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Abstract: Cloud computing has great potential of providing robust computational power to the society at 

reduced cost. It enables customers with limited computational resources to outsource their large computation 
workloads to the cloud, and economically enjoy the massive computational power, bandwidth, storage, and even 

appropriate software that can be shared in a pay-per-use manner. Despite the tremendous benefits, security is 

the primary obstacle that prevents the wide adoption of this promising computing model, especially for 

customers when their confidential data are consumed and produced during the computation. Treating the cloud 

as an intrinsically insecure computing platform from the viewpoint of the cloud customers, 

We must design mechanisms that not only protect sensitive information by enabling computations with 

encrypted data, but also protect customers from malicious behaviors by enabling the validation of the 

computation result. Such a mechanism of general secure computation outsourcing was recently shown to be 

feasible in theory, but to design mechanisms that are practically efficient remains a very challenging problem. 

                   Focusing on engineering computing and optimization tasks, this paper investigates secure 

outsourcing of widely applicable linear programming (LP) computations. In order to achieve practical 
efficiency, our mechanism design explicitly decomposes the LP computation outsourcing into public LP solvers 

running on the cloud and private LP parameters owned by the customer. The resulting flexibility allows us to 

explore appropriate security/efficiency tradeoff via higher-level abstraction of LP computations than the 

general circuit representation. In particular, by formulating private data owned by the customer for LP problem 

as a set of matrices and vectors, we are able to develop a set of efficient privacy-preserving problem 

transformation techniques, which allow customers to transform original LP problem into some arbitrary one 

while protecting sensitive input/output information. To validate the computation result, we further explore the 

fundamental duality theorem of LP computation and derive the necessary and sufficient conditions that correct 

result must satisfy. Such result verification mechanism is extremely efficient and incurs close-to-zero additional 

cost on both cloud server and customers. Extensive security analysis and experiment results show the immediate 

practicability of our mechanism design. 

 

I. Introduction 
        Cloud Computing provides convenient on-demand network access to a shared pool of configurable 

computing resources that can be rapidly deployed with great efficiency and minimal management overhead [1]. 

One fundamental advantage of the cloud paradigm is computation outsourcing, where the computational power 

of cloud customers is no longer limited by their resource-constraint devices. By outsourcing the workloads into 

the cloud, customers could enjoy the literally unlimited computing resources in a pay-per-use manner without 

committing any large capital outlays in the purchase of both hardware and software and/or the operational 

overhead therein. 

          Despite the tremendous benefits, outsourcing computation to the commercial public cloud is also 

depriving customers’ direct control over the systems that consume and produce their data during the 

computation, which inevitably brings in new security concerns and challenges towards this promising 

computing model [2]. On the one hand, the outsourced computation workloads often contain sensitive 
information, such as the business financial records, proprietary research data, or personally identifiable health 

information etc. To combat against unauthorized information leakage, sensitive data have to be encrypted before 

outsourcing [2] so as to provide end to-end data confidentiality assurance in the cloud and beyond. However, 

ordinary data encryption techniques in essence prevent cloud from performing any meaningful operation of the 

underlying plaintext data [3], making the computation over encrypted data a very hard problem. On the other 

hand, the operational details inside the cloud are not transparent enough to customers [4]. As a result, there do 

exist various motivations for cloud server to behave unfaithfully and to return incorrect results, i.e., they may 

behave beyond the classical semihonest model. For example, for the computations that require a large amount of 

computing resources, there are huge financial incentives for the cloud to be “lazy” if the customers cannot tell 

the correctness of the output. Besides, possible software bugs, hardware failures, or even outsider attacks might 

also affect the quality of the computed results. Thus, we argue that the cloud is intrinsically not secure from the 
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viewpoint of customers. Without providing a mechanism for secure computation outsourcing, i.e., to protect the 

sensitive input and output information of the workloads and to validate the integrity of the computation result, it 

would be hard to expect cloud customers to turn over control of their workloads from local machines to cloud 
solely based on its economic savings and resource flexibility. For practical consideration, such a design should 

further ensure that customers perform less amount of operations following the mechanism than completing the 

computations by themselves directly. Otherwise, there is no point for customers to seek help from cloud. 

          Recent researches in both the cryptography and the theoretical computer science communities have 

made steady advances in “secure outsourcing expensive computations” (e.g. [5]–[10]). Based on Yao’s garbled 

circuits [11] and Gentry’s breakthrough work on fully homomorphic encryption (FHE) scheme [12], a general 

result of secure computation outsourcing has been shown viable in theory [9], where the computation is 

represented by an encrypted combinational Boolean circuit that allows to be evaluated with encrypted private 

inputs. However, applying this general mechanism to our daily computations would be far from practical, due to 

the extremely high complexity of FHE operation as well as the pessimistic circuit sizes that cannot be handled in 

practice when constructing original and encrypted circuits. This overhead in general solutions motivates us to 
seek efficient solutions at higher abstraction levels than the circuit representations for specific computation 

outsourcing problems. Although some elegant designs on secure outsourcing of scientific computations, 

sequence comparisons, and matrix multiplication etc. have been proposed in the literature, it is still hardly 

possible to apply them directly in a practically efficient manner, especially for large problems. In those 

approaches, either heavy cloud-side cryptographic computations [7], [8], or multi-round interactive protocol 

executions [5], or huge communication complexities [10], are involved (detailed discussions in Section VI). In 

short, practically efficient mechanisms with immediate practices for secure computation outsourcing in cloud 

are still missing. 

