
IOSR Journal of Computer Engineering (IOSRJCE)

ISSN: 2278-0661, ISBN: 2278-8727 Volume 6, Issue 4 (Sep-Oct. 2012), PP 06-10
www.iosrjournals.org

www.iosrjournals.org 6 | Page

An Improved Ant-Based Algorithm for Minimum Degree

Spanning Tree Problems

Md. Niaz Imtiaz
1
, Md.Akkas Ali

2

1, 2Lecturer, Dept. of CSE, University of Information Technology & Sciences (UITS), Baridhara, Dhaka-1212,

Bangladesh

 Abstract : A spanning tree of à connected graph is à sub graph, with least number of edges that still spans.

The problem of finding degree constraint spanning tree is known to be NP-hard. In this paper we discuss an

Ant-Based algorithm for finding minimum degree spanning trees and give improvement of the algorithm. We

also show comparisons among the three algorithms and find the best improved Ant-Based algorithm. Extensive

experimental results show that our improved algorithm performs very well against other algorithms on a set of

50 problem instances.

Keywords - Ant algorithm, Graph algorithms, Heuristic methods, minimum degree spanning tree,

I. INTRODUCTION
This paper describes Ant-Based algorithms for minimum degree spanning tree (AB-MDST) of

unweighted connected graph. This is an interesting, real-world problem that seems well suited to an ant

algorithm approach. The AB-MDST problem entails finding a spanning tree such that the maximum degree of a

vertex in the tree becomes minimum [2]. This concept is useful in the design of telecommunication networks,

design of networks for computer communication, design of integrated circuits, energy networks, transportation,

logistics, and sewage networks [3]. For instance, switches in an actual communication network will have limited

number of connections available. Transportation systems must place a limit on the number of roads meeting in

one place.

The problem of finding degree constraint spanning tree is NP-hard [9]. Therefore, heuristics are often

used to find good solutions in a reasonable amount of time [10]. We have used one type of heuristic called Ant

Colony Optimization (ACO) [10]. Here, artificial ants move based on local information and pheromone levels.

Our algorithm uses cumulative pheromone levels to determine candidate set of edges from which minimum
degree spanning trees are built [7]. In this paper, we compare 3 algorithms - AB-MDST without local search and

without degree constraint, AB-MDST with local search but without degree constraint and the last one AB-

MDST with local search and with degree constraint. Extensive experimental results show that AB-MDST with

local search and with degree constraint performs very well against other algorithms.

The rest of the paper is organized as follow. In section 2 Our Ant-Based algorithm and two improved

versions of that algorithm are described. Section 3 compares the performances of the three algorithms. The

conclusion is given in section 4.

II. Methodology
2.1 Initialization

Initially one ant is assigned to each vertex of the graph. In the next step, pheromone is assigned to each

edge using the formula P[i][j]=(M-d[j])+(M-m)/3, where P[i][j] is pheromone level of edge (i,j), d[j] is degree of

j vertex, M is maximum degree of the input Graph and m is minimum degree of the input Graph [6]. Note that if

a vertex has smaller degree, the edges connected to that vertex have higher pheromone levels.

2.2 Exploration

In each step each ant moves along one of the adjacent edge of its present vertex and after moving, the

pheromone level of that edge is enhanced using the formula P[i][j]=(M-d[j])+(M-m)/3. This event occurs until

all the ants visit all the vertices [10]. In the tree construction section, a set C of candidate edges based on

pheromone levels is identified. From C a spanning tree T is constructed. After constructing spanning tree the
maximum degree cost (T) of the spanning tree T is calculated. Next, cost (T) is compared with cost (B), where

cost (B) is the previous best tree (whose maximum degree is minimum) [5]. If cost (T) is smaller than cost (B),

T is the present best tree and cost (T) is assigned to cost (B), because we always try to find the best tree whose

degree is minimum. The pheromone level for edges in the best tree B is then enhanced. This entire event is

repeated until the stopping criteria met.

