
IOSR Journal of Computer Engineering (IOSRJCE)

ISSN: 2278-0661 Volume 4, Issue 5 (Sep-Oct. 2012), PP 19-26
www.iosrjournals.org

www.iosrjournals.org 19 | P a g e

Efficiency of TreeMatch Algorithm in XML Tree Pattern

Matching

M.Muthukumaran
1
, R.Sudha

2

1Pursuing M.Tech., (Computer Science and Engineering), PRIST University, Tamilnadu, India
2 Asst. Professor, Department of Computer Science and Engineering, PRIST University, Tamilnadu, India.

Abstract: In Recent days exchange XML data more often in organizations and business sectors, so there is an

increasing need for effective and efficient processing of queries on XML data. This paper presents a wide

analysis to identify the efficiency of XML tree pattern matching algorithms. Previous years many methods have

been proposed to match XML tree queries efficiently. In particularly TwigStack, OrderedTJ, TJFast and

TreeMatch algorithms. All algorithms to achieve something through these own ways like structural relationship

including Parent – Child (P-C) relationship (denoted as ‘/’) and Ancestor-Descendent (A-D) relationships

(denoted as ‘//’) and more. Finally, we report our results to show that which algorithm is superior to previous

approaches in terms of the performance.

Keywords – Efficient TPQ, Efficiency of Tree pattern, XML Tree pattern

I. Introduction

 The extensible markup language XML has recently emerged as a new standard for information

representation and exchange on the internet [1]. With the rapidly increasing popularity of XML for data

representation, there is a lot of interest in query processing over data. Since the data objects in a variety of

languages (e.g XPath [2], XQuery [3]) are typically trees, twig (A small tree) pattern matching is the central

issue. XML data may be very large, complex and have deep nested elements. Thus, efficiently finding all
patterns in an XML database is a major concern of XML query processing.

 book

 title author

 XML jane

Fig 1: XPath query

An XML query pattern commonly can be represented as a rooted, labeled tree (Twig), for example Fig 1 shows

an example XPath query:

Book [title = ‟XML‟] // author [. = „jane‟]
 Such a complex query tree pattern can be naturally decomposed into a set of basic P-C and A-D

relationship between pairs and nodes [4]. The above example query are the ancestor-descendent relationship

(book, author) and the parent-child (book, title) and (title, XML) and (author, jane).

Fig 2: sample XML tree

XML twig pattern algorithms is a selection predicate on multiple elements in an XML document. Such

query patterns can generally be represented as node - labeled trees. Matching a twig pattern against an XML

database is to find all occurrence of the pattern in the database. For example given a query twig pattern Q and an

XML database D, a match of Q in D is identified by a mapping from nodes in Q to nodes in D such that

Efficiency of TreeMatch Algorithm in XML Tree Pattern Matching

www.iosrjournals.org 20 | Page

(i). query node predicates are satisfied by the corresponding database nodes. (ii). The structural relationships [4]

between query nodes are satisfied. The query twing pattern in fig 3 and the database tree in fig 2. This query

twig pattern has one match in the data tree that maps the nodes in the query to the root of the data and its first

and third sub trees.

Fig 3: Query twig pattern

II. XML Twig pattern matching algorithms

 An XML query contains two parts one is value match and another one is twig match. The above XPath

query(fig 1) contains „XML‟ is a value match and another is a twig match. Labeling and Computing is the main
view of the twig pattern, labeling assign each element in the XML document tree an integer label to capture the

structural information of documents and computing use labels to answer the twig pattern without traversing the

original document. Mainly there are two labeling schemes, such as containment labeling schemes [5] and

Dewey ID labeling schemes [6]. Several algorithms based on the containment labeling scheme have been

developed to process twig queries. Prior work on XML twig pattern processing decomposes a twig pattern into a

set of binary relationships which can be either parent - child or ancestor - descendant relationships. After that,

each binary relationship is processed using structural join techniques and the final match results are obtained by

merging individual binary join results together. The main problem with the above solution is that it may

generate large and possibly unnecessary intermediate results because the join results of individual binary

relationships may not appear in the final results.