          Focusing on engineering computing and optimization tasks, in this paper, we study practically efficient 

mechanisms for secure outsourcing of linear programming (LP) computations. Linear programming is an 

algorithmic and computational tool which captures the first order effects of various system parameters that 

should be optimized, and is essential to engineering optimization. It has been widely used in various engineering 
disciplines that analyze and optimize real-world systems, such as packet routing, flow control, power 

management of data centers, etc. [13]. Because LP computations require a substantial amount of computational 

power and usually involve confidential data, we propose to explicitly decompose the LP computation 

outsourcing into public LP solvers running on the cloud and private LP parameters owned by the customer. The 

flexibility of such a decomposition allows us to explore higher-level abstraction of LP computations than the 

general circuit representation for the practical efficiency. 

               Specifically, we first formulate private data owned by the customer for LP problem as a set of matrices 

and vectors. This higher level representation allows us to apply a set of efficient 

privacy-preserving problem transformation techniques, including matrix multiplication and affine mapping, to 

transform the original LP problem into some arbitrary one while protecting the sensitive input/output 

information. One crucial benefit of this higher level problem transformation method is that existing algorithms 
and tools for LP solvers can be directly reused by the cloud server. Although the generic mechanism defined at 

circuit level, e.g. [9], can even allow the customer to hide the fact that the outsourced computation is LP, we 

believe imposing this more stringent security measure than necessary would greatly affect the efficiency. To 

validate the computation result, we utilize the fact that the result is from cloud server solving the transformed LP 

problem. In particular, we explore the fundamental duality theorem together with the piece-wise construction of 

auxiliary LP problem to derive a set of necessary and sufficient conditions that the correct 

 

 
Fig. 1: Architecture of secure outsourcing linear programming problems in Cloud Computing 

 

Result must satisfy. Such a method of result validation can be very efficient and incurs close-to-zero 

additional overhead on both customer and cloud server. With correctly verified result, customer can use the 

secret transformation to map back the desired solution for his original LP problem. We summarize our 

contributions as follows: 
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1)  For the first time, we formalize the problem of securely outsourcing LP computations, and provide such a 

secure and practical mechanism design which fulfills input/output privacy, cheating resilience, and 

efficiency. 
2)  Our mechanism brings cloud customer great computation savings from secure LP outsourcing as it only 

incurs O(n
p
) for some 2 < p ≤ 3 local computation overhead on the customer, while solving a normal LP 

problem usually requires more than  O(n3) time [13]. 

3)  The computations done by the cloud server shares the same time complexity of currently practical 

algorithms for solving the linear programming problems, which ensures that the use of cloud is 

economically viable. 

4)  The experiment evaluation further demonstrates the immediate practicality: our mechanism can always 

help customers achieve more than 30× savings when the sizes of the original LP problems are not too 

small, while introducing no substantial overhead on the cloud. 

              The rest of the paper is organized as follows. Section II introduces the system and threat model, and our 

design goals. Then we provide the detailed mechanism description in Section III. Section IV and V give the 
security analysis and performance evaluation, followed by Section VI which overviews the related work. 

Finally, Section VII gives the concluding remark of the whole paper. 

 

II. Problem Statement 
A. System and Threat Model 

        We consider a computation outsourcing architecture involving two different entities, as illustrated in 

Fig. 1: the cloud customer, who has large amount of computationally expensive LP problems to be outsourced to 

the cloud; the cloud server (CS), which has significant computation resources and provides utility computing 

services, such as hosting the public LP solvers in a pay-per-use manner. 
        The customer has a large-scale linear programming problem Φ (to be formally defined later) to be 

solved. However, due to the lack of computing resources, like processing power, memory, and storage etc., he 

cannot carry out such expensive computation locally. Thus, the customer resorts to CS for solving the LP 

computation and leverages its computation capacity in a pay-per-use manner. Instead of directly sending 

original problem Φ, the customer first uses a secret K to map Φ into some encrypted version Φ and outsources 

problem ΦK to CS. CS then uses its public LP solver to get the answer of ΦK and provides a correctness proof Γ, 

but it is supposed to learn nothing or little of the sensitive information contained in the original problem 

description Φ. After receiving the solution of encrypted problem ΦK, the customer should be able to first verify 

the answer via the appended proof Γ. If it’s correct, he then uses the secret K to map the output into the desired 

answer for the original problem Φ.                      

        The security threats faced by the computation model primarily come from the malicious behavior of 

CS. We assume that the CS may behave beyond “honest-but-curious”, i.e. the semi-honest model that was 
assumed by many previous researches (e.g., [14], [15]), either because it intends to do so or because it is 

compromised. The CS may be persistently interested in analyzing the encrypted input sent by the customer and 

the encrypted output produced by the computation to learn the sensitive information as in the semi-honest 

model. In addition, CS can also behave unfaithfully or intentionally sabotage the computation, e.g. to lie about 

the result to save the computing resources, while hoping not to be caught at the same time.  

       Finally note that we assume the communication channels between each cloud server and the customer 

is authenticated and reliable, which can be achieved in practice with little overhead. These authentication 

handshakes are omitted in the following presentation. 

 

B. Design Goals 

      To enable secure and practical outsourcing of LP under the aforementioned model, our mechanism 
design should achieve the following security and performance guarantees. 

1) Correctness: Any cloud server that faithfully follows the mechanism must produce an output that can be 

decrypted and verified successfully by the customer. 

