX2 respectively. 

 

So we have the interval between Jmin and Jmax divided as shown below: 

 
 

                                       2           11           20          30 

 

Step 4: Assign the remaining points in D which are 4, 12, 3, 10, 25 to the clusters formed by 2, 11, 20, 30 to 

which the points 4, 12, 3, 10 and 25 are most similar based on the minimum Euclidean distance measure. 

 

Step 5: On finding the minimum Euclidean distance for the above step, we get the 4 required clusters as  

 

Cluster 1 = {2, 3, 4}  

Cluster 2 = {10, 11, 12} 

Cluster 3 = {20, 25} and 

Cluster 4 =  {30} 
 

V. Conclusion 
This paper presents an algorithm for performing collinear clustering. The experimental results 

demonstrated that this scheme can be used to perform collinear clustering in a fairly simplistic and efficient 

manner. As it is known that there are various approaches to clustering in Data mining, the purpose of this paper 

is to add to the existing algorithms in clustering. Improvements may be possible to the basic strategy presented 

in this paper. Features that could make the strategy for finding the points separated by maximal distances apart 

from each other more robust can be researched and implemented. 
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