 The following sections we going to comparative analysis about few existing tree pattern matching

techniques in particularly TwigStack, OrderedTJ, TJFast with TreeMatch [5][7][8][9].

III. TwigStack
 Based on the containment labeling scheme, Bruno et al. [5] proposed a novel “holistic” XML twig

pattern matching method called TwigStack. When all edges in query pattern are ancestor – descendant (A-D)

relationships, Twigstack ensures that each root – to – leaf intermediate solution is merge – joinable.

 TwigStack has been proved to be I/O optimal in terms of output sizes for queries with only A-D edges,

their algorithms still cannot control the size of intermediate results for queries with parent-child (P-C) edges. To

get a better understanding of this limitation, let us take an experimented with TreeBank datasets [10] tested three

twig queries patterns (as shown in Table 1), each of which contains at least one P-C edge. TwigStack operates
two steps: 1. a list of intermediate path solutions is output as intermediate results and 2. the intermediate path

solutions in the first step are merge-joined to produce the final solutions.

Table 1: number of intermediate path solutions produced by TwigStack against treebank data

Query Output paths Useful paths Useless paths

V P[./DT]//PRP_DOLLAR_ 10663 5 99.9%

S[./JJ]/NP 70988 10 99.9%

S[.//VP/IN]//NP 702391 22565 96.8%

 An immediate observation from the table 1 is that TwigStack outputs many intermediate paths that are

not merge-joinable [5]. For all three queries, more than 95% intermediate paths produced by TwigStack in the

first step are “useless” to final answers [11]. The main reason for such bad performance is that in the TwigStack,

it assumes that all edges in queries are A-D relationships and therefore output many useless intermediate results

when queries contain P-C relationships. TwigStack cannot answer queries with wildcards in branching nodes.

For example in Fig 4, the parent of B should be an ancestor of C

 *

 B C

Fig 4: queries with wildcard

Efficiency of TreeMatch Algorithm in XML Tree Pattern Matching

www.iosrjournals.org 21 | Page

IV. OrderedTJ
In OrderedTJ [7], an element contributes to final results only if the order of its children accords with

the order of corresponding query nodes. If we call edges between branching nodes and their children as

branching edges and denote the branching edge connecting to the n‟th child as the n‟th branching edge, we
analytically demonstrate that when the ordered query contains only ancestor - descendant relationship from the

second branching edge, OrderedTJ is I/O optimal among all sequential algorithms that read the entire input. In

other words, the optimality of OrderedTJ allows the existence of parent-child edges in non-branching edges and

the first branching edge. The results show that the effectiveness, scalability and efficiency of holistic twig

algorithms for ordered twig pattern.

Given an ordered twig pattern Q and an XML database D, a match of Q in D is identified by a mapping

from the nodes in Q to the elements in D, such that: (i) the query node name predicates are satisfied by the

corresponding database elements; and (ii) the parent-child and ancestor-descendant relationships between query

nodes are satisfied by the corresponding database elements; and (iii) the order of query sibling nodes are

satisfied by the corresponding database elements. In particular, based on the containment labeling scheme, given

any query node q and its right-sibling r (if any), their corresponding elements, say eq and er, must satisfy that
eq.end<er.start. In other words, we do not allow eq to be an ancestor of er. The answers to query Q with n nodes

can be represented as a list of n-ary tuples, where each tuple (eq1 ,eq2,...,eqn) consists of the database elements that

identify a distinct match of Q in D.

 Fig 5(a-c) show three example ordered twig patterns based on the data tree of Fig 5 (d). For each

branching node, we used a symbol “<” in a box to mark its all children ordered. For example, the query solution

for Q2 is only (book1, chpater2, title2, ”related work”, section3). Note that if Q2 were an unordered query, then

there are two more answers to involve in section1, section2.