2) Soundness: No cloud server can generate an incorrect output that can be decrypted and   verified 

successfully by the customer with non-negligible probability. 

3) Input/output privacy: No sensitive information from the customer’s private data can be        derived by 

the cloud server during performing the LP computation. 

4) Efficiency: The local computations done by customer should be substantially less than   solving the 

original LP on his own. The computation burden on the cloud server should be within the comparable 

time complexity of existing practical algorithms solving LP problems. 
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C. Background on Linear Programming 

      An optimization problem is usually formulated as a mathematical programming problem that seeks the 

values for a set of decision variables to minimize (or maximize) an objective function representing the cost 
subject to a set of constraints. For linear programming, the objective function is an affine function of the 

decision variables, and the constraints are a system of linear equations and inequalities. Since a constraint in the 

form of a linear inequality can be expressed as a linear equation by introducing a non-negative slack variable, 

and a free decision variable can be expressed as the difference of two non-negative auxiliary variables, any 

linear programming problem can be expressed in the following standard form, 

minimize cT x subject to Ax = b, x ≥ 0. (1) 

 

Here x is an n×1 vector of decision variables, A is an m×n matrix, and both c and b are n×1 vectors. It 

can be assumed further that m ≤ n and that A has full row rank; otherwise, extras rows can always be eliminated 

from A. 

         In this paper, we study a more general form as follows, 
minimize cT x subject to Ax = b, Bx ≥ 0. (2) 

 

In Eq. (2), we replace the non-negative requirements in Eq. (1) by requiring that each component of Bx 

to be non-negative, where B is an n × n non-singular matrix, i.e. Eq. (2) degenerates to Eq. (1) when B is the 

identity matrix. Thus, the LP problem can be defined via the tuple Φ = (A,B, b, c) as input, and the solution x as 

output. 

 

III. The Proposed Schemes 
This section presents our LP outsourcing scheme which provides a complete outsourcing solution for – 

not only the privacy protection of problem input/output, but also its efficient result checking. We start from an 

overview of secure LP outsourcing design framework and discuss a few basic techniques and their demerits, 

which leads to a stronger problem transformation design utilizing affine mapping. We then discuss effective 

result verification by leveraging the duality property of LP. Finally, we give the full scheme description. 

 

A. Mechanism Design Framework 

We propose to apply problem transformation for mechanism design. The general framework is adopted 

from a generic approach [9], while our instantiation is completely different and novel. In this framework, the 

process on cloud server can be represented by algorithm ProofGen and the process on customer can be 

organized into three algorithms (KeyGen, ProbEnc, ResultDec). These four algorithms are summarized below 

and will be instantiated later. 

    • KeyGen(1 k) → {K}. This is a randomized key generation algorithm which takes a system security 
parameter k, and returns a secret key K that is used later by customer   to encrypt the target LP problem. 

   •  ProbEnc(K, Φ) → { ΦK }. This algorithm encrypts the input tuple Φ into ΦK  with the secret key K. 

According to problem transformation, the encrypted input ΦK  has the same form as Φ, and thus defines the 

problem to be solved in the cloud. 

   •   ProofGen(ΦK) → {(y, Γ)}. This algorithm augments a generic solver that solves the problem ΦK  to produce 

both the output y and a proof Γ. The output y later decrypts   to x, and    is used later by the customer to 

verify the correctness of y or x. 

  •    ResultDec(K, Φ, y,  Γ ) → {x,⊥}. This algorithm may choose to verify either y or x via the proof   . In 

any case, a correct output x is produced by decrypting y using the secret not performing the computation 

faithfully. 

Note that our proposed mechanism provides us one-time pad types of flexibility. Namely, we shall 
never use the same secret key K to two different problems. Thus, when analyzing the security strength of the 

mechanism, we focus on the cipher text only attack. We do not consider known plaintext attack in this paper but 

do allow adversaries to do offline guessing or inferring via various problem-dependent information including 

sizes and signs of the solution, which are not necessary to be confidential. 

 

B. Basic Techniques 

      Before presenting the details of our proposed mechanism, we study in this subsection a few basic 

techniques and show that the input encryption based on these techniques along may result in an unsatisfactory 

mechanism. However, the analysis will give insights on how a stronger mechanism should be designed. Note 

that to simplify the presentation, we assume that the cloud server honestly performs the computation, and defer 

the discussion on soundness to a later section.    
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1)  Hiding equality constraints (A, b): First of all, a randomly generated m × m non-singular matrix Q can 

be part of the secret key K. The customer can apply the matrix to Eq. (2) for the following constraints 

transformation, 
Ax = b ⇒ A′x = b′ 

 Where A′ = QA and b′ = Qb. 

       Since we have assumed that A has full row rank, A′ must have full row rank. Without knowing Q, it is 

not possible for one to determine the exact elements of A. However, the null spaces of A and A′ remains the 

same, which may violate the security requirement of some applications. The vector b is encrypted in a perfect 

way since it can be mapped to an arbitrary b′ with a proper choice of Q. 

2) Hiding inequality constraints (B): The customer cannot transform the inequality constraints in the 

similar way as used for the equality constraints. This is because for an arbitrary invertible matrix Q, Bx ≥ 0 is 

not equivalent to QBx ≥ 0 in general. 

       To hide B, we can leverage the fact that a feasible solution to Eq. (2) must satisfy the equality 

constraints. To be more specific, the feasible regions defined by the following two groups of constraints are the 
same. 

