
IOSR Journal of Computer Engineering (IOSRJCE)

ISSN: 2278-0661, ISBN: 2278-8727 Volume 6, Issue 5 (Nov. - Dec. 2012), PP 08-11
www.iosrjournals.org

www.iosrjournals.org 8 | Page

Clustering of collinear data points in lower dimensions

Terence Johnson
1
, Jervin Zen Lobo

2

1(Computer Engineering Department, Agnel Institute of Technology and Design, Goa University, India)
2(Basic Sciences & Humanities Department, Agnel Institute of Technology and Design, Goa University, India)

Abstract : Clustering using the basic version of the K-Means algorithm begins by randomly selecting K cluster

centers, assigning each point to the cluster whose mean is closest in a Euclidean distance sense, computing the

mean vectors of the points assigned to each cluster and using these as new centers in an iterative approach.

This suggests that if we identify points in the dataset which represent the final unchanging means, the task of
clustering reduces to just assigning the remaining points in the dataset into clusters which are closest to these

final means based on the Euclidean Distance measure. Taking a cue from the result of the K-Means algorithm

this paper presents an approach for performing collinear clustering based on the idea that values in a dataset

can be put into different clusters, depending on which points in the dataset lie at maximum distance from each

other. The clusters are formed by finding the minimum Euclidean distance of all points in the dataset and these

maximally separated data points.

Keywords - Collinear clustering, Maximal distance clustering, Minimum Euclidean distance, Jmin, Jmax.

I. Introduction
Clustering is the process of partitioning or grouping a given set of data points into disjoint clusters [1].

Clustering organizes objects into groups whose members are alike in some way [2]. A cluster can be thought

therefore as a collection of objects which are similar between them and are dissimilar to objects belonging to

other clusters [3]. Clustering is the process of partitioning or grouping a given set of data points into disjoint

clusters [4]. Clustering organizes objects into groups whose members are alike in some way. So basically the

goal of clustering is to determine the intrinsic grouping in a set of unlabeled data [5]. It is obvious from the

above arguments that clustering hinges on the notion of distance. In order to decide whether a set of points can

be split into sub-clusters, with members of a cluster being closer to other members of their cluster than to

members of other clusters, we need to say what we mean by “closer to” [6]. Closeness or similarity and distance
or dissimilarity can be described by the Euclidean distance measure [7].

Clustering using the classical K-Means method results in obtaining final fixed points which we call the

final unchanging means around which all other points in the dataset get clustered [8]. This suggests that if we

identify points in the dataset which represent the final unchanging means, the task of clustering reduces to just

assigning the remaining points in the dataset into clusters which are closest to these final means based on the

Euclidean Distance measure [9]. This paper presents a method for performing clustering based on the idea that

values in a dataset can be put into different clusters, by locating in the dataset, J points equaling the number of

required clusters K which lie at maximum distance from each other. The remaining points in the dataset are

assigned into K clusters formed by finding the minimum Euclidean distance of all points in the dataset and these

maximally separated J data points.

II. Main Idea Of The Proposed Clustering Algorithm
The proposed algorithm is one of the simplest unsupervised learning algorithms which may be used to

solve the clustering problem. The procedure follows a simple and easy way to classify a given data set through a

certain number of clusters K which are fixed apriori.

Let D = [J1, J2, …, Jn] represent the „n‟ data values in the data set. The main idea is to find initially two

points in the dataset which represent the minimum and maximum values. These two points would be the ones

that are the closest point to the origin representing the minimum of the dataset and the furthest point from the

origin representing the maximum of the dataset.

 Jmin Jmax

fig. 1. for one dimensional data points

If the problem is to cluster the dataset into two clusters, then it can be done by finding all the points in

the dataset which are closest to points Jmin and Jmax based on minimum Euclidean distance measure between all

the points in the dataset and Jmin and Jmax respectively, giving rise to two clusters, as seen in the example below.

 Cluster 1 = [Jmin, J2, J3, …Js]

 Cluster 2 = [J4, J5, J6,… Js-1, Js+1, ...Jmax]

Clustering of Collinear data points in lower dimensions

www.iosrjournals.org 9 | Page

If the problem defined is to cluster the dataset into more than two clusters, say the required number of

clusters is 3, then after performing the initial step of finding Jmin and Jmax, we search for the point in the dataset

that would be equally spaced from Jmin and Jmax. If we imagine a straight line between points Jmin and Jmax, then
the points that is equally spaced from Jmin and Jmax is the midpoint of Jmin and Jmax. Thus, we can find Jmid of Jmin

and Jmax by the midpoint formula of the line. This point between Jmin and Jmax can be calculated as:

Jmid =
2

),(maxmin JJd

where d(Jmin, Jmax) represents the distance in Euclidean measure between Jmin and Jmax

 Jmin Jmid Jmax.