An Improved Ant-Based Algorithm for Minimum Degree Spanning Tree Problems

www.iosrjournals.org 7 | Page

2.3 Ant Movement

Let, an ant α is at vertex i. In case of AB-MDST without local search, an edge (i,j) is selected

randomly, where j is an adjacent vertex of i. In case of AB-MDST with local search, all the adjacent edges of

vertex i are considered, then the edge with highest pheromone level is selected. Note that, among all the adjacent

edges the edge (i,j) has highest pheromone level if the degree of vertex j is minimum [4]. For this reason in case

of AB-MDST with local search, better result is found than in the case of AB-MDST without local search. After
an edge (i,j) is selected, ant α moves from vertex i to vertex j and the pheromone level of the edge (i,j) is

enhanced and vertex j is then marked as visited .

2.4 Tree Construction

After the ants have completed their movements and the pheromone levels of all the edges are updated,

we are ready to identify the edges from which to construct a spanning tree. To identify a set of candidate edges,

we first sort the edges in the graph in the order of descending pheromone level. The top candidate edges from

the sorted list are selected to form candidate set C. During constructing tree, edges are taken one by one from C

maintaining the order [9]. Let (i,j) be next candidate edge and i and j are not connected in T. In case of AB-

MDST without degree constraint, the edge (i,j) is removed from C and added to tree T if this would create no

loop. In case of AB-MDST with degree constraint, while adding (i,j) edge to tree T another checking is needed.

If after adding (i,j), degree of i or degree of j exceeds given parameter k and number of skipped
edges(skippedEdge) C is smaller than E-V, the edge, (i,j) is skipped and added to skippedEdge rather than

adding it to tree T and each time C is increased by one [8]. This event continues until the entire tree is

constructed.

2.5 Stopping Criteria

The algorithm stops if one of the following two conditions is satisfied: 1. there is no improvement

found in 1,000 consecutive cycles, or 2. It has run for 5,000 cycles. When the algorithm stops, the current best

tree is returned.

AB-MDST (G= (V, E))

//initialization

assign one ant to each vertex of the Graph.
initialize pheromone level of each edge using the formula P[i][j]=(M-d[j])+(M-m)/3.

 // P[i][j] is pheromone level of edge (i,j)

// d[j] is degree of vertex j

 // M is maximum degree of the input Graph

 // m is minimum degree of the input Graph

B Ø

cost (B) Ø

while stopping criteria not met // loop will continue when counter<5000 and notImproved <1000

 for each vertex

 for each ant

 move α along one edge

 update pheromone level of the edge using same formula

 end-for

 end-for

 // Tree construction stage

identify a set C of candidate edges using pheromone levels

 while T < n-1

 construct spanning tree T from C

 end-while

 count the maximum degree cost (T) of the spanning tree T

 if cost (T) < cost (B)

 B T
 cost (B) cost (T)

 enhance pheromone level for edges in the best tree B

 end-if

end-while

return the best tree found B

Figure 1: Ant Based Minimum Degree Spanning Tree Algorithm

Move (α,i) // ant α is at vertex i

An Improved Ant-Based Algorithm for Minimum Degree Spanning Tree Problems

www.iosrjournals.org 8 | Page

select an adjacent edge (i,j) // j is an adjacent vertex of i vertex

if vertex j is unvisited

 update pheromone level of edge (i,j)

 move α from vertex i to vertex j

 mark j visited

 break

else

 α remains at vertex i

end-if

Figure 2: One Step in the ant movement algorithm (AB-MDST without local search)

ConstructTree (G=(V,E))

sort all the edges by pheromone level in descending order

C top candidate edges (highest pheromone levels)

T Ø

while T < n-1

 let (i,j) be next candidate edge

 if i and j not connected in T

 if adding (i,j) to T would create no loop

 remove (i,j) from C

 add (i,j) edge to tree T

 end-if

 end-if

end-while

return T

Figure 3: Tree construction (AB-MDST without degree constraint)

Move (α,i) // ant α is at vertex i
find all the adjacent edges of verrex i

count the number of adjacent edges

if count = 0

 ant α remains at vertex i

else if count =1

 select the adjacent edge (i,j)

else

 find the adjacent edge (i,j) whose pheromone level is maximum

 select the adjacent edge (i,j)

end-if

if vertex j is unvisited

 update pheromone level of edge (i,j)
 move α from vertex i to vertex j

 mark j visited

 break

else

 α remains at vertex i

end-if

Figure 4: One step in the ant movement algorithm (AB-MDST with local search)

