
IOSR Journal of Computer Engineering (IOSRJCE)

ISSN: 2278-0661, ISBN: 2278-8727 Volume 5, Issue 6 (Sep-Oct. 2012), PP 15-20
www.iosrjournals.org

www.iosrjournals.org 15 | Page

Applying a Model Based Testing for a Controller Design in Fault

Detection, Isolation & Recovery (FDIR) System

Venkatesh Kumar. N
1
, Amritha Mulay. V

2
, Mujeeb Ulla Jeelani

3

1 Asst. Professor, SET, JAIN University, Bangalore, Freelance consultant and Trainer.
2 Software Engineer, Allied Tools and Electronics, Bangalore.

3Software Engineer, 7Star Technologies, Bangalore.

Abstract: Model-Based Design allows the process of verification and validation of an executable system

specification, which prevents errors from persisting into later stages of the design process where they are more

costly and time consuming to fix. Studying a Fault Detection, Isolation, and Recovery (FDIR) system of a

controller design, in this case an aircraft elevator redundancy control system is considered, which demonstrates

how to trace requirements to a design, use the test cases based on those requirements, and perform the coverage

analysis, which in turn reveals untested, missing, and ambiguous requirements in the specification.

Key words: Model Based Design, Graphical Model, Actuator, hydraulics.

I. Introduction

With Model-Based Design, a graphical model, often a block diagram is used to capture the system

requirements. This model produces an executable specification that describes the system behavior and can be

gradually extended into an increasingly detailed design [1] [2]. Verification and validation can occur earlier in

the system design process, which reduces costly iterations across many design steps.

The creation of consistent, reusable, and well-documented models becomes the important stage in the

development of embedded systems. Hence, the concept of model-based development (MBD) emerges. Due to

the increasing complexity of the developed systems it is necessary to model correctly and to implement the

chosen design in a correct manner.

In general, the requirements for engineered systems are ambiguous, not rigorous, and even inconsistent.

It is desirable to detect such problems as early as possible in the system design process. Model-Based approach

can be used to achieve this goal by facilitating executable specifications that allow testing to start at the model
level instead of after system realization.

II. Description of an Elevator Control System
A typical aircraft has two elevators attached on the horizontal tails (one on each side of the fuselage).

There are a number of redundant parts in the system to ensure safety [2].

For example, as shown in Figure 1, there are:

 Two independent hydraulic actuators per elevator (four in total).

 Three separate hydraulic circuits to drive the actuators.

 Two primary flight control units (PFCU).

 Two control modules per actuator: Full range control law and limited / reduced range control law.

In this system we limit each PFCU to have only one control law, and to control only one set of

actuators to reduce the complexity of the system. A PFCU having a sophisticated Input-Output (I/O) control

law, controls the left (LIO) and right (RIO) outer actuator. In case of a failure, a Direct-Link (DL) control law

with reduced functionality handles the left (LDL) and right (RDL) inner actuators. Each outer actuator has a

dedicated hydraulic circuit, whereas the inner actuators share one hydraulic circuit. By default, the outer

actuators are on, and the inner actuators are on standby. If a fault is detected in the outer actuators or in the

hydraulic circuits that are connected to them, we want the system to respond accordingly to maintain stability by

turning the outer actuators off and activating the inner actuators [2]. The mode logic block operates the

redundancy to assure continual operation of the system.

This paper focuses on the fault detection, isolation, and recovery logic that causes the actuators to
switch from one mode to another. Here simple yet representative models of the hydraulic actuators and

elevators, as well as the feedback control laws are presented, to illustrate the behavior of this logic.

Applying a Model Based Testing for a Controller Design in Fault Detection, Isolation & Recovery

www.iosrjournals.org 16 | Page

Figure 1 Components of the elevator redundancy system

III. System requirements
As mentioned, there are four actuators in total, two on each elevator. Each actuator has five modes:

 Isolated mode. The actuator is turned off indefinitely. An actuator must be able to be isolated from any

mode.

 Off mode. The actuator is turned off temporarily because of a failure and will come back online only if

all failures for that actuator are fixed.

