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 Abstract : A spanning tree of à connected graph is à sub graph, with least number of edges that still spans. 

The problem of finding degree constraint spanning tree is known to be NP-hard. In this paper we discuss an 

Ant-Based algorithm for finding minimum degree spanning trees and give improvement of the algorithm. We 

also show comparisons among the three algorithms and find the best improved Ant-Based algorithm. Extensive 

experimental results show that our improved algorithm performs very well against other algorithms on a set of 

50 problem instances. 
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I. INTRODUCTION  
This paper describes Ant-Based algorithms for minimum degree spanning tree (AB-MDST) of 

unweighted connected graph. This is an interesting, real-world problem that seems well suited to an ant 

algorithm approach. The AB-MDST problem entails finding a spanning tree such that the maximum degree of a 

vertex in the tree becomes minimum [2]. This concept is useful in the design of telecommunication networks, 

design of networks for computer communication, design of integrated circuits, energy networks, transportation, 

logistics, and sewage networks [3]. For instance, switches in an actual communication network will have limited 

number of connections available. Transportation systems must place a limit on the number of roads meeting in 

one place.  

The problem of finding degree constraint spanning tree is NP-hard [9]. Therefore, heuristics are often 

used to find good solutions in a reasonable amount of time [10]. We have used one type of heuristic called Ant 

Colony Optimization (ACO) [10]. Here, artificial ants move based on local information and pheromone levels. 

Our algorithm uses cumulative pheromone levels to determine candidate set of edges from which minimum 
degree spanning trees are built [7]. In this paper, we compare 3 algorithms - AB-MDST without local search and 

without degree constraint, AB-MDST with local search but without degree constraint and the last one AB-

MDST with local search and with degree constraint. Extensive experimental results show that AB-MDST with 

local search and with degree constraint performs very well against other algorithms.  

The rest of the paper is organized as follow. In section 2 Our Ant-Based algorithm and two improved 

versions of that algorithm are described. Section 3 compares the performances of the three algorithms. The 

conclusion is given in section 4.    

 

II. Methodology 
2.1 Initialization 

Initially one ant is assigned to each vertex of the graph. In the next step, pheromone is assigned to each 

edge using the formula P[i][j]=(M-d[j])+(M-m)/3, where P[i][j] is pheromone level of edge (i,j), d[j] is degree of 

j vertex, M is maximum degree of the input Graph and m is minimum degree of the input Graph [6]. Note that if 

a vertex has smaller degree, the edges connected to that vertex have higher pheromone levels.  

 

2.2 Exploration 

In each step each ant moves along one of the adjacent edge of its present vertex and after moving, the 

pheromone level of that edge is enhanced using the formula P[i][j]=(M-d[j])+(M-m)/3. This event occurs until 

all the ants visit all the vertices [10]. In the tree construction section, a set C of candidate edges based on 

pheromone levels is identified. From C a spanning tree T is constructed. After constructing spanning tree the 
maximum degree cost (T) of the spanning tree T is calculated. Next, cost (T) is compared with cost (B), where 

cost (B) is the previous best tree (whose maximum degree is minimum) [5]. If cost (T) is smaller than cost (B), 

T is the present best tree and cost (T) is assigned to cost (B), because we always try to find the best tree whose 

degree is minimum. The pheromone level for edges in the best tree B is then enhanced. This entire event is 

repeated until the stopping criteria met.  

 

 



An Improved Ant-Based Algorithm for Minimum Degree Spanning Tree Problems 

www.iosrjournals.org                                                            7 | Page 

2.3 Ant Movement 

Let, an ant α is at vertex i. In case of AB-MDST without local search, an edge (i,j) is selected 

randomly, where j is an adjacent vertex of i. In case of AB-MDST with local search, all the adjacent edges of 

vertex i are considered, then the edge with highest pheromone level is selected. Note that, among all the adjacent 

edges the edge (i,j) has highest pheromone level if the degree of vertex j is minimum [4]. For this reason in case 

of AB-MDST with local search, better result is found than in the case of AB-MDST without local search. After 
an edge (i,j) is selected, ant α moves from vertex i to vertex j and the pheromone level of the edge (i,j) is 

enhanced and vertex j is then marked as visited .  

 

2.4 Tree Construction 

After the ants have completed their movements and the pheromone levels of all the edges are updated, 

we are ready to identify the edges from which to construct a spanning tree. To identify a set of candidate edges, 

we first sort the edges in the graph in the order of descending pheromone level. The top candidate edges from 

the sorted list are selected to form candidate set C. During constructing tree, edges are taken one by one from C 

maintaining the order [9]. Let (i,j) be next candidate edge and i and j are not connected in T. In case of AB-

MDST without degree constraint, the edge (i,j) is removed from C and added to tree T if this would create no 

loop. In case of AB-MDST with degree constraint, while adding (i,j) edge to tree T another checking is needed. 