         

         Ax = b 

        Bx ≥ 0           ⇒        Ax = b 

                                        (B − λ A) x = B′x ≥ 0 

 

 

Where λ  is a randomly generated n×m matrix in K satisfying that |B′| = |B – λ A| 6= 0 and λ b = 0. 

Since the condition λ b = 0 is largely underdetermined, it leaves great flexibility to choose λ in order to satisfy 

the above conditions. 

3) Hiding objective functions c and value cT x: Given the widely application of LP, such as the estimation 

of business annul revenues or personal portfolio holdings etc., the information contained in objective function c 
and optimal objective value cT x might be as sensitive as the constraints of A,B, b. Thus, they should be 

protected, too. 

           To achieve this, we apply constant scaling to the objective function, i.e. a real positive scalar is 

generated randomly as part of encryption key K and c is replaced by c. It is not possible to derive the original 

optimal objective value cT x without knowing first, since it can be mapped to any value with the same sign. 

While hiding the objective value well, this approach does leak structure-wise information of objective function 

c. Namely, the number and position of zero-elements in c are not protected. Besides, the ratio between the 

elements in c are also preserved after constant scaling. 

 

Summarization of basic techniques Overall, the basic techniques would choose a secret key K = (Q, λ, ) and 
encrypt the input tuple Φ into ΦK = (A′,B′, b′, c), which gives reasonable strength of problem input hiding. Also, 

these techniques are clearly correct in the sense that solving ΦK would give the same optimal solution as solving 

Φ. However, it also implies that although input privacy is achieved, there is no output privacy. Essentially, it 

shows that although one can change the constraints to a completely different form, it is not necessary the 

feasible region defined by the constraints will change, and the adversary can leverage such information to gain 

knowledge of the original LP problem. Therefore, any secure linear programming mechanism must be able to 

not only encrypt the constraints but also to encrypt the feasible region defined by the constraints. 

 

C. Enhanced Techniques via Affine Mapping 
     To enhance the security strength of LP outsourcing, we must be able to change the feasible region of 

original LP and at the same time hide output vector x during the problem input encryption. We propose to 

encrypt the feasible region of Φ by applying an affine mapping on the decision variables x. This design principle 

is based on the following observation: ideally, if we can arbitrarily transform the feasible area of problem Φ 

from one vector space to another and keep the mapping function as the secret key, there is no way for cloud 

server to learn the original feasible area information. Further, such a linear mapping also serves the important 

purpose of output hiding, as illustrated below. 

Let M be an n × n non-singular matrix and r be an n × 1 vector. The affine mapping defined by M and r 

transforms x into y = M−1(x + r). Since this mapping is an one-to-one mapping, the LP problem Φ in Eq. (2) 

can be expressed as the following LP problem of the decision variables y. minimize  cTMy − cT r 

subject to AMy = b + Ar 

           BMy ≥ Br. 
Using the basic techniques, this LP problem can be further transformed to 

minimize cTMy 
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subject to QAMy = Q(b + Ar), 

BMy −λQAMy ≥ Br −λ (b + Ar). 

 
One can denote the constraints of above LP via Eq. (3): 

 

   A′ = QAM 

   B′ = (B − _QA)M 

   b′ = Q(b + Ar)                       (3) 

   c′ = MT c 

 

If the following conditions hold, 

            |B′| ≠ 0, λb′ = Br, and b + Ar ≠ 0, (4) 

then the LP problem ΦK = (A′,B′, b′, c′) can be formulated via Eq. (5), 

        minimize c′T y subject to A′y = b′, B′y ≥ 0. (5) 
 

Discussion By keeping the randomly selected M and r as part of secret key K for affine mapping, it can be 

ensured that the feasible region of encrypted problem ΦK no longer contains any resemblance of the feasible 

area in original problem Φ. As we will show later, both input and output privacy can be achieved by sending ΦK 

instead of Φ to the cloud. 

 

D. Result Verification 

      Till now, we have been assuming the server is honestly performing the computation, while being 

interested learning information of original LP problem. However, such semi-honest model is not strong enough 

to capture the adversary behaviors in the real world. In many cases, especially when the computation on the 

cloud requires a huge amount of computing resources, there exists strong financial incentives for the cloud 

server to be “lazy”. They might either be not willing to commit service-level-agreed computing resources to 
save cost, or even be malicious just to sabotage any following up computation at the customers. Since the cloud 

server promises to solve the LP problem ΦK = (A′, B′, b′, c′), we propose to solve the result verification problem 

by designing a method to verify the correctness of the solution y of ΦK. The soundness condition would be a 

corollary thereafter when we present the whole mechanism in the next section. Note that in our design, the 

workload required for customers on the result verification is substantially cheaper than solving the LP problem 

on their own, which ensures the great computation savings for secure LP outsourcing. 

The LP problem does not necessarily have an optimal solution. There are three cases as follows. 

•  Normal: There is an optimal solution with finite objective value. 

•  Infeasible: The constraints cannot be all satisfied at the same time. 

•   Unbounded: For the standard form in Eq. (1), the objective function can be arbitrarily small                         

while the constraints are all satisfied. 
Therefore, the result verification method not only needs to verify a solution if the cloud server returns one, 

but also needs to verify the cases when the cloud server claims that the LP problem is infeasible or unbounded. 

We will first present the proof Γ that the cloud server should provide and the verification method when the 

cloud server returns an optimal solution, and then present the proofs and the methods for the other two cases, 

each of which is built upon the previous one. 