The Euclidean distance between 2 points is defined as the square root of the sum of the squared differences.

d(Jmin, Jmax) =
2

maxmin)(JJ 

Since the clustering of collinear data points is being considered, the following formula can also be used to
calculate the midpoint of the line joining Jmin and Jmax .

Jmid = 














 

2

minmax JJ

Thus, in general, once Jmin and Jmax are found, for any number of clusters K = T, we can divide the interval

between Jmin and Jmax into equal K-1 intervals.

For K = T, there will be T-2 = Xm points which divide the interval between Jmin and Jmax into equal lengths and

spaces. Xm represents the mth point which divides Jmin and Jmax into equal lengths or spaces and Xm ranges from

1, 2… K-2. Then the points that divide the interval between Jmin and Jmax into equal spaces or lengths can be

found by using the formula

JXm = Jmin +Xm 








1

),(maxmin

K

JJd

The points that divide the interval between Jmin and Jmax into equal spaces or lengths can also be calculated as
given by the following formula:

JXm = Jmin +Xm 












1

)(minmax

K

JJ

which can be further simplified as follows:

maxmin
)1()1(

1 J
K

X
J

K

X
JX mm

m 






















If JXm  D, i.e., there is no value JXm in the database D, then find a value say Jc in the dataset D which is closest

to JXm using minimum Euclidean distance measure and assign Jc to JXm.

Assign remaining points in the data set according to the minimum Euclidean distance respectively to Jmin, JXm

and Jmax.

Consider a collinear clustering problem where K = T = 4. On implementing the algorithm, we will get the

dataset of equally spaced points as [Jmin, JX1, JX2, Jmax]

Once these points [Jmin, JX1, JX2, Jmax] are calculated, the remaining points in the dataset are put into clusters

formed by the 4 points by finding the minimum Euclidean distance between the remaining points and the 4

equally spaced points [Jmin, JX1, JX2, Jmax]. We can then have 4 clusters for example as shown below:

Cluster 1 = [Jmin, J2, J3,…Js]

Cluster 2 = [JX1, J4, J5, J6,… Js-1, Js+1]

Cluster 3 = [JX2, J7, J8, J9,… Js-2, Js+2… Js+10] and
Cluster 4 = [J11, J12, J13,… Js-2, Js+4,... Js+11… Jmax]

Clustering of Collinear data points in lower dimensions

www.iosrjournals.org 10 | Page

III. The Collinear Clustering Algorithm
Algorithm:- The collinear clustering algorithm for partitioning based on the maximum distance

between objects in the cluster.

Input:- The number of clusters K and a database containing n objects.

Output:- A set of K clusters

1. Find Jmin and Jmax. from D

2. For K = T

 JXm = Jmin + Xm 








1

),(maxmin

K

JJd

 where Xm = X1, X2, X3 ….. Xk-2

3. If JXm  D, then find a value say Jc in the dataset D which is closest to JXm using minimum Euclidean
 distance measure and assign Jc to JXm

4. Assign remaining points in the dataset according to the minimum Euclidean distance respectively to

 Jmin, JXm and Jmax.

5. Output K clusters.

IV. Experimental Results
For a given one dimensional dataset

D = {2, 4, 10, 12, 3, 20, 30, 11, 25} and given clustering requirement as K = 2 clusters, after implementation,

the two clusters were successfully found out to be:

Cluster 1 = {2, 3, 4, 10, 11, 12} and

Cluster 2 = {20, 25, 30}.

The same dataset for 3 clusters yields the results as:

Cluster 1 = {2, 3, 4}

Cluster 2 = {10, 11, 12, 20} and

Cluster 3 = {25, 30}

The same problem for 4 clusters after implementation yields the result as:

Cluster 1 = {2, 3, 4}

Cluster 2 = {10, 11, 12}

Cluster 3 = {20, 25} and

Cluster 4 = {30}

The same problem for 5 clusters after implementation yields the result as:

Cluster 1 = {2, 3, 4}

Cluster 2 = {10, 11}
Cluster 3 = {12}

Cluster 4 = {20, 25} and

Cluster 5 = {30}

The illustration of the working of this algorithm is presented below for the same dataset D = {2, 4, 10, 12, 3, 20,

30, 11, 25} and number of clusters K = 4

4.1 Working Steps

Step 1: Jmin = 2 and Jmax = 30

Step 2: For K = T = 4 = number of clusters required

 Since required clusters K = 4, we will have:

 T-2 = Xm = 4-2 = 2 equally spaced points and

 K-1 = 4-1 = 3 intervals

Clustering of Collinear data points in lower dimensions

www.iosrjournals.org 11 | Page

 Xm ranges from 1, 2… K-2.
 i.e., having obtained the initial 2 points Jmin and Jmax, we have K-2 equally spaced points for K clusters,

 which in this case are 2 equally spaced points X1 and X2 for 4 clusters.

 X1 = 1 = first equally spaced point in the interval between Jmin and Jmax

 X2 = 2 = second equally spaced point in the interval

 JXm = Jmin + Xm 








1

),(maxmin

K

JJd

 JX1 = 2 + X1









3

28 = 2 + 1









3

28 = 11.333

 JX2 = 2 + X2









3

28 = 2 + 2









3

28 = 20.667

Step 3: We see that JX1 = 11.333 and JX2 = 20.667 do not correspond to any of the values in the dataset D.

So we assign a value Jc1 in the data set which is closest to

JX1 = 11.333 and a value Jc2 in the data set which is closest to JX2 = 20.667.

By using minimum Euclidean distance measure, we find that Jc1 = 11 and Jc2 = 20. We now assign these values

Jc1 and Jc2 to JX1 and JX2 respectively.

So we have the interval between Jmin and Jmax divided as shown below:

 2 11 20 30

Step 4: Assign the remaining points in D which are 4, 12, 3, 10, 25 to the clusters formed by 2, 11, 20, 30 to

which the points 4, 12, 3, 10 and 25 are most similar based on the minimum Euclidean distance measure.

Step 5: On finding the minimum Euclidean distance for the above step, we get the 4 required clusters as

Cluster 1 = {2, 3, 4}

Cluster 2 = {10, 11, 12}

Cluster 3 = {20, 25} and

Cluster 4 = {30}

V. Conclusion
This paper presents an algorithm for performing collinear clustering. The experimental results

demonstrated that this scheme can be used to perform collinear clustering in a fairly simplistic and efficient

manner. As it is known that there are various approaches to clustering in Data mining, the purpose of this paper

is to add to the existing algorithms in clustering. Improvements may be possible to the basic strategy presented

in this paper. Features that could make the strategy for finding the points separated by maximal distances apart

from each other more robust can be researched and implemented.

References
[1] Pang-Ning Tan, Michael Steinbachand Vipin Kumar, Introduction to data mining (Addison Wesley, 2006

[2] David Hand, Heikki Mannila and Padhraic Smyth, Principles of data mining (Cambridge, MA: MIT Press, 2001)

[3] Jiawei Han and Micheline Kamber, Data mining-concepts and techniques (San Francisco CA, USA, Morgan Kaufmann Publishers,

2001)

[4] A.K. Jain, R.C. Dubes, Algorithms for clustering data, (Englewood Cliffs, NJ: Prentice-Hall, 1998)

[5] M.R. Anderberg, Cluster analysis for application, (Academic Press, New York, 1973)

[6] J.A. Hartigan, Clustering Algorithms, (Wiley, New York, 1975)

[7] Hand, D.J., Blunt, G., Kelly, M.G. & Adams, N.M. (2000), Data mining for fun and profit, (Statistical Science) 15, 111-131.

[8] Fayyad, U., Data Mining and Knowledge Discovery, Editorial, Proc. IEEE , 1:5-10, 1997. W.J. Book, Modelling design and control

of flexible manipulator arms: A tutorial review, Proc. 29th IEEE Conf. on Decision and Control, San Francisco, CA, 1990, 500-506

[9] Aggarwal, Charu C., Han,Jiawei,Wang, Jianyong, & Yu, Philip S. A framework for clustering evolving data streams, VLDB

Endowment, Proceedings of the 29th international conference on very large data bases, Vldb '2003, 81–92.