If after adding (i,j), degree of i or degree of j exceeds given parameter k and number of skipped 
edges(skippedEdge) C is smaller than E-V, the edge, (i,j) is skipped and added to skippedEdge rather than 

adding it to tree T and each time C is increased by one [8]. This event continues until the entire tree is 

constructed.  

2.5 Stopping Criteria   

The algorithm stops if one of the following two conditions is satisfied: 1. there is no improvement 

found in 1,000 consecutive cycles, or 2. It has run for 5,000 cycles. When the algorithm stops, the current best 

tree is returned.  

 

AB-MDST (G= (V, E)) 

//initialization  

assign one ant to each vertex of the Graph. 
initialize pheromone level of each edge using the formula P[i][j]=(M-d[j])+(M-m)/3.   

 // P[i][j] is pheromone level of edge (i,j) 

// d[j] is degree of vertex j 

       // M is maximum degree of the input Graph 

       // m is minimum degree of the input Graph 

B          Ø 

cost (B)          Ø 

while stopping criteria not met   // loop will continue when counter<5000 and notImproved <1000 

 for each vertex 

  for each ant  

   move α along one edge 

   update pheromone level of the edge using same formula 

  end-for 

 end-for 

 // Tree construction stage 

identify a set C of candidate edges using pheromone levels 

 while   T   < n-1 

 

  construct spanning tree T from C 

 end-while 

 count the maximum degree cost (T) of the spanning tree T 

 if cost (T) < cost (B) 

  B          T 
  cost (B)         cost (T) 

  enhance pheromone level for edges in the best tree B 

 end-if 

end-while 

return the best tree found B 

Figure 1: Ant Based Minimum Degree Spanning Tree Algorithm 

 

Move (α,i)   // ant α is at vertex i 
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select an adjacent edge (i,j)  // j is an adjacent vertex of i vertex 

if vertex j is unvisited  

 update pheromone level of edge (i,j) 

 move α from vertex i to vertex j 

 mark  j  visited 

 break 

else 

 α remains at vertex i 

end-if 

Figure 2: One Step in the ant movement algorithm (AB-MDST without local search) 

 

ConstructTree (G=(V,E)) 

sort all the edges by pheromone level in descending order 

C           top candidate edges ( highest pheromone levels ) 

T           Ø 

 

while   T   < n-1 

 
 let (i,j) be next candidate edge 

 if i and j not connected in T 

  if adding (i,j) to T would create no loop 

   remove (i,j) from C 

   add (i,j) edge to tree T 

  end-if 

 end-if 

end-while 

return  T 

Figure 3: Tree construction (AB-MDST without degree constraint) 

Move (α,i)  // ant α is at vertex i 
find all the adjacent edges of verrex i 

count the number of adjacent edges 

if count = 0 

 ant α remains at vertex i 

else if count =1 

 select the adjacent edge (i,j) 

else 

 find the adjacent edge (i,j) whose pheromone level is maximum 

 select the adjacent  edge (i,j) 

end-if 

if vertex j is unvisited  

 update pheromone level of edge (i,j) 
 move α from vertex i to vertex j 

 mark  j  visited 

 break 

else 

 α remains at vertex i 

end-if 

Figure 4: One step in the ant movement algorithm (AB-MDST with local search) 

ConstructTree (G=(V,E),k)                // k is degree constraint  

sort all the edges by pheromone level in descending order 

C           top candidate edges ( highest pheromone levels ) 

T           Ø 
 

while   T   < n-1 

 

 let (i,j) be next candidate edge 

 if i and j not connected in T 

  if degree [i] > k or  degree [j] >k 

   and  C < E-V      // C is number of skipped edges  

    add (i,j) to skippededge 
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    increase C by one 

  else 

   if adding (i,j) to T would create no loop 

    remove (i,j) from C 

    add (i,j) to tree T 

   end-if 

  end-if 

 end-if 

end-while 

return  T  

 Figure 5: Tree construction (AB-MDST with degree constraint) 

 

III. Experimental Results 
Our algorithm and the two improved versions of the algorithm are run on a set of 50 complete graphs 

ranging from 10 to 200 vertices. The algorithms were implemented in C and run on a 1.80 Ghz Pentium Dual-
Core with 2 GB of RAM running the Windows 7 operating system. “Table 1” shows the final results. For all of 

the tables below, first column represents the data set number from 1 to 50. Second column and third column 

represent the input graph (number of vertices V and number of edges respectively E) for each of the data set. 

Fourth and fifth column represent the result for the algorithm AB-MDST without local search and without 

degree constraint. Sixth and seventh column represent the result for the algorithm AB-MDST with local search 

but without degree constraint and Eighth and ninth column represent the result for the algorithm AB-MDST 

with local search and with degree constraint. For each of the three algorithms the Degree column shows the 

maximum degree of the constructed tree and the Time column shows execution time in seconds for each of the 

input graphs. From the table we see that for most of the input data sets, AB-MDST with local search but without 

degree constraint gives better result than AB-MDST without local search and without degree constraint. AB-

MDST with local search and with degree constraint gives much better result than both AB-MDST with local 

search but without degree constraint and AB-MDST without local search and without degree constraint for both 
Degree and Time.  

  

Table 1: Experimental Results 

                        Input Graph                                              Output 

Algorithm 1 Algorithm 2 Algorithm 3 

Dataset V E Degree Time Degree Time Degree Time 

Data1 10 21 3 0 3 0 2 0 

Data2 10 22 3 0.016 3 0.016 2 0 

Data3 10 24 2 0 2 0 2 0 

Data4 10 25 2 0 3 0.02 2 0 

Data5 10 26 3 0 3 0 2 0 
Data6 10 27 3 0.016 3 0 2 0 

Data7 10 34 2 0 3 0 2 0 

Data8 25 69 3 0.078 3 0.047 2 0 

Data9 25 70 3 0.078 3 0.062 2 0 

Data10 28 75 4 0.094 3 0.078 2 0 

Data11 25 72 3 0.078 3 0.063 2 0.094 

Data12 25 90 3 0.078 3 0.078 2 0.01 

Data13 25 71 3 0.094 3 0.078 2 0 

Data14 43 63 4 0.25 5 0.203 3 0.203 

Data15 45 85 3 0.297 2 0 3 0.171 

Data16 50 123 5 0.486 3 0.359 3 0.235 

Data17 50 145 3 0.453 4 0.375 3 0.234 
Data18 60 166 4 0.719 2 0 3 0.359 

Data19 50 157 4 0.437 4 0.321 3 0.282 

Data20 50 183 4 0.453 4 0.328 3 0.265 

Data21 50 491 4 0.625 5 0.485 3 0.359 

Data22 50 582 3 0.593 3 0.469 3 0.344 

Data23 50 171 4 0.437 3 0.359 3 0.235 

Data24 75 196 4 1.359 4 0.984 3 0.703 

Data25 75 215 5 1.531 5 1.547 3 0.781 

Data26 75 256 4 1.36 4 1.265 3 0.703 

Data27 75 202 4 1.375 4 0.906 3 0.672 
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Data28 75 266 5 1.547 5 1.094 3 0.797 

Data29 100 297 5 2.922 5 2.828 3 1.532 

Data30 100 324 4 3.125 5 2.578 3 1.578 

Data31 100 334 4 4.563 5 3.734 3 2.047 

Data32 100 314 3 3.062 6 4.969 3 1.547 

Data33 100 394 4 3.862 4 2.812 3 1.781 
Data34 100 261 4 5.718 5 3.218 3 1.844 

Data35 100 271 5 3.156 4 2.125 3 1.547 

Data36 100 451 5 4.032 4 2.484 3 2.031 

Data37 100 742 5 4.438 5 3.906 3 2.266 

Data38 100 922 4 4.938 4 3.406 3 2.531 

Data39 150 481 5 11.609 4 7.841 3 7.11 

Data40 150 473 5 10.531 5 9.062 3 5.5 

Data41 150 402 4 12 5 9.297 4 5.986 

Data42 100 334 4 2.875 6 2.782 4 1.47 

Data43 150 453 5 19.687 5 8.653 4 6.656 

Data44 150 1064 5 16.204 4 14.468 4 7.86 

Data45 200 514 5 21.828 4 18.672 4 10.797 
Data46 200 654 5 21.469 6 16.016 4 11.516 

Data47 200 644 5 24.047 5 15.972 4 12.422 

Data48 200 664 5 22.89 8 39.281 4 11.437 

Data49 200 519 5 43.188 4 18.266 4 13.67 

Data50 200 701 4 26.188 5 18.375 4 15.61  
 

Algorithm 1: AB-MDST without local search and without degree constraint 

Algorithm 2: AB-MDST with local search but without degree constraint 

Algorithm 3: AB-MDST with local search and with degree constraint 
 

IV. CONCLUSION  
In this paper we discussed an Ant-Based algorithm- AB-MDST without local search and without 

degree constraint (algorithm 1) to find minimum spanning degree spanning trees from different input graphs and 

gave two improved versions of the algorithm named AB-MDST with local search but without degree constraint 

(algorithm 2) and AB-MDST with local search and with degree constraint (algorithm 3). The experimental 

results show that for both parameters (Degree and Time); algorithm 3 gives much better result than the other 

two algorithms.  
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