1) The normal case: We first assume that the cloud server returns an optimal solution y. In order to verify 

y without actually solving the LP problems, we design our method by seeking a set of necessary and sufficient 

conditions that the optimal solution must satisfy. We derive these conditions from the well-studied duality 

theory of the LP problems [13]. For the primal LP problem ΦK defined as Eq. (5), its dual problem is defined as,  

maximize b′T s subject to A′T s+B′T   t = c′, t ≥ 0,         (6) 

 

Where s and t are the m×1 and n×1 vectors of dual decision variables respectively. The strong duality 
of the LP problems states that if a primal feasible solution y and a dual feasible solution (s, t) lead to the same 

primal and dual objective value, then both y and (s, t) are the optimal solutions of the primal and the dual 

problems respectively [13]. Therefore, we should ask the cloud server to provide the dual optimal solution as 

part of the proof  Γ . Then, the correctness of y can be verified based on the following conditions, 

c′T, y = b′T s, A′y = b′, B′y ≥ 0, A′T s + B′T t = c′, t ≥ 0.            (7) 

 

Here, c′T y = b′T s tests the equivalence of primal and dual objective value for strong duality. All the 

remaining conditions ensure that both y and (s, t) are feasible solutions of the primal and dual problems, 

respectively. Note that due to the possible truncation errors in the computation, the equality test A′y = b′ can be 

achieved in practice by checking whether ||A′y − b′|| is small enough. 
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2)  The infeasible case: We then assume that the cloud server claims ΦK to be infeasible. In this case, we 

leverage the methods to find a feasible solution of a LP problem, usually known as the phase I methods [16]. 
These methods construct auxiliary LP problems to determine if the original LP problems are feasible or not. We 

choose the following auxiliary problem,  

minimize z subject to −1z ≤ A′y−b′ ≤ 1z,B′y ≥ −1z.           (8) 

 

Clearly, this auxiliary LP problem has an optimal solution since it has at least one feasible solution and 

its objective function is lower-bounded. Furthermore, one can prove that Eq. (8) has 0 as the optimal objective 

value if and only if ΦK is feasible. (See Lemma 29.11 in [17]). Thus, to prove ΦK is infeasible, the cloud server 

must prove Eq. (8) has a positive optimal objective value. This can be achieved by including such an optimal 

solution and a proof of optimality in Γ, which is readily available from the method for the normal case. 

 

3)  The unbounded case: Finally, we assume that the cloud server claims ΦK to be unbounded. The duality 
theory implies that this case is equivalent to that ΦK is feasible and the dual problem of ΦK, i.e. Eq. (6), is 

infeasible. Therefore, the cloud server should provide a proof showing that those two conditions hold. It is 

straight-forward to provide a feasible solution of ΦK and then to verify it is actually feasible. Based on the 

method for the infeasible case, the cloud server can prove that Eq. (6) is infeasible by constructing the auxiliary 

problem of Eq. (6), i.e.,   

Minimize     z 

Subject to    −1z ≤ A′Ts + B′Tt − c′ ≤ 1z      (9) 

t ≥ −1z, 

And showing this problem has optimal objective value of 0. 

 

Discussion For all three cases, the cloud server is required to provide correctness proof by proving a normal LP 

(either ΦK or some auxiliary LP related to ΦK) has an optimal solution. Since most common LP algorithms like 
Simplex and Interior Point methods compute both the primal and dual solutions at the same time [13], providing 

the dual optimal solution as the optimality proof does not incur any additional overhead for cloud server. Note 

that the form of auxiliary LP for infeasible/unbounded cases is not unique. In practice, we can adjust it to suit 

the public solver on cloud, which can be pre-specified by the customer and cloud server with little cost. 

 

E. The Complete Mechanism Description 

      Based on the previous sections, the proposed mechanism for secure outsourcing of linear programming 

in the cloud is summarized below. 

•  KeyGen (1K): Let K = (Q,M, r, λ, ). For the system initialization, the customer runs KeyGen(1k) to 

randomly generate a secret K, which satisfies Eq. (4). 

•  ProbEnc (K, Φ): With secret K and original LP problem Φ, the customer runs ProbEnc(K, Φ) to compute 
the encrypted LP problem ΦK = (A′,B′, b′, c′) from  Eq. (3). 

•  ProofGen (ΦK): The cloud server attempts to solve the LP problem ΦK in Eq. (5) toobtain the optimal 

solution y. If the LP problem ΦK has an optimal solution, Γ should indicate so and include the dual optimal 

solution (s, t). If the LP problem ΦK is infeasible, Γ should indicate so and include the primal and the                            

dual optimal solutions of the auxiliary problem in Eq. (8). If the LP problem ΦK is unbounded, y should be 

a feasible solution of it, and Γ should indicate so and include the primal and the dual optimal solutions of 

Eq. (9), i.e. the auxiliary problem of the dual problem of ΦK. 

•  ResultDec (K, Φ, y, Γ): First, the customer verifies y and Γ according to the various cases.                                      

If they are correct, the customer computes x =My − r if there is an  optimal solution or reports Φ to be 

infeasible or unbounded   accordingly; otherwise the customer outputs ⊥ , indicating the cloud                                     

server was not performing the computation faithfully. 

 

IV. Security Analysis 
A. Analysis on Correctness and Soundness Guarantee 

We give the analysis on correctness and soundness guarantee via the following two theorems. 

Theorem 1: Our scheme is a correct verifiable linear programming outsourcing scheme. 