 Passive mode. The actuator is waiting and does not generate actuator control signals. An actuator in
passive mode can take control of the elevator control system.

 Standby mode. The actuator's control law is active, but no force is applied to the actuator. It is ready to

take control of the system and will introduce minimal transients when it does.

 Active mode. The actuator is active and controls the elevator.

IV. Control logic system structure
We know that the system contains four actuators, as shown in Figure 2, each of which can be in one of

five modes: active, standby, off, passive, or isolated. To implement the mode logic in Stateflow, we create four
parallel superstates that represent the actuators, and within each superstate are five exclusive states that

represent the five modes given above. The actuator superstates are parallel because the actuators run

concurrently in the system [4]. On the other hand, the five mode states are exclusive because an actuator is in

one and only one mode at any given time.

The operator would not want this actuator to be active right away because;

1) To run the risk of using two actuators simultaneously to control one elevator,

2) The operator is trying to minimize mode switching, and

3) The operator would like the elevators to be symmetric if possible (i.e., either both inner actuators are active

or both outer actuators are active).

So if the inner actuators are active, they should remain active even if one of the outer actuators has come back

online. A better alternative is to set the actuator to the passive mode by default.

Figure 2 Complete actuator control logic system without FDIR capability.

Applying a Model Based Testing for a Controller Design in Fault Detection, Isolation & Recovery

www.iosrjournals.org 17 | Page

V. Fault detection and isolation
Table 1 shows a small set of high-level requirements used to guide the design of the mode-logic

component. Such high-level requirements can be incomplete, inconsistent, and difficult to interpret. Design

errors can be introduced simply by misinterpreting the high-level requirements into more detailed requirements
[6]. For example, the combination of requirements 2 and 3 from Table 1 creates an ambiguity, i.e., If one

actuator can be operated only in inner loop, should the other still be operated in outer loop.

Therefore, it is necessary to test the detailed requirements early in the development process to ensure

their accuracy. Hence to design an implementation, the high level system requirements needs to be first

translated into more detailed, subsystem level, requirements.

Part of the detailed requirements that can then be translated into (formal) specifications is shown in

Table 2. Based on these specifications, a controller model is designed that embodies the desired behavior. The

design then needs to be tested against those requirements to verify and validate its compliance [6]. The approach

demonstrated revolves around being able to independently establish test cases that are derived from the high and

low-level requirements that can be executed on the design model, that has been created based on the same

requirements, to verify that the requirements have been met. The ability to have full traceability of the high and
low-level requirements to the design model through software implementation is achieved. Establishing such a

formalized approach to testing the design is important to demonstrate that it meets the written requirements.

Table 1 Small set of high-level requirements

VI. Fault definition
We have listed the requirements that this system must fulfil with respect to fault detection. If the

aircraft is flying perfectly level, then the actuator position should maintain a constant value. If the position of an

actuator increases or decreases by 10 cm from zero point, then a failure has occurred in that actuator. A failure

also occurs if the change in position is very rapid. Similarly, a fault occurs in one of the hydraulic circuits if the

pressure is out-of-bounds or if the pressure changes very rapidly.

The fault detection subsystem that is implemented in Simulink is as shown in Figure 3. The actuator

position and hydraulic pressure values are input into both the Rate of Change Threshold and Range Threshold
blocks, which then determine whether or not these values are valid [6]. This information then gets sent to the

actuator mode logic system. If a failure has been detected, then the mode logic system will react accordingly

(e.g., an actuator can be switched off).

Figure 3 Fault detection system

ID Description

1 Each actuator will have five modes: Isolated, Off,
Passive, Standby, and Active.

2 If possible, the same control law should be active
for both the left and right elevators.

3 If available, the I/O control law should be active

instead of the DL control law.

4 The actuator that is not active should be in standby.

5 If the pressure of the hydraulic circuit is low and
the position measurement fails, the corresponding
actuator should be switched to Off.

6 If the pressure of the hydraulic circuit is nominal

and the position measurement fails, the
corresponding actuator should be switched to
Isolated.