ConstructTree (G=(V,E),k) // k is degree constraint

sort all the edges by pheromone level in descending order

C top candidate edges (highest pheromone levels)

T Ø

while T < n-1

 let (i,j) be next candidate edge

 if i and j not connected in T

 if degree [i] > k or degree [j] >k

 and C < E-V // C is number of skipped edges

 add (i,j) to skippededge

An Improved Ant-Based Algorithm for Minimum Degree Spanning Tree Problems

www.iosrjournals.org 9 | Page

 increase C by one

 else

 if adding (i,j) to T would create no loop

 remove (i,j) from C

 add (i,j) to tree T

 end-if

 end-if

 end-if

end-while

return T

 Figure 5: Tree construction (AB-MDST with degree constraint)

III. Experimental Results
Our algorithm and the two improved versions of the algorithm are run on a set of 50 complete graphs

ranging from 10 to 200 vertices. The algorithms were implemented in C and run on a 1.80 Ghz Pentium Dual-
Core with 2 GB of RAM running the Windows 7 operating system. “Table 1” shows the final results. For all of

the tables below, first column represents the data set number from 1 to 50. Second column and third column

represent the input graph (number of vertices V and number of edges respectively E) for each of the data set.

Fourth and fifth column represent the result for the algorithm AB-MDST without local search and without

degree constraint. Sixth and seventh column represent the result for the algorithm AB-MDST with local search

but without degree constraint and Eighth and ninth column represent the result for the algorithm AB-MDST

with local search and with degree constraint. For each of the three algorithms the Degree column shows the

maximum degree of the constructed tree and the Time column shows execution time in seconds for each of the

input graphs. From the table we see that for most of the input data sets, AB-MDST with local search but without

degree constraint gives better result than AB-MDST without local search and without degree constraint. AB-

MDST with local search and with degree constraint gives much better result than both AB-MDST with local

search but without degree constraint and AB-MDST without local search and without degree constraint for both
Degree and Time.