Proof: The proof consists of two steps. First, we show that for any problem ϕ and its encrypted version ΦK, 

solution y computed by honest cloud server will always be verified successfully. This follows directly from the 

duality theorem of linear programming. Namely, all conditions derived from duality theorem and auxiliary LP 

problem construction for result verification are necessary and sufficient.  

      Next, we show that correctly verified solution y always corresponds to the optimal solution x of 
original problem Φ. For space limit, we only focus on the normal case. The reasoning for infeasible/unbounded 
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cases follows similarly. By way of contraction, suppose x = My − r is not the optimized solution for Φ. Then, 

there exists x* such that cT x* < cT x, where Ax*= b and Bx* ≥ 0. Since x* = My − r, it is straightforward that 

cTMy* − cT r = cT x* < cT x = cTMy−cT r, where A′y* = b′ and B′y* ≥ 0. Thus, y* is a better solution than y for 
problem ΦK, which contradicts the fact that the optimlity of y has been correctly verified. This completes the 

proof of theorem 1. 

Theorem 2: Our scheme is a sound verifiable linear programming outsourcing scheme. 

Proof: Similar to correctness argument, the soundness of the proposed mechanism follows from the facts that the 

LP problem Φ and ΦK are equivalent to each other through affine mapping, and all the conditions thereafter for 

result verification are necessary and sufficient. 

 

B. Analysis on Input and Output Privacy Guarantee 

      We now analyze the input and output privacy guarantee. 

Note that the only information that the cloud server obtains is ΦK = (A′, B′, b′, c′). 

       We start from the relationship between the primal problem Φ and its encrypted one ΦK. First of all, the 
matrix A and the vector b are proteted perfectly. Because for ∀  m × n matrix A′ that has the full row rank and ∀  

n × 1 vector b′, ∃  a tuple (Q,M, r) that transforms (A, b) into (A′, b′). This is straightforward since we can 

always find invertible matrices Q, M for equivalent matrices A and A′ such that A′ = QAM, and then solve r 

from b′ = Q(b + Ar). Thus from (A′, b′), cloud can only derive the rank and size information of original equality 

constraints A, but nothing else. Secondly, the information of matrix B is protected by B′ = (B − λQA) M. Recall 

that the n × m matrix λ in the condition λ b′ = Br is largely underdetermined. Namely, for each m×1 row vector 

in λ, there are m−1 elements that can be set freely. Thus, the abundant choices of λ, which can be viewed as 

encryption key with large key space, ensures that B is well obfuscated. Thirdly, the vector c is protected well by 

scaling factor  and M. By multiplication of matrix M, both the elements and the structure pattern of c are no 

longer exposed from c′ = MTc. As for the output, since M, r is kept as a one-time secret and drawn uniformly at 

random, deriving x = My − r solely from y can be hard for cloud. 

       Given the complementary relationship of primal and dual problem, it is also worth looking into the 
input/output privacy guarantee from dual problems of both Φ and ΦK. Same as eq. (6), the dual problem of Φ is 

defined as, 

maximize bTα subject to ATα +BTβ = c, β ≥ 0, (10) 

 

TABLE I: Preliminary Performance Results. Here toriginal, tcloud, and tcustomer denotes the cloud-side original 

problem solving time, cloud-side encrypted problem solving time, and customer-side computation time, 

respectively. The asymmetric speedup captures the customer efficiency gain via LP outsourcing. The cloud 

efficiency captures the overall computation cost on cloud introduced by solving encrypted LP problem, which 

should ideally be as closer to 1 as possible. 

 

Benchmark Original Problem Encrypted 

Problem 

Asymmetric 

Speedup 

Cloud Efficiency 

# Size toriginal (sec) tcloud (sec) tcustomer (sec) toriginal/ 

tcustomer 

toriginal/ 

tcloud 

1 m=50, n=60 0.167 0.170 0.007 26.5 × 0.981 

2 m = 100, 

n = 120 

0.227    0.239 0.005 46.7 × 0.956 

3 m = 200, n 

= 240 

0.630  0.613  0.017   37.3 ×  1.037 

4 m = 400, n 

= 480 

3.033  3.671 0 0.090  33.5 ×  0.835 

5 m = 800, n 

= 960 

19.838   23.527  0.569  34.9 ×  0.851 

6 m = 1600, n 

= 1920 

171.862  254.012  4.015  42.6 ×  0.690 

7 m = 3200, n 

= 3840 

1757.570  2661.360   47.602  36.4 ×  0.745 

 

Where α and β are the m×1 and n×1 vectors of dual decision variables respectively. Clearly, the 
analysis for primal problem Φ’s input privacy guarantee still holds for its dual problem input (A, B, b, c). As for 

the output privacy, we plug eq. (3) into ΦK’s dual problem defined in eq. (6) and rearrange it as, 

maximize [Q(b + Ar)POW]T s 
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Subject to  ATQT (s − λT t) + BT t = c     (11) 

t ≥ 0, 

Note that MT in the equality constraint is canceled out during the rearrangement. Comparing eq. (10) 
and eq. (11), we derive the linear mapping between (α, β) and (s, t) as, 

   α =1/  Q
T
 (s − λ

T
 t), β =1/  t       (12) 

Following similar reasoning for Φ’s output privacy and analysis for hiding objective function c in basic 

techniques (Section III-B3), the dual decision variables (α, β) of original problem Φ is protected well by the 

random choice of (Q, λ, ). 