7 Controller state changes should be made only in
response to failure events.

Applying a Model Based Testing for a Controller Design in Fault Detection, Isolation & Recovery

www.iosrjournals.org 18 | Page

VII. Using Truth Tables for fault detection
As we can see above, the logic system needs to fulfil a significant number of requirements. One way to

incorporate each of these requirements into Stateflow is to use truth tables. Truth tables are used to realize

logical decision-making behaviour. Stateflow truth tables contain conditions, decisions, and actions, as shown in
Table 3.

Let's look at the first requirement we listed in this part to see how it fits into the truth table. To repeat,

the first requirement is that if a failure is detected in the hydraulic pressure 1 system, while there are no other

failures, we turn off the left outer actuator. This requirement is met through Decision 1 of the condition table.

Note that in Decision 1, the second condition (left outer actuator failed) is blank, meaning that the condition can

be either true or false.

Table 3 Truth table for left elevator

ID CONDITION DESCRIPTION

1 Hydraulic pressure 1 failure If a failure is detected in the hydraulic pressure 1 system, while

there are no other failures, isolate the fault by switching the Left
Outer actuator to the off mode.

2 Hydraulic pressure 1 fails and then
recovers

If a failure is detected in the hydraulic pressure 1 system and the
system then recovers, switch the Left Outer actuator to the
standby mode.

3 Hydraulic pressure 2 failure If a failure is detected in the hydraulic pressure 2 system, while

there are no other failures, isolate the fault by switching the Left
Inner actuator and the Right Inner actuator to the off mode.

4 Hydraulic pressure 2 fails and then

recovers

If a failure is detected in the hydraulic pressure 2 system and the

system then recovers, switch the Left Inner actuator and the
Right Inner actuator to the standby mode.

5 Hydraulic pressure 3 failure If a failure is detected in the hydraulic pressure 3 system, while
there are no other failures, isolate the fault by switching the
Right Outer actuator to the off mode.

6 Hydraulic pressure 3 fails and then

recovers

If a failure is detected in the hydraulic pressure 3 system and the

system then recovers, switch the Right Outer actuator to the
standby mode.

7

Default start-up condition If there have been no failures detected, the Outer actuators have
priority over the Inner actuators. Therefore the elevator
actuators should default to the following modes. The Left Outer
and Right Outer actuators should transition from the Passive
mode to the active mode. The Left Inner and Right Inner

actuators should transition from the Passive mode to the
Standby mode.

Table 2 List of the detailed requirements for the mode logic design

Applying a Model Based Testing for a Controller Design in Fault Detection, Isolation & Recovery

www.iosrjournals.org 19 | Page

VIII. Recovery
This part of models in an aircraft elevator control system using Model-Based Design with Simulink

Stateflow and Simulink Verification and Validation is accomplished. We design an actuator controller from a

set of requirements and then verify that the controller meets these requirements through appropriate test cases.
We can apply the design approach discussed in this case study to other event-based logic systems.

We designed the overall structure of the elevator control system. In Previous section, we modified the

control system to allow for the detection of faults in the actuators or hydraulic circuits and the isolation of

specific actuators based on these faults. In this section, we modify the logic system once again so that actuator

subsystems can be recovered once specific faults are no longer detected.

Figure 4 Complete FDIR actuator logic system

Now that we have the recovery requirements for the actuator control system, we can modify the

Stateflow chart accordingly. The first step is to add transitions to the chart that are necessary for recovery

purposes. We will add transitions to satisfy each recovery requirement by adding a transition label appropriate

for each requirement.

 It will be necessary to transition from Active to Standby mode and vice versa. For example, look at

what happens when the left outer actuator is switched off due to a failure. In this case, the right outer actuator is

switched from Active to Standby mode, and the inner actuators are switched from Standby to Active mode.
Tests designed for all requirements can be combined into a test harness and applied to the design model for

requirements-based testing. Tests can be executed individually or in batch mode. If a test runs without any

verification blocks asserting, then the design passes the test. If an assertion is detected, the simulation stops and

the verification block issuing the assertion is highlighted, which helps diagnose why the test failed.

IX. Coverage Analysis
Creating and executing requirements-based tests to ensure that the design behaves as expected is not

the same as fully testing the design. Some requirements may lack tests, the requirements themselves may be

ambiguous or incomplete, and the design may contain superfluous elements.
By using Simulink Verification and Validation, coverage metrics can be collected during simulation to

indicate untested design elements. The coverage metrics are displayed directly in the model using coloured

highlights and in a dialog box with summary information. Additionally, a detailed report of the coverage

analysis is created. The coverage metrics collected include cyclomatic complexity, decision coverage, condition

coverage, MC/DC, lookup table coverage, and signal range coverage.

X. Requirement based Testing
Let's look at the following specific requirement in order to understand how requirements are tested:

If a failure is detected in both the hydraulic pressure 1 system and the left outer actuator, while there are no
other failures, turn off the left outer actuator. First we generate a test case for this requirement in a Signal

Builder block within the Test Cases block, as shown in Figure 5.

Applying a Model Based Testing for a Controller Design in Fault Detection, Isolation & Recovery

www.iosrjournals.org 20 | Page

Figure 5 Test case in Signal Builder Block

There are a total of eight signals shown in Figure 5 three signals for each hydraulic circuit, four signals

for each actuator, and one signal to switch on the verification process. Let's look at the first seven signals. The

test cases have been set up so that a value of 1 corresponds to a failure, and a value of 0 corresponds to a

nominal value. For this requirement, there are failures in both hydraulic circuit 1 and the left outer actuator.

Therefore, you see both of those signals start at 0 and then change to 1 as a failure is detected. The values of the

other signals for the hydraulic circuits and actuators stay constant at 0 since no other failures are detected.

For the last signal labelled do_verification, when the value is 1, we check to see whether the actual

modes of the actuators correspond to the theoretical modes of the actuators. The expected modes for each

actuator are specified in the section labelled Verification block settings in the Signal Builder block (upper-right

section in Figure 5). In this, we expect the inner actuators to be active, the left outer actuator to be turned off,
and the right outer actuator to be on standby.

XI. Results and conclusion
System design often starts off with a set of high-level requirements (e.g., ‘mission requirements’) that

are gradually refined into a set of detailed requirements from which the subsystem specifications can be derived.

Once the subsystem specifications are available, an implementation can be designed. Once the implementation

has been realized, extensive testing determines whether the original requirements are met.

In general, requirements are ambiguous, not very rigorous, and even inconsistent. It is desirable to find

the problems as early on in the design process as possible. Model-Based Design can be used to that goal by
facilitating executable specifications that allow the testing otherwise done after system realization.

References
[1] Jason Ghidella and Pieter J. Mosterman Requirements-Based Testing in Aircraft Control Design, The MathWorks, Inc., Natick,

MA, 01760, USA.

[2] Pieter J. Mosterman, Manuel A. Pereira Remelhe, Sebastian Engell, and Martin Otter, Simulation for Analysis of Aircraft Elevator

Feedback and Redundancy Control.

[3] Simulink, Model-Based and System-Based Design © COPYRIGHT 1990 - 2004 by The MathWorks, Inc.

[4] Stateflow® Getting Started Guide ©COPYRIGHT 2004–2012 by The MathWorks, Inc.

[5] Politecnico Di Milano - Dipartimento Di Ingegneria Aerospaziale Aircraft Systems –Chapter 6 – Flight Control System LECTURE

NOTES, VERSION 2004.

[6] Dan Ye and Guang-Hong Yang, Senior Member, IEEE, Adaptive Fault-Tolerant Tracking Control Against Actuator Faults With

Application to Flight Control. IEEE Transactions On Control Systems Technology, VOL. 14, NO. 6, NOVEMBER 2006.

[7] Bo Yang, Fei Zhao, Xiayun Zhao, Sen Yang Simulation Based Design of a High-Speed +Elevator System. Spring 2008.