Table 1: Experimental Results

 Input Graph Output

Algorithm 1 Algorithm 2 Algorithm 3

Dataset V E Degree Time Degree Time Degree Time

Data1 10 21 3 0 3 0 2 0

Data2 10 22 3 0.016 3 0.016 2 0

Data3 10 24 2 0 2 0 2 0

Data4 10 25 2 0 3 0.02 2 0

Data5 10 26 3 0 3 0 2 0
Data6 10 27 3 0.016 3 0 2 0

Data7 10 34 2 0 3 0 2 0

Data8 25 69 3 0.078 3 0.047 2 0

Data9 25 70 3 0.078 3 0.062 2 0

Data10 28 75 4 0.094 3 0.078 2 0

Data11 25 72 3 0.078 3 0.063 2 0.094

Data12 25 90 3 0.078 3 0.078 2 0.01

Data13 25 71 3 0.094 3 0.078 2 0

Data14 43 63 4 0.25 5 0.203 3 0.203

Data15 45 85 3 0.297 2 0 3 0.171

Data16 50 123 5 0.486 3 0.359 3 0.235

Data17 50 145 3 0.453 4 0.375 3 0.234
Data18 60 166 4 0.719 2 0 3 0.359

Data19 50 157 4 0.437 4 0.321 3 0.282

Data20 50 183 4 0.453 4 0.328 3 0.265

Data21 50 491 4 0.625 5 0.485 3 0.359

Data22 50 582 3 0.593 3 0.469 3 0.344

Data23 50 171 4 0.437 3 0.359 3 0.235

Data24 75 196 4 1.359 4 0.984 3 0.703

Data25 75 215 5 1.531 5 1.547 3 0.781

Data26 75 256 4 1.36 4 1.265 3 0.703

Data27 75 202 4 1.375 4 0.906 3 0.672

An Improved Ant-Based Algorithm for Minimum Degree Spanning Tree Problems

www.iosrjournals.org 10 | Page

Data28 75 266 5 1.547 5 1.094 3 0.797

Data29 100 297 5 2.922 5 2.828 3 1.532

Data30 100 324 4 3.125 5 2.578 3 1.578

Data31 100 334 4 4.563 5 3.734 3 2.047

Data32 100 314 3 3.062 6 4.969 3 1.547

Data33 100 394 4 3.862 4 2.812 3 1.781
Data34 100 261 4 5.718 5 3.218 3 1.844

Data35 100 271 5 3.156 4 2.125 3 1.547

Data36 100 451 5 4.032 4 2.484 3 2.031

Data37 100 742 5 4.438 5 3.906 3 2.266

Data38 100 922 4 4.938 4 3.406 3 2.531

Data39 150 481 5 11.609 4 7.841 3 7.11

Data40 150 473 5 10.531 5 9.062 3 5.5

Data41 150 402 4 12 5 9.297 4 5.986

Data42 100 334 4 2.875 6 2.782 4 1.47

Data43 150 453 5 19.687 5 8.653 4 6.656

Data44 150 1064 5 16.204 4 14.468 4 7.86

Data45 200 514 5 21.828 4 18.672 4 10.797
Data46 200 654 5 21.469 6 16.016 4 11.516

Data47 200 644 5 24.047 5 15.972 4 12.422

Data48 200 664 5 22.89 8 39.281 4 11.437

Data49 200 519 5 43.188 4 18.266 4 13.67

Data50 200 701 4 26.188 5 18.375 4 15.61

Algorithm 1: AB-MDST without local search and without degree constraint

Algorithm 2: AB-MDST with local search but without degree constraint

Algorithm 3: AB-MDST with local search and with degree constraint

IV. CONCLUSION
In this paper we discussed an Ant-Based algorithm- AB-MDST without local search and without

degree constraint (algorithm 1) to find minimum spanning degree spanning trees from different input graphs and

gave two improved versions of the algorithm named AB-MDST with local search but without degree constraint

(algorithm 2) and AB-MDST with local search and with degree constraint (algorithm 3). The experimental

results show that for both parameters (Degree and Time); algorithm 3 gives much better result than the other

two algorithms.

REFERENCES
[1]. Dorigo, M., V. Maniezzo, and A. Colorni, “Ant System: Optimization by a Colony of Cooperating Agents,” IEEE Trans. on

Systems, Man, and Cybernetics - Part B, 26(1), Feb. 1996, pp. 29–41.

[2]. Volgenant, A., “A Lagrangean Approach to the Degree-Constrained Minimum Spanning Tree Problem,” European Journal of

Operational Research, 39, 1989, pp. 325–331.

[3]. Eila Safari and Azizallah Rahmati, “Using Learning Automata to Solving Degree-constrained Minimum Spanning Tree Problem”,

Australian Journal of Basic and Applied Sciences, 5(6): 337-341, 2011, ISSN 1991-8178

[4]. Minh N. Doan,” An Effective Ant-Based Algorithm for the Degree-Constrained Minimum Spanning Tree Problem”, 1-4244-1340-

0/07$25.00_c 2007 IEEE

[5]. YOON-TECK BAU, CHIN-KUAN HO AND HONG-TAT EWE, “Ant Colony Optimization Approaches to the Degree-

constrained Minimum Spanning Tree Problem”, JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 24, 1081-1094

(2008)

[6]. Thang N. Bui and Catherine M. Zrncic, “An Ant-Based Algorithm for Finding Degree-Constrained Minimum Spanning Tree”,

GECCO’06, July 8–12, 2006, Seattle, Washington, USA.

[7]. Kamalika Chaudhuri, Satish Rao, Samantha Riesenfeld, and Kunal Talwar, “A Push-Relabel Algorithm for Approximating Degree

Bounded MSTs”

[8]. Savelsbergh, M. and T. Volgenant, “Edge Exchanges in the Degree-Constrained Minimum Spanning Tree Problem,” Computers

and Operations Research, 12(4), 1985, pp. 341–348.

[9]. Marck De Berg, Marc Van Kreveld and Mark Overmars, “Computational Geometry Algorithms and Applications”.

[10]. Marco Dorigo, Mauro Birattari, and Thomas Stutzle, “Ant Colony Optimization-Artificial Ants as a Computational Intelligence

Technique”.