 

V. Performance Analysis 
A. Theoretic Analysis 

1)  Customer Side Overhead: According to our mechanism, customer side computation overhead consists 
of key generation, problem encryption operation, and result verification, which corresponds to the three 

algorithms KeyGen, ProbEnc, and ResultDec, respectively. Because KeyGen and Result-Dec only require a set 

of random matrix generation as well as vector-vector and matrix-vector multiplication, the computation 

complexity of these two algorithms are upper bounded via O(n2). Thus, it is straight-forward that the most time 

consuming operations are the matrix-matrix multiplications in problem encryption algorithm ProbEnc. Since m 

≤ n, the time complexity for the customer local computation is thus asymptotically the same as matrix-matrix 

multiplication, i.e.,   O(np) for some 2 < p ≤ 3. In our experiment, the matrix multiplication is implemented via 

standard cubic-time method, thus the overall computation overhead is O(n
3
). However, other more efficient 

matrix multiplication algorithms can also be adopted, such as the Strassen’s algorithm with time complexity 

O(n2.81) [18] or the Coppersmith-Winograd algorithm [19] in O(n2.376). In either case, the over all customer side 

efficiency can be further improved. 
2)  Server Side Overhead: For cloud server, its only computation overhead is to solve the encrypted LP 

problem ΦK as well as generating the result proof Γ, both of which correspond 

to the algorithm ProofGen. If the encrypted LP problem ΦK belongs to normal case, cloud server just solves it 

with the dual optimal solution as the result proof Γ, which is usually readily available in the current LP solving 

algorithms and incurs no additional cost for cloud (see Section III-D). If the encrypted problem ΦK does not 

have an optimal solution, additional auxiliary LP problems can be solved to provide a proof. Because for general 

LP solvers, phase I method (solving the auxiliary LP) is always executed at first to determine the initial feasible 

solution [16], proving the auxiliary LP with optimal solutions also introduces little additional overhead. Thus, in 

all the cases, the computation complexity of the cloud server is asymptotically the same as to solve a normal LP 

problem, which usually requires more than O(n3) time [13]. 

Obviously, the customer will not spend more time to encrypt the problem and solve the problem in the 

cloud than to solve the problem on his own. Therefore, in theory, the proposed mechanism would allow the 
customer to outsource their LP problems to the cloud and gain great computation savings. 

 

B. Experiment Results 

     We now assess the practical efficiency of the proposed secure and verifiable LP outsourcing scheme 

with experiments. We implement the proposed mechanism including both the customer and the cloud side 

processes in Matlab and utilize the MOSEK optimization [20] through its Matlab interface to solve the original 

LP problem Φ and encrypted LP problem ΦK. Both customer and cloud server computations in our experiment 

are conducted on the same workstation with an Intel Core 2 Duo processor running at 1.86 GHz with 4 GB 

RAM. In this way, the practical efficiency of the proposed mechanism can be assessed without a real cloud 

environment. We alsoignore the communication latency between the customers and the cloud for this 

application since the computation dominates the running time as evidenced by our experiments. 
          Our randomly generated test benchmark covers the small and medium sized problems, where m and n 

are increased from 50 to 3200 and 60 to 3840, respectively. All these benchmarks are for the normal cases with 

feasible optimal solutions. Since in practice the infeasible/unbounded cases for LP computations are very rare, 

we do not conduct those experiments for the current preliminary work and leave it as one of our future tasks. 

Table I gives our experimental results, where each entry in the table represents the mean of 20 trials. 

         In this table, the sizes of the original LP problems are reported in the first two columns. The times to 

solve the original LP problem in seconds, toriginal, are reported in the third column. The times to solve the 

encrypted LP problem in seconds are reported in the fourth and fifth columns, 

Separated into the time for the cloud server tcloud and the time for the customer tcustomer. Note that since 

each KeyGen would generate a different key, the encrypted LP problem ΦK generated by ProbEnc would be 

different and thus result in a different running time to solve it. The tcloud and tcustomer reported in Table I are thus 

the average of multiple trials. We propose to assess the practical efficiency by two characteristics calculated 
from toriginal, tcloud, and tcustomer. The Asymmetric Speedup, calculated as toriginal/tcustomer, represents the savings of 
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the computing resources for the customers to outsource the LP problems to the cloud using the proposed 

mechanism. The Cloud Efficiency, calculated as toriginal/tcloud, represents the overhead introduced to the overall 

computation by the proposed mechanism. It can be seen from the table that we can always achieve more than 
30× savings when the sizes of the original LP problems are not too small. On the other hand, from the last 

column, we can claim that for the whole system including the customers and the cloud, the proposed mechanism 

will not introduce a substantial amount of overhead. It thus confirms that secure outsourcing LP in cloud 

computing is economically viable. 