 Chapter book book

 title section chapter section author chapter

 title title section

 “related work”
 (a) Q1 (b) Q2 (c) Q3

 book1(1,25,1)

 (2,3,2) (4,10,2) (11,17,2) (18,24,2)

 author1 chapter1 chapter2 chapter3

 (5,7,3) (8,9,3) (12,14,3) (15,16,3) (19,21,3) (22,23,3)

 Title1 section1 title2 section2 title3 section3

 (6,6,4) (13,13,4) (20,20,4)

 “Introduction” “related work” “algorithm”

 (d) XML tree

Fig 5: example ordered twig query and an XML tree

 OrderedTJ output much less intermediate results, OrderedTJ scales linearly with the size of the

database, OrderedTJ is not optimal and outputting less useless intermediate results.

V. TJFast
 We have presented two holistic algorithms for answering XML twig queries in previous sections.

Interestingly, all these two algorithms use the same containment labeling scheme. While the containment

scheme preserves the positional information within the hierarchy of an XML document, we observe that this is

not the only labeling scheme that can be used for XML twig query processing. Indeed, there are at least two

limitations in the containment scheme.

1. The information contained by a single containment label is very limited. For example, we cannot get the path

information from any single containment label.

< <

<

<

Efficiency of TreeMatch Algorithm in XML Tree Pattern Matching

www.iosrjournals.org 22 | Page

2. While wildcard steps in XPath are commonly used when element names are unknown or do not matter[12].

 The containment labeling scheme is difficult to answer queries with wildcards in branching nodes. For

example, consider an XPath: “//a/*/[b]/c”. where “*” denotes a wildcard symbol which can match any single

element. The containment labels of a, b and c do not provide enough information to determine whether they

match the query or not. This is because even if b and c are descendants of a and their level difference with a is 2,

b and c may not be query answers, as they do not have the common parent.

 (a) query (b) containment (c) Dewey ID

Fig 6: wildcard query processing

However,Dewey ID [77] labeling scheme can efficiently overcome the above two limitations. In DeweyID [6],

each element is labelled by a vector to show the path from the root to this element. Fig 6(c) shows the example
XML data with Dewey ID labeling scheme. From this figure, we see that b1(“1.1”) and c1(“2.1”) have not the

same parent, for their prefixes are not the same (i.e. 1≠ 2). This example shows that unlike containment, the

Dewey ID labeling scheme can provide path information and thus support the evaluation of queries with

wildcards in branching nodes.

 TJFast outputs one useless intermediate path and it is outputs the path solution for all nodes in query

[9]. It does not produce the individual solution for each node when there are multiple return nodes in a query.

TJFast cannot work with ordered restriction and negation function [9].

VI. Introduction to TreeMatch

 Previous XML tree pattern matching algorithms do not fully exploit the “optimality” [9] of holistic

algorithms. TwigStack guarantees that there is no useless intermediate result for queries with only AD

relationships. Therefore, TwigStack is optimal for queries with only A-D edges.

 Previous algorithms focus on XML tree pattern queries with only P-C and A-D relationships. Little

work has been done on XML tree queries which may contain wildcards, negation function and order restriction,

all of which are frequently used in XML query languages such as XPath and XQuery. In this analysis, we take
an XML tree pattern with negation function, wildcards and/or order restriction as extended XML tree pattern.

Fig 7, for example, shows four extended XML tree patterns. Query (a) includes a wildcard node “*”, which can

match any single node in an XML database. Query (b) includes a negative edge, denoted by “¬”. This query

finds A that has a child B, but has no child C. In XPath language [2], the semantic of negative edge can be

presented with “not” Boolean function. Query (c) has the order restriction, which is equivalent to an XPath

“//A/B[following-sibling::C]”. The “<” in a box shows that all children under A are ordered. The semantics of

order-base tree pattern is captured by a mapping from the pattern nodes to nodes in an XML database such that

the structural and ordered relationships are satisfied. Finally, Query (d) is more complicated, which contains

wildcards, negation function and order restriction.

 * A A A

 ¬

 A B B C B C B *
 ¬

 C D E

 (a) TQ1 (b) TQ2 (c) TQ3 (d) TQ4

Fig 7: Example extended XML tree pattern queