
IOSR Journal of Computer Engineering (IOSRJCE)

ISSN: 2278-0661, ISBN: 2278-8727 Volume 6, Issue 4 (Sep. -Oct. 2012), PP 33-44
www.iosrjournals.org

www.iosrjournals.org 33 | Page

Data Security in Cloud Computing Using Linear Programming

1,

 S.Swarajyam,
2,

 E.Madhukar,
3,
 P.Sowmya Lakshmi

1, 3(M Tech(Software Engineering) Dept .of Computer Science & Technology,(Student) Sreenidhi Institute of

Science & Technology/An Autonomous Institution ,Hyderabad, AP, India)

2(M Tech (Software Engineering) Dept .of Computer Science & Technology,(Associate Professor) Sreenidhi

Institute of Science & Technology/An Autonomous Institution ,Hyderabad,AP, India)

Abstract: Cloud computing has great potential of providing robust computational power to the society at

reduced cost. It enables customers with limited computational resources to outsource their large computation
workloads to the cloud, and economically enjoy the massive computational power, bandwidth, storage, and even

appropriate software that can be shared in a pay-per-use manner. Despite the tremendous benefits, security is

the primary obstacle that prevents the wide adoption of this promising computing model, especially for

customers when their confidential data are consumed and produced during the computation. Treating the cloud

as an intrinsically insecure computing platform from the viewpoint of the cloud customers,

We must design mechanisms that not only protect sensitive information by enabling computations with

encrypted data, but also protect customers from malicious behaviors by enabling the validation of the

computation result. Such a mechanism of general secure computation outsourcing was recently shown to be

feasible in theory, but to design mechanisms that are practically efficient remains a very challenging problem.

 Focusing on engineering computing and optimization tasks, this paper investigates secure

outsourcing of widely applicable linear programming (LP) computations. In order to achieve practical
efficiency, our mechanism design explicitly decomposes the LP computation outsourcing into public LP solvers

running on the cloud and private LP parameters owned by the customer. The resulting flexibility allows us to

explore appropriate security/efficiency tradeoff via higher-level abstraction of LP computations than the

general circuit representation. In particular, by formulating private data owned by the customer for LP problem

as a set of matrices and vectors, we are able to develop a set of efficient privacy-preserving problem

transformation techniques, which allow customers to transform original LP problem into some arbitrary one

while protecting sensitive input/output information. To validate the computation result, we further explore the

fundamental duality theorem of LP computation and derive the necessary and sufficient conditions that correct

result must satisfy. Such result verification mechanism is extremely efficient and incurs close-to-zero additional

cost on both cloud server and customers. Extensive security analysis and experiment results show the immediate

practicability of our mechanism design.

I. Introduction
 Cloud Computing provides convenient on-demand network access to a shared pool of configurable

computing resources that can be rapidly deployed with great efficiency and minimal management overhead [1].

One fundamental advantage of the cloud paradigm is computation outsourcing, where the computational power

of cloud customers is no longer limited by their resource-constraint devices. By outsourcing the workloads into

the cloud, customers could enjoy the literally unlimited computing resources in a pay-per-use manner without

committing any large capital outlays in the purchase of both hardware and software and/or the operational

overhead therein.

 Despite the tremendous benefits, outsourcing computation to the commercial public cloud is also

depriving customers’ direct control over the systems that consume and produce their data during the

computation, which inevitably brings in new security concerns and challenges towards this promising

computing model [2]. On the one hand, the outsourced computation workloads often contain sensitive
information, such as the business financial records, proprietary research data, or personally identifiable health

information etc. To combat against unauthorized information leakage, sensitive data have to be encrypted before

outsourcing [2] so as to provide end to-end data confidentiality assurance in the cloud and beyond. However,

ordinary data encryption techniques in essence prevent cloud from performing any meaningful operation of the

underlying plaintext data [3], making the computation over encrypted data a very hard problem. On the other

hand, the operational details inside the cloud are not transparent enough to customers [4]. As a result, there do

exist various motivations for cloud server to behave unfaithfully and to return incorrect results, i.e., they may

behave beyond the classical semihonest model. For example, for the computations that require a large amount of

computing resources, there are huge financial incentives for the cloud to be “lazy” if the customers cannot tell

the correctness of the output. Besides, possible software bugs, hardware failures, or even outsider attacks might

also affect the quality of the computed results. Thus, we argue that the cloud is intrinsically not secure from the

Data Security In Cloud Computing Using Linear Programming

www.iosrjournals.org 34 | Page

viewpoint of customers. Without providing a mechanism for secure computation outsourcing, i.e., to protect the

sensitive input and output information of the workloads and to validate the integrity of the computation result, it

would be hard to expect cloud customers to turn over control of their workloads from local machines to cloud
solely based on its economic savings and resource flexibility. For practical consideration, such a design should

further ensure that customers perform less amount of operations following the mechanism than completing the

computations by themselves directly. Otherwise, there is no point for customers to seek help from cloud.

 Recent researches in both the cryptography and the theoretical computer science communities have

made steady advances in “secure outsourcing expensive computations” (e.g. [5]–[10]). Based on Yao’s garbled

circuits [11] and Gentry’s breakthrough work on fully homomorphic encryption (FHE) scheme [12], a general

result of secure computation outsourcing has been shown viable in theory [9], where the computation is

represented by an encrypted combinational Boolean circuit that allows to be evaluated with encrypted private

inputs. However, applying this general mechanism to our daily computations would be far from practical, due to

the extremely high complexity of FHE operation as well as the pessimistic circuit sizes that cannot be handled in

practice when constructing original and encrypted circuits. This overhead in general solutions motivates us to
seek efficient solutions at higher abstraction levels than the circuit representations for specific computation

outsourcing problems. Although some elegant designs on secure outsourcing of scientific computations,

sequence comparisons, and matrix multiplication etc. have been proposed in the literature, it is still hardly

possible to apply them directly in a practically efficient manner, especially for large problems. In those

approaches, either heavy cloud-side cryptographic computations [7], [8], or multi-round interactive protocol

executions [5], or huge communication complexities [10], are involved (detailed discussions in Section VI). In

short, practically efficient mechanisms with immediate practices for secure computation outsourcing in cloud

are still missing.

 Focusing on engineering computing and optimization tasks, in this paper, we study practically efficient

mechanisms for secure outsourcing of linear programming (LP) computations. Linear programming is an

algorithmic and computational tool which captures the first order effects of various system parameters that

should be optimized, and is essential to engineering optimization. It has been widely used in various engineering
disciplines that analyze and optimize real-world systems, such as packet routing, flow control, power

management of data centers, etc. [13]. Because LP computations require a substantial amount of computational

power and usually involve confidential data, we propose to explicitly decompose the LP computation

outsourcing into public LP solvers running on the cloud and private LP parameters owned by the customer. The

flexibility of such a decomposition allows us to explore higher-level abstraction of LP computations than the

general circuit representation for the practical efficiency.

 Specifically, we first formulate private data owned by the customer for LP problem as a set of matrices

and vectors. This higher level representation allows us to apply a set of efficient

privacy-preserving problem transformation techniques, including matrix multiplication and affine mapping, to

transform the original LP problem into some arbitrary one while protecting the sensitive input/output

information. One crucial benefit of this higher level problem transformation method is that existing algorithms
and tools for LP solvers can be directly reused by the cloud server. Although the generic mechanism defined at

circuit level, e.g. [9], can even allow the customer to hide the fact that the outsourced computation is LP, we

believe imposing this more stringent security measure than necessary would greatly affect the efficiency. To

validate the computation result, we utilize the fact that the result is from cloud server solving the transformed LP

problem. In particular, we explore the fundamental duality theorem together with the piece-wise construction of

auxiliary LP problem to derive a set of necessary and sufficient conditions that the correct

Fig. 1: Architecture of secure outsourcing linear programming problems in Cloud Computing

Result must satisfy. Such a method of result validation can be very efficient and incurs close-to-zero

additional overhead on both customer and cloud server. With correctly verified result, customer can use the

secret transformation to map back the desired solution for his original LP problem. We summarize our

contributions as follows:

Data Security In Cloud Computing Using Linear Programming

www.iosrjournals.org 35 | Page

1) For the first time, we formalize the problem of securely outsourcing LP computations, and provide such a

secure and practical mechanism design which fulfills input/output privacy, cheating resilience, and

efficiency.
2) Our mechanism brings cloud customer great computation savings from secure LP outsourcing as it only

incurs O(n
p
) for some 2 < p ≤ 3 local computation overhead on the customer, while solving a normal LP

problem usually requires more than O(n3) time [13].

3) The computations done by the cloud server shares the same time complexity of currently practical

algorithms for solving the linear programming problems, which ensures that the use of cloud is

economically viable.

4) The experiment evaluation further demonstrates the immediate practicality: our mechanism can always

help customers achieve more than 30× savings when the sizes of the original LP problems are not too

small, while introducing no substantial overhead on the cloud.

 The rest of the paper is organized as follows. Section II introduces the system and threat model, and our

design goals. Then we provide the detailed mechanism description in Section III. Section IV and V give the
security analysis and performance evaluation, followed by Section VI which overviews the related work.

Finally, Section VII gives the concluding remark of the whole paper.

II. Problem Statement
A. System and Threat Model

 We consider a computation outsourcing architecture involving two different entities, as illustrated in

Fig. 1: the cloud customer, who has large amount of computationally expensive LP problems to be outsourced to

the cloud; the cloud server (CS), which has significant computation resources and provides utility computing

services, such as hosting the public LP solvers in a pay-per-use manner.
 The customer has a large-scale linear programming problem Φ (to be formally defined later) to be

solved. However, due to the lack of computing resources, like processing power, memory, and storage etc., he

cannot carry out such expensive computation locally. Thus, the customer resorts to CS for solving the LP

computation and leverages its computation capacity in a pay-per-use manner. Instead of directly sending

original problem Φ, the customer first uses a secret K to map Φ into some encrypted version Φ and outsources

problem ΦK to CS. CS then uses its public LP solver to get the answer of ΦK and provides a correctness proof Γ,

but it is supposed to learn nothing or little of the sensitive information contained in the original problem

description Φ. After receiving the solution of encrypted problem ΦK, the customer should be able to first verify

the answer via the appended proof Γ. If it’s correct, he then uses the secret K to map the output into the desired

answer for the original problem Φ.

 The security threats faced by the computation model primarily come from the malicious behavior of

CS. We assume that the CS may behave beyond “honest-but-curious”, i.e. the semi-honest model that was
assumed by many previous researches (e.g., [14], [15]), either because it intends to do so or because it is

compromised. The CS may be persistently interested in analyzing the encrypted input sent by the customer and

the encrypted output produced by the computation to learn the sensitive information as in the semi-honest

model. In addition, CS can also behave unfaithfully or intentionally sabotage the computation, e.g. to lie about

the result to save the computing resources, while hoping not to be caught at the same time.

 Finally note that we assume the communication channels between each cloud server and the customer

is authenticated and reliable, which can be achieved in practice with little overhead. These authentication

handshakes are omitted in the following presentation.

B. Design Goals

 To enable secure and practical outsourcing of LP under the aforementioned model, our mechanism
design should achieve the following security and performance guarantees.

1) Correctness: Any cloud server that faithfully follows the mechanism must produce an output that can be

decrypted and verified successfully by the customer.

2) Soundness: No cloud server can generate an incorrect output that can be decrypted and verified

successfully by the customer with non-negligible probability.

3) Input/output privacy: No sensitive information from the customer’s private data can be derived by

the cloud server during performing the LP computation.

4) Efficiency: The local computations done by customer should be substantially less than solving the

original LP on his own. The computation burden on the cloud server should be within the comparable

time complexity of existing practical algorithms solving LP problems.

Data Security In Cloud Computing Using Linear Programming

www.iosrjournals.org 36 | Page

C. Background on Linear Programming

 An optimization problem is usually formulated as a mathematical programming problem that seeks the

values for a set of decision variables to minimize (or maximize) an objective function representing the cost
subject to a set of constraints. For linear programming, the objective function is an affine function of the

decision variables, and the constraints are a system of linear equations and inequalities. Since a constraint in the

form of a linear inequality can be expressed as a linear equation by introducing a non-negative slack variable,

and a free decision variable can be expressed as the difference of two non-negative auxiliary variables, any

linear programming problem can be expressed in the following standard form,

minimize cT x subject to Ax = b, x ≥ 0. (1)

Here x is an n×1 vector of decision variables, A is an m×n matrix, and both c and b are n×1 vectors. It

can be assumed further that m ≤ n and that A has full row rank; otherwise, extras rows can always be eliminated

from A.

 In this paper, we study a more general form as follows,
minimize cT x subject to Ax = b, Bx ≥ 0. (2)

In Eq. (2), we replace the non-negative requirements in Eq. (1) by requiring that each component of Bx

to be non-negative, where B is an n × n non-singular matrix, i.e. Eq. (2) degenerates to Eq. (1) when B is the

identity matrix. Thus, the LP problem can be defined via the tuple Φ = (A,B, b, c) as input, and the solution x as

output.

III. The Proposed Schemes
This section presents our LP outsourcing scheme which provides a complete outsourcing solution for –

not only the privacy protection of problem input/output, but also its efficient result checking. We start from an

overview of secure LP outsourcing design framework and discuss a few basic techniques and their demerits,

which leads to a stronger problem transformation design utilizing affine mapping. We then discuss effective

result verification by leveraging the duality property of LP. Finally, we give the full scheme description.

A. Mechanism Design Framework

We propose to apply problem transformation for mechanism design. The general framework is adopted

from a generic approach [9], while our instantiation is completely different and novel. In this framework, the

process on cloud server can be represented by algorithm ProofGen and the process on customer can be

organized into three algorithms (KeyGen, ProbEnc, ResultDec). These four algorithms are summarized below

and will be instantiated later.

 • KeyGen(1 k) → {K}. This is a randomized key generation algorithm which takes a system security
parameter k, and returns a secret key K that is used later by customer to encrypt the target LP problem.

 • ProbEnc(K, Φ) → { ΦK }. This algorithm encrypts the input tuple Φ into ΦK with the secret key K.

According to problem transformation, the encrypted input ΦK has the same form as Φ, and thus defines the

problem to be solved in the cloud.

 • ProofGen(ΦK) → {(y, Γ)}. This algorithm augments a generic solver that solves the problem ΦK to produce

both the output y and a proof Γ. The output y later decrypts to x, and is used later by the customer to

verify the correctness of y or x.

 • ResultDec(K, Φ, y, Γ) → {x,⊥}. This algorithm may choose to verify either y or x via the proof . In

any case, a correct output x is produced by decrypting y using the secret not performing the computation

faithfully.

Note that our proposed mechanism provides us one-time pad types of flexibility. Namely, we shall
never use the same secret key K to two different problems. Thus, when analyzing the security strength of the

mechanism, we focus on the cipher text only attack. We do not consider known plaintext attack in this paper but

do allow adversaries to do offline guessing or inferring via various problem-dependent information including

sizes and signs of the solution, which are not necessary to be confidential.

B. Basic Techniques

 Before presenting the details of our proposed mechanism, we study in this subsection a few basic

techniques and show that the input encryption based on these techniques along may result in an unsatisfactory

mechanism. However, the analysis will give insights on how a stronger mechanism should be designed. Note

that to simplify the presentation, we assume that the cloud server honestly performs the computation, and defer

the discussion on soundness to a later section.

Data Security In Cloud Computing Using Linear Programming

www.iosrjournals.org 37 | Page

1) Hiding equality constraints (A, b): First of all, a randomly generated m × m non-singular matrix Q can

be part of the secret key K. The customer can apply the matrix to Eq. (2) for the following constraints

transformation,
Ax = b ⇒ A′x = b′

 Where A′ = QA and b′ = Qb.

 Since we have assumed that A has full row rank, A′ must have full row rank. Without knowing Q, it is

not possible for one to determine the exact elements of A. However, the null spaces of A and A′ remains the

same, which may violate the security requirement of some applications. The vector b is encrypted in a perfect

way since it can be mapped to an arbitrary b′ with a proper choice of Q.

2) Hiding inequality constraints (B): The customer cannot transform the inequality constraints in the

similar way as used for the equality constraints. This is because for an arbitrary invertible matrix Q, Bx ≥ 0 is

not equivalent to QBx ≥ 0 in general.

 To hide B, we can leverage the fact that a feasible solution to Eq. (2) must satisfy the equality

constraints. To be more specific, the feasible regions defined by the following two groups of constraints are the
same.

 Ax = b

 Bx ≥ 0 ⇒ Ax = b

 (B − λ A) x = B′x ≥ 0

Where λ is a randomly generated n×m matrix in K satisfying that |B′| = |B – λ A| 6= 0 and λ b = 0.

Since the condition λ b = 0 is largely underdetermined, it leaves great flexibility to choose λ in order to satisfy

the above conditions.

3) Hiding objective functions c and value cT x: Given the widely application of LP, such as the estimation

of business annul revenues or personal portfolio holdings etc., the information contained in objective function c
and optimal objective value cT x might be as sensitive as the constraints of A,B, b. Thus, they should be

protected, too.

 To achieve this, we apply constant scaling to the objective function, i.e. a real positive scalar is

generated randomly as part of encryption key K and c is replaced by c. It is not possible to derive the original

optimal objective value cT x without knowing first, since it can be mapped to any value with the same sign.

While hiding the objective value well, this approach does leak structure-wise information of objective function

c. Namely, the number and position of zero-elements in c are not protected. Besides, the ratio between the

elements in c are also preserved after constant scaling.

Summarization of basic techniques Overall, the basic techniques would choose a secret key K = (Q, λ,) and
encrypt the input tuple Φ into ΦK = (A′,B′, b′, c), which gives reasonable strength of problem input hiding. Also,

these techniques are clearly correct in the sense that solving ΦK would give the same optimal solution as solving

Φ. However, it also implies that although input privacy is achieved, there is no output privacy. Essentially, it

shows that although one can change the constraints to a completely different form, it is not necessary the

feasible region defined by the constraints will change, and the adversary can leverage such information to gain

knowledge of the original LP problem. Therefore, any secure linear programming mechanism must be able to

not only encrypt the constraints but also to encrypt the feasible region defined by the constraints.

C. Enhanced Techniques via Affine Mapping
 To enhance the security strength of LP outsourcing, we must be able to change the feasible region of

original LP and at the same time hide output vector x during the problem input encryption. We propose to

encrypt the feasible region of Φ by applying an affine mapping on the decision variables x. This design principle

is based on the following observation: ideally, if we can arbitrarily transform the feasible area of problem Φ

from one vector space to another and keep the mapping function as the secret key, there is no way for cloud

server to learn the original feasible area information. Further, such a linear mapping also serves the important

purpose of output hiding, as illustrated below.

Let M be an n × n non-singular matrix and r be an n × 1 vector. The affine mapping defined by M and r

transforms x into y = M−1(x + r). Since this mapping is an one-to-one mapping, the LP problem Φ in Eq. (2)

can be expressed as the following LP problem of the decision variables y. minimize cTMy − cT r

subject to AMy = b + Ar

 BMy ≥ Br.
Using the basic techniques, this LP problem can be further transformed to

minimize cTMy

Data Security In Cloud Computing Using Linear Programming

www.iosrjournals.org 38 | Page

subject to QAMy = Q(b + Ar),

BMy −λQAMy ≥ Br −λ (b + Ar).

One can denote the constraints of above LP via Eq. (3):

 A′ = QAM

 B′ = (B − _QA)M

 b′ = Q(b + Ar) (3)

 c′ = MT c

If the following conditions hold,

 |B′| ≠ 0, λb′ = Br, and b + Ar ≠ 0, (4)

then the LP problem ΦK = (A′,B′, b′, c′) can be formulated via Eq. (5),

 minimize c′T y subject to A′y = b′, B′y ≥ 0. (5)

Discussion By keeping the randomly selected M and r as part of secret key K for affine mapping, it can be

ensured that the feasible region of encrypted problem ΦK no longer contains any resemblance of the feasible

area in original problem Φ. As we will show later, both input and output privacy can be achieved by sending ΦK

instead of Φ to the cloud.

D. Result Verification

 Till now, we have been assuming the server is honestly performing the computation, while being

interested learning information of original LP problem. However, such semi-honest model is not strong enough

to capture the adversary behaviors in the real world. In many cases, especially when the computation on the

cloud requires a huge amount of computing resources, there exists strong financial incentives for the cloud

server to be “lazy”. They might either be not willing to commit service-level-agreed computing resources to
save cost, or even be malicious just to sabotage any following up computation at the customers. Since the cloud

server promises to solve the LP problem ΦK = (A′, B′, b′, c′), we propose to solve the result verification problem

by designing a method to verify the correctness of the solution y of ΦK. The soundness condition would be a

corollary thereafter when we present the whole mechanism in the next section. Note that in our design, the

workload required for customers on the result verification is substantially cheaper than solving the LP problem

on their own, which ensures the great computation savings for secure LP outsourcing.

The LP problem does not necessarily have an optimal solution. There are three cases as follows.

• Normal: There is an optimal solution with finite objective value.

• Infeasible: The constraints cannot be all satisfied at the same time.

• Unbounded: For the standard form in Eq. (1), the objective function can be arbitrarily small

while the constraints are all satisfied.
Therefore, the result verification method not only needs to verify a solution if the cloud server returns one,

but also needs to verify the cases when the cloud server claims that the LP problem is infeasible or unbounded.

We will first present the proof Γ that the cloud server should provide and the verification method when the

cloud server returns an optimal solution, and then present the proofs and the methods for the other two cases,

each of which is built upon the previous one.

1) The normal case: We first assume that the cloud server returns an optimal solution y. In order to verify

y without actually solving the LP problems, we design our method by seeking a set of necessary and sufficient

conditions that the optimal solution must satisfy. We derive these conditions from the well-studied duality

theory of the LP problems [13]. For the primal LP problem ΦK defined as Eq. (5), its dual problem is defined as,

maximize b′T s subject to A′T s+B′T t = c′, t ≥ 0, (6)

Where s and t are the m×1 and n×1 vectors of dual decision variables respectively. The strong duality
of the LP problems states that if a primal feasible solution y and a dual feasible solution (s, t) lead to the same

primal and dual objective value, then both y and (s, t) are the optimal solutions of the primal and the dual

problems respectively [13]. Therefore, we should ask the cloud server to provide the dual optimal solution as

part of the proof Γ . Then, the correctness of y can be verified based on the following conditions,

c′T, y = b′T s, A′y = b′, B′y ≥ 0, A′T s + B′T t = c′, t ≥ 0. (7)

Here, c′T y = b′T s tests the equivalence of primal and dual objective value for strong duality. All the

remaining conditions ensure that both y and (s, t) are feasible solutions of the primal and dual problems,

respectively. Note that due to the possible truncation errors in the computation, the equality test A′y = b′ can be

achieved in practice by checking whether ||A′y − b′|| is small enough.

Data Security In Cloud Computing Using Linear Programming

www.iosrjournals.org 39 | Page

2) The infeasible case: We then assume that the cloud server claims ΦK to be infeasible. In this case, we

leverage the methods to find a feasible solution of a LP problem, usually known as the phase I methods [16].
These methods construct auxiliary LP problems to determine if the original LP problems are feasible or not. We

choose the following auxiliary problem,

minimize z subject to −1z ≤ A′y−b′ ≤ 1z,B′y ≥ −1z. (8)

Clearly, this auxiliary LP problem has an optimal solution since it has at least one feasible solution and

its objective function is lower-bounded. Furthermore, one can prove that Eq. (8) has 0 as the optimal objective

value if and only if ΦK is feasible. (See Lemma 29.11 in [17]). Thus, to prove ΦK is infeasible, the cloud server

must prove Eq. (8) has a positive optimal objective value. This can be achieved by including such an optimal

solution and a proof of optimality in Γ, which is readily available from the method for the normal case.

3) The unbounded case: Finally, we assume that the cloud server claims ΦK to be unbounded. The duality
theory implies that this case is equivalent to that ΦK is feasible and the dual problem of ΦK, i.e. Eq. (6), is

infeasible. Therefore, the cloud server should provide a proof showing that those two conditions hold. It is

straight-forward to provide a feasible solution of ΦK and then to verify it is actually feasible. Based on the

method for the infeasible case, the cloud server can prove that Eq. (6) is infeasible by constructing the auxiliary

problem of Eq. (6), i.e.,

Minimize z

Subject to −1z ≤ A′Ts + B′Tt − c′ ≤ 1z (9)

t ≥ −1z,

And showing this problem has optimal objective value of 0.

Discussion For all three cases, the cloud server is required to provide correctness proof by proving a normal LP

(either ΦK or some auxiliary LP related to ΦK) has an optimal solution. Since most common LP algorithms like
Simplex and Interior Point methods compute both the primal and dual solutions at the same time [13], providing

the dual optimal solution as the optimality proof does not incur any additional overhead for cloud server. Note

that the form of auxiliary LP for infeasible/unbounded cases is not unique. In practice, we can adjust it to suit

the public solver on cloud, which can be pre-specified by the customer and cloud server with little cost.

E. The Complete Mechanism Description

 Based on the previous sections, the proposed mechanism for secure outsourcing of linear programming

in the cloud is summarized below.

• KeyGen (1K): Let K = (Q,M, r, λ,). For the system initialization, the customer runs KeyGen(1k) to

randomly generate a secret K, which satisfies Eq. (4).

• ProbEnc (K, Φ): With secret K and original LP problem Φ, the customer runs ProbEnc(K, Φ) to compute
the encrypted LP problem ΦK = (A′,B′, b′, c′) from Eq. (3).

• ProofGen (ΦK): The cloud server attempts to solve the LP problem ΦK in Eq. (5) toobtain the optimal

solution y. If the LP problem ΦK has an optimal solution, Γ should indicate so and include the dual optimal

solution (s, t). If the LP problem ΦK is infeasible, Γ should indicate so and include the primal and the

dual optimal solutions of the auxiliary problem in Eq. (8). If the LP problem ΦK is unbounded, y should be

a feasible solution of it, and Γ should indicate so and include the primal and the dual optimal solutions of

Eq. (9), i.e. the auxiliary problem of the dual problem of ΦK.

• ResultDec (K, Φ, y, Γ): First, the customer verifies y and Γ according to the various cases.

If they are correct, the customer computes x =My − r if there is an optimal solution or reports Φ to be

infeasible or unbounded accordingly; otherwise the customer outputs ⊥ , indicating the cloud

server was not performing the computation faithfully.

IV. Security Analysis
A. Analysis on Correctness and Soundness Guarantee

We give the analysis on correctness and soundness guarantee via the following two theorems.

Theorem 1: Our scheme is a correct verifiable linear programming outsourcing scheme.

Proof: The proof consists of two steps. First, we show that for any problem ϕ and its encrypted version ΦK,

solution y computed by honest cloud server will always be verified successfully. This follows directly from the

duality theorem of linear programming. Namely, all conditions derived from duality theorem and auxiliary LP

problem construction for result verification are necessary and sufficient.

 Next, we show that correctly verified solution y always corresponds to the optimal solution x of
original problem Φ. For space limit, we only focus on the normal case. The reasoning for infeasible/unbounded

Data Security In Cloud Computing Using Linear Programming

www.iosrjournals.org 40 | Page

cases follows similarly. By way of contraction, suppose x = My − r is not the optimized solution for Φ. Then,

there exists x* such that cT x* < cT x, where Ax*= b and Bx* ≥ 0. Since x* = My − r, it is straightforward that

cTMy* − cT r = cT x* < cT x = cTMy−cT r, where A′y* = b′ and B′y* ≥ 0. Thus, y* is a better solution than y for
problem ΦK, which contradicts the fact that the optimlity of y has been correctly verified. This completes the

proof of theorem 1.

Theorem 2: Our scheme is a sound verifiable linear programming outsourcing scheme.

Proof: Similar to correctness argument, the soundness of the proposed mechanism follows from the facts that the

LP problem Φ and ΦK are equivalent to each other through affine mapping, and all the conditions thereafter for

result verification are necessary and sufficient.

B. Analysis on Input and Output Privacy Guarantee

 We now analyze the input and output privacy guarantee.

Note that the only information that the cloud server obtains is ΦK = (A′, B′, b′, c′).

 We start from the relationship between the primal problem Φ and its encrypted one ΦK. First of all, the
matrix A and the vector b are proteted perfectly. Because for ∀ m × n matrix A′ that has the full row rank and ∀

n × 1 vector b′, ∃ a tuple (Q,M, r) that transforms (A, b) into (A′, b′). This is straightforward since we can

always find invertible matrices Q, M for equivalent matrices A and A′ such that A′ = QAM, and then solve r

from b′ = Q(b + Ar). Thus from (A′, b′), cloud can only derive the rank and size information of original equality

constraints A, but nothing else. Secondly, the information of matrix B is protected by B′ = (B − λQA) M. Recall

that the n × m matrix λ in the condition λ b′ = Br is largely underdetermined. Namely, for each m×1 row vector

in λ, there are m−1 elements that can be set freely. Thus, the abundant choices of λ, which can be viewed as

encryption key with large key space, ensures that B is well obfuscated. Thirdly, the vector c is protected well by

scaling factor and M. By multiplication of matrix M, both the elements and the structure pattern of c are no

longer exposed from c′ = MTc. As for the output, since M, r is kept as a one-time secret and drawn uniformly at

random, deriving x = My − r solely from y can be hard for cloud.

 Given the complementary relationship of primal and dual problem, it is also worth looking into the
input/output privacy guarantee from dual problems of both Φ and ΦK. Same as eq. (6), the dual problem of Φ is

defined as,

maximize bTα subject to ATα +BTβ = c, β ≥ 0, (10)

TABLE I: Preliminary Performance Results. Here toriginal, tcloud, and tcustomer denotes the cloud-side original

problem solving time, cloud-side encrypted problem solving time, and customer-side computation time,

respectively. The asymmetric speedup captures the customer efficiency gain via LP outsourcing. The cloud

efficiency captures the overall computation cost on cloud introduced by solving encrypted LP problem, which

should ideally be as closer to 1 as possible.

Benchmark Original Problem Encrypted

Problem

Asymmetric

Speedup

Cloud Efficiency

Size toriginal (sec) tcloud (sec) tcustomer (sec) toriginal/

tcustomer

toriginal/

tcloud

1 m=50, n=60 0.167 0.170 0.007 26.5 × 0.981

2 m = 100,

n = 120

0.227 0.239 0.005 46.7 × 0.956

3 m = 200, n

= 240

0.630 0.613 0.017 37.3 × 1.037

4 m = 400, n

= 480

3.033 3.671 0 0.090 33.5 × 0.835

5 m = 800, n

= 960

19.838 23.527 0.569 34.9 × 0.851

6 m = 1600, n

= 1920

171.862 254.012 4.015 42.6 × 0.690

7 m = 3200, n

= 3840

1757.570 2661.360 47.602 36.4 × 0.745

Where α and β are the m×1 and n×1 vectors of dual decision variables respectively. Clearly, the
analysis for primal problem Φ’s input privacy guarantee still holds for its dual problem input (A, B, b, c). As for

the output privacy, we plug eq. (3) into ΦK’s dual problem defined in eq. (6) and rearrange it as,

maximize [Q(b + Ar)POW]T s

Data Security In Cloud Computing Using Linear Programming

www.iosrjournals.org 41 | Page

Subject to ATQT (s − λT t) + BT t = c (11)

t ≥ 0,

Note that MT in the equality constraint is canceled out during the rearrangement. Comparing eq. (10)
and eq. (11), we derive the linear mapping between (α, β) and (s, t) as,

 α =1/ Q
T
 (s − λ

T
 t), β =1/ t (12)

Following similar reasoning for Φ’s output privacy and analysis for hiding objective function c in basic

techniques (Section III-B3), the dual decision variables (α, β) of original problem Φ is protected well by the

random choice of (Q, λ,).

V. Performance Analysis
A. Theoretic Analysis

1) Customer Side Overhead: According to our mechanism, customer side computation overhead consists
of key generation, problem encryption operation, and result verification, which corresponds to the three

algorithms KeyGen, ProbEnc, and ResultDec, respectively. Because KeyGen and Result-Dec only require a set

of random matrix generation as well as vector-vector and matrix-vector multiplication, the computation

complexity of these two algorithms are upper bounded via O(n2). Thus, it is straight-forward that the most time

consuming operations are the matrix-matrix multiplications in problem encryption algorithm ProbEnc. Since m

≤ n, the time complexity for the customer local computation is thus asymptotically the same as matrix-matrix

multiplication, i.e., O(np) for some 2 < p ≤ 3. In our experiment, the matrix multiplication is implemented via

standard cubic-time method, thus the overall computation overhead is O(n
3
). However, other more efficient

matrix multiplication algorithms can also be adopted, such as the Strassen’s algorithm with time complexity

O(n2.81) [18] or the Coppersmith-Winograd algorithm [19] in O(n2.376). In either case, the over all customer side

efficiency can be further improved.
2) Server Side Overhead: For cloud server, its only computation overhead is to solve the encrypted LP

problem ΦK as well as generating the result proof Γ, both of which correspond

to the algorithm ProofGen. If the encrypted LP problem ΦK belongs to normal case, cloud server just solves it

with the dual optimal solution as the result proof Γ, which is usually readily available in the current LP solving

algorithms and incurs no additional cost for cloud (see Section III-D). If the encrypted problem ΦK does not

have an optimal solution, additional auxiliary LP problems can be solved to provide a proof. Because for general

LP solvers, phase I method (solving the auxiliary LP) is always executed at first to determine the initial feasible

solution [16], proving the auxiliary LP with optimal solutions also introduces little additional overhead. Thus, in

all the cases, the computation complexity of the cloud server is asymptotically the same as to solve a normal LP

problem, which usually requires more than O(n3) time [13].

Obviously, the customer will not spend more time to encrypt the problem and solve the problem in the

cloud than to solve the problem on his own. Therefore, in theory, the proposed mechanism would allow the
customer to outsource their LP problems to the cloud and gain great computation savings.

B. Experiment Results

 We now assess the practical efficiency of the proposed secure and verifiable LP outsourcing scheme

with experiments. We implement the proposed mechanism including both the customer and the cloud side

processes in Matlab and utilize the MOSEK optimization [20] through its Matlab interface to solve the original

LP problem Φ and encrypted LP problem ΦK. Both customer and cloud server computations in our experiment

are conducted on the same workstation with an Intel Core 2 Duo processor running at 1.86 GHz with 4 GB

RAM. In this way, the practical efficiency of the proposed mechanism can be assessed without a real cloud

environment. We alsoignore the communication latency between the customers and the cloud for this

application since the computation dominates the running time as evidenced by our experiments.
 Our randomly generated test benchmark covers the small and medium sized problems, where m and n

are increased from 50 to 3200 and 60 to 3840, respectively. All these benchmarks are for the normal cases with

feasible optimal solutions. Since in practice the infeasible/unbounded cases for LP computations are very rare,

we do not conduct those experiments for the current preliminary work and leave it as one of our future tasks.

Table I gives our experimental results, where each entry in the table represents the mean of 20 trials.

 In this table, the sizes of the original LP problems are reported in the first two columns. The times to

solve the original LP problem in seconds, toriginal, are reported in the third column. The times to solve the

encrypted LP problem in seconds are reported in the fourth and fifth columns,

Separated into the time for the cloud server tcloud and the time for the customer tcustomer. Note that since

each KeyGen would generate a different key, the encrypted LP problem ΦK generated by ProbEnc would be

different and thus result in a different running time to solve it. The tcloud and tcustomer reported in Table I are thus

the average of multiple trials. We propose to assess the practical efficiency by two characteristics calculated
from toriginal, tcloud, and tcustomer. The Asymmetric Speedup, calculated as toriginal/tcustomer, represents the savings of

Data Security In Cloud Computing Using Linear Programming

www.iosrjournals.org 42 | Page

the computing resources for the customers to outsource the LP problems to the cloud using the proposed

mechanism. The Cloud Efficiency, calculated as toriginal/tcloud, represents the overhead introduced to the overall

computation by the proposed mechanism. It can be seen from the table that we can always achieve more than
30× savings when the sizes of the original LP problems are not too small. On the other hand, from the last

column, we can claim that for the whole system including the customers and the cloud, the proposed mechanism

will not introduce a substantial amount of overhead. It thus confirms that secure outsourcing LP in cloud

computing is economically viable.

VI. Related Work
A. Work on Secure Computation Outsourcing

 General secure computation outsourcing that fulfills all aforementioned requirements, such as

input/output privacy and correctness/soundness guarantee has been shown feasible in theory by Gennaro et al.
[9]. However, it is currently not practical due to its huge computation complexity. Instead of outsourcing general

functions, in the security community, Atallah et al. explore a list of work [5], [7], [8], [10] for securely

outsourcing specific applications. The customized solutions are expected to be more efficient than the general

way of constructing the circuits. In [5], they give the first investigation of secure outsourcing of numerical and

scientific computation. A set of problem dependent disguising techniques are proposed for different scientific

applications like linear algebra, sorting, string pattern matching, etc. However, these disguise techniques

explicitly allow information disclosure to certain degree. Besides, they do not handle the important case of result

verification, which in our work is bundled into the design and comes at close-to-zero additional cost. Later on in

[7] and [8], Atallah et al. give two protocol designs for both secure sequence comparison outsourcing and secure

algebraic computation outsourcing. However, both protocols use heavy cryptographic primitive such as

homomorphic encryptions [21] and/or oblivious transfer [22] and do not scale well for large problem set. In
addition, both designs are built upon the assumption of two non-colluding servers and thus vulnerable to

colluding attacks. Based on the same assumption, Hohenberger et al. [6] provide protocols for secure

outsourcing of modular exponentiation, which is considered as prohibitively expensive in most public-key

cryptography operations. Very recently, Atallah [10] et al. give a provably secure protocol for secure

outsourcing matrix multiplications based on secret sharing [23].While this work outperforms their previous

work [8] in the sense of single server assumption and computation efficiency (no expensive cryptographic

primitives), the drawback is the large communication overhead. Namely, due to secret sharing technique, all

scalar operations in original matrix multiplication are expanded to polynomials, introducing significant amount

of overhead. Considering the case of the result verification, the communication overhead must be further

doubled, due to the introducing of additional pre-computed “random noise” matrices.

 In short, these solutions, although elegant, are still not efficient enough for immediate practical uses,

which we aim to address for the secure LP outsourcing in this paper.

B. Work on Secure Multiparty Computation

 Another large existing list of work that relates to (but is also significantly different from) ours is Secure

Multi-party Computation (SMC), first introduced by Yao [11] and later extended by Goldreich et al. [24] and

many others. SMC allows two or more parties to jointly compute some general function while hiding their

inputs to each other. As general SMC can be very inefficient, Du and Atallah et. al. have proposed a series of

customized solutions under the SMC context to a spectrum of special computation problems, such as privacy-

preserving cooperative statistical analysis, scientific computation, geometric computations, sequence

comparisons, etc. [25]. However, directly applying these approaches to the cloud computing model for secure

computation outsourcing would still be problematic. The major reason is that they did not address the

asymmetry among the computational powers possessed by cloud and the customers, i.e., all these schemes in the
context of SMC impose each involved parties comparable computation burdens, which we specifically avoid in

the mechanism design by shifting as much as possible computation burden to cloud only. Another reason is the

asymmetric security requirement. In SMC no single involved party knows all the problem input information,

making result verification a very difficult task. But in our model, we can explicitly exploit the fact that the

customer knows all input information and thus design efficient result verification mechanism.

 Recently, Li and Atallah [26] give a study for secure and collaborative computation of linear

programming under theSMC framework. Their solution is based on the additive split of the constraint matrix

between two involved parties, followed by a series of interactive (and arguably heavy) cryptographic protocols

collaboratively executed in each iteration step of the Simplex Algorithm. This solution has the computation

asymmetry issue mentioned previously. Besides, they only consider honest-but-curious model and thus do not

guarantee that the final solution is optimal.

Data Security In Cloud Computing Using Linear Programming

www.iosrjournals.org 43 | Page

C. Work on Delegating Computation and Cheating Detection

 Detecting the unfaithful behaviors for computation outsourcing is not an easy task, even without

consideration of input/output privacy. Verifiable computation delegation, where a computationally weak
customer can verify the correctness of the delegated computation results from a powerful but untrusted server

without investing too much resources, has found great interests in theoretical computer science community.