 

VI. Related Work 
A. Work on Secure Computation Outsourcing 

      General secure computation outsourcing that fulfills all aforementioned requirements, such as 

input/output privacy and correctness/soundness guarantee has been shown feasible in theory by Gennaro et al. 
[9]. However, it is currently not practical due to its huge computation complexity. Instead of outsourcing general 

functions, in the security community, Atallah et al. explore a list of work [5], [7], [8], [10] for securely 

outsourcing specific applications. The customized solutions are expected to be more efficient than the general 

way of constructing the circuits. In [5], they give the first investigation of secure outsourcing of numerical and 

scientific computation. A set of problem dependent disguising techniques are proposed for different scientific 

applications like linear algebra, sorting, string pattern matching, etc. However, these disguise techniques 

explicitly allow information disclosure to certain degree. Besides, they do not handle the important case of result 

verification, which in our work is bundled into the design and comes at close-to-zero additional cost. Later on in 

[7] and [8], Atallah et al. give two protocol designs for both secure sequence comparison outsourcing and secure 

algebraic computation outsourcing. However, both protocols use heavy cryptographic primitive such as 

homomorphic encryptions [21] and/or oblivious transfer [22] and do not scale well for large problem set. In 
addition, both designs are built upon the assumption of two non-colluding servers and thus vulnerable to 

colluding attacks. Based on the same assumption, Hohenberger et al. [6] provide protocols for secure 

outsourcing of modular exponentiation, which is considered as prohibitively expensive in most public-key 

cryptography operations. Very recently, Atallah [10] et al. give a provably secure protocol for secure 

outsourcing matrix multiplications based on secret sharing [23].While this work outperforms their previous 

work [8] in the sense of single server assumption and computation efficiency (no expensive cryptographic 

primitives), the drawback is the large communication overhead. Namely, due to secret sharing technique, all 

scalar operations in original matrix multiplication are expanded to polynomials, introducing significant amount 

of overhead. Considering the case of the result verification, the communication overhead must be further 

doubled, due to the introducing of additional pre-computed “random noise” matrices.  

         In short, these solutions, although elegant, are still not efficient enough for immediate practical uses, 

which we aim to address for the secure LP outsourcing in this paper. 
 

B. Work on Secure Multiparty Computation 

      Another large existing list of work that relates to (but is also significantly different from) ours is Secure 

Multi-party Computation (SMC), first introduced by Yao [11] and later extended by Goldreich et al. [24] and 

many others. SMC allows two or more parties to jointly compute some general function while hiding their 

inputs to each other. As general SMC can be very inefficient, Du and Atallah et. al. have proposed a series of 

customized solutions under the SMC context to a spectrum of special computation problems, such as privacy-

preserving cooperative statistical analysis, scientific computation, geometric computations, sequence 

comparisons, etc. [25]. However, directly applying these approaches to the cloud computing model for secure 

computation outsourcing would still be problematic. The major reason is that they did not address the 

asymmetry among the computational powers possessed by cloud and the customers, i.e., all these schemes in the 
context of SMC impose each involved parties comparable computation burdens, which we specifically avoid in 

the mechanism design by shifting as much as possible computation burden to cloud only. Another reason is the 

asymmetric security requirement. In SMC no single involved party knows all the problem input information, 

making result verification a very difficult task. But in our model, we can explicitly exploit the fact that the 

customer knows all input information and thus design efficient result verification mechanism. 

         Recently, Li and Atallah [26] give a study for secure and collaborative computation of linear 

programming under theSMC framework. Their solution is based on the additive split of the constraint matrix 

between two involved parties, followed by a series of interactive (and arguably heavy) cryptographic protocols 

collaboratively executed in each iteration step of the Simplex Algorithm. This solution has the computation 

asymmetry issue mentioned previously. Besides, they only consider honest-but-curious model and thus do not 

guarantee that the final solution is optimal. 
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C. Work on Delegating Computation and Cheating Detection 

        Detecting the unfaithful behaviors for computation outsourcing is not an easy task, even without 

consideration of input/output privacy. Verifiable computation delegation, where a computationally weak 
customer can verify the correctness of the delegated computation results from a powerful but untrusted server 

without investing too much resources, has found great interests in theoretical computer science community. 

Some recent general result can be found in Goldwasser et al. [27]. In distributed computing and targeting the 

specific computation delegation of one-way function inversion, Golle et al. [28] propose to insert some pre-

computed results (images of “ringers”) along with the computation workload to defeat untrusted (or lazy) 

workers. In [29], Du. et al. propose a method of cheating detection for general computation outsourcing in grid 

computing. The server is required to provide a commitment via a Merkle tree based on the results it computed. 

The customer can then use the commitment combined with a sampling approach to carry out the result 

verification (without re-doing much of the outsourced work.) 

          However, all above schemes allow server actually see the data and result it is computing with, which is 

strictly prohibited in the cloud computing model for data privacy. Thus, the problem of result verification 
essentially becomes more difficult, when both input/output privacy is demanded. Our work leverages the duality 

theory of LP problem and effectively bundles the result verification within the mechanism design, with little 

extra overhead on both customer and cloud server. 

 

VII. Concluding Remarks 
        In this paper, for the first time, we formalize the problem of securely outsourcing LP computations in 

cloud computing, and provide such a practical mechanism design which fulfills input/output privacy, cheating 

resilience, and efficiency. By explicitly decomposing LP computation outsourcing into public LP solvers and 

private data, our mechanism design is able to explore appropriate security/efficiency tradeoffs via higher level 
LP computation than the general circuit representation. We develop problem transformation techniques that 

enable customers to secretly transform the original LP into some arbitrary one while protecting sensitive 

input/output information. We also investigate duality theorem and derive a set of necessary and sufficient 

condition for result verification. Such a cheating resilience design can be bundled in the overall mechanism with 

close-to-zero additional overhead. Both security analysis and experiment results demonstrates the immediate 

practicality of the proposed mechanism. 

         We plan to investigate some interesting future work as follows: 1) devise robust algorithms to achieve 

numerical stability; 2) explore the sparsity structure of problem for further efficiency improvement; 3) establish 

formal security framework; 4) extend our result to non-linear programming computation outsourcing in cloud. 
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