Some recent general result can be found in Goldwasser et al. [27]. In distributed computing and targeting the

specific computation delegation of one-way function inversion, Golle et al. [28] propose to insert some pre-

computed results (images of “ringers”) along with the computation workload to defeat untrusted (or lazy)

workers. In [29], Du. et al. propose a method of cheating detection for general computation outsourcing in grid

computing. The server is required to provide a commitment via a Merkle tree based on the results it computed.

The customer can then use the commitment combined with a sampling approach to carry out the result

verification (without re-doing much of the outsourced work.)

 However, all above schemes allow server actually see the data and result it is computing with, which is

strictly prohibited in the cloud computing model for data privacy. Thus, the problem of result verification
essentially becomes more difficult, when both input/output privacy is demanded. Our work leverages the duality

theory of LP problem and effectively bundles the result verification within the mechanism design, with little

extra overhead on both customer and cloud server.

VII. Concluding Remarks
 In this paper, for the first time, we formalize the problem of securely outsourcing LP computations in

cloud computing, and provide such a practical mechanism design which fulfills input/output privacy, cheating

resilience, and efficiency. By explicitly decomposing LP computation outsourcing into public LP solvers and

private data, our mechanism design is able to explore appropriate security/efficiency tradeoffs via higher level
LP computation than the general circuit representation. We develop problem transformation techniques that

enable customers to secretly transform the original LP into some arbitrary one while protecting sensitive

input/output information. We also investigate duality theorem and derive a set of necessary and sufficient

condition for result verification. Such a cheating resilience design can be bundled in the overall mechanism with

close-to-zero additional overhead. Both security analysis and experiment results demonstrates the immediate

practicality of the proposed mechanism.

 We plan to investigate some interesting future work as follows: 1) devise robust algorithms to achieve

numerical stability; 2) explore the sparsity structure of problem for further efficiency improvement; 3) establish

formal security framework; 4) extend our result to non-linear programming computation outsourcing in cloud.

References
[1] P. Mell and T. Grance, “Draft nist working definition of cloud computing,” Referenced on Jan. 23rd, 2010 Online at

http://csrc.nist.gov/ groups/SNS/cloud-computing/index. html, 2010.

[2] Cloud Security Alliance, “Security guidance for critical areas of focus in cloud computing,” 2009, online at

http://www.cloudsecurityalliance.org.

[3] C. Gentry, “Computing arbitrary functions of encrypted data,” Commun. ACM, vol. 53, no. 3, pp. 97–105, 2010.

[4] Sun Microsystems, Inc., “Building customer trust in cloud computing with transparent security,” 2009, online at

https://www.sun.com/offers/details/sun transparency.xml.

[5] M. J. Atallah, K. N. Pantazopoulos, J. R. Rice, and E. H. Spafford, “Secure outsourcing of scientific computations,” Advances in

Computers, vol. 54, pp. 216–272, 2001.

[6] S. Hohenberger and A. Lysyanskaya, “How to securely outsource cryptographic computations,” in Proc. of TCC, 2005, pp. 264–

282.

[7] M. J. Atallah and J. Li, “Secure outsourcing of sequence comparisons,” Int. J. Inf. Sec., vol. 4, no. 4, pp. 277–287, 2005.

[8] D. Benjamin and M. J. Atallah, “Private and cheating-free outsourcing of algebraic computations,” in Proc. of 6th Conf. on Privacy,

Security, and Trust (PST), 2008, pp. 240– 245.

[9] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable computing: Outsourcing computation to untrusted workers,” in

Proc. Of CRYPTO’10, Aug. 2010.

[10] M. Atallah and K. Frikken, “Securely outsourcing linear algebra computations,” in Proc. Of ASIACCS, 2010, pp. 48–59.

[11] A. C.-C. Yao, “Protocols for secure computations (extended abstract),” in Proc. Of FOCS’82, 1982, pp. 160–164.

[12] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc of STOC, 2009, pp. 169–178.

[13] D. Luenberger and Y. Ye, Linear and Nonlinear Programming, 3rd ed. Springer, 2008.

[14] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked keyword search over encrypted cloud data,” in Proc. of ICDCS’10,

2010.

[15] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and fine-grained access control in cloud computing,” in Proc. of

IEEE INFOCOM’10, San Diego, CA, USA, March 2010.

[16] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2
nd

 ed. MIT press, 2008.

[18] V. Strassen, “Gaussian elimination is not optimal,” Numer. Math., vol. 13, pp. 354–356, 1969.

[19] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic progressions,” in Proc. of STOC’87, 1987, pp. 1–6.

[20] MOSEK ApS, “The MOSEK Optimization Software,” Online at http: //www.mosek.com/, 2010.

[21] P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,” in Proc. of EUROCRYPT’99, 1999, pp.

223–238.

Data Security In Cloud Computing Using Linear Programming

www.iosrjournals.org 44 | Page

[22] S. Even, O. Goldreich, and A. Lempel, “A randomized protocol for signing contracts,” Commun. ACM, vol. 28, no. 6, pp. 637–647,

1985.

[23] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612–613, 1979.

[24] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game or a completeness theorem for protocols with honest

majority,” in Proc. of STOC’87, 1987, pp. 218–229.

[25] W. Du and M. J. Atallah, “Secure multi-party computation problems and their applications:a review and open problems,” in Proc. of

New Security Paradigms Workshop (NSPW), 2001, pp. 13–22.

[26] J. Li and M. J. Atallah, “Secure and private collaborative linear programming,” in Proc. Of CollaborateCom, Nov. 2006.

[27] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating computation: interactive proofs for muggles,” in Proc. of STOC,

2008, pp.113–122.

[28] P. Golle and I. Mironov, “Uncheatable distributed computations,” in Proc. of CT-RSA, 2001, pp. 425–440.

[29] W. Du, J. Jia, M. Mangal, and M. Murugesan, “Uncheatable grid computing,” in Proc. Of ICDCS, 2004, pp. 4–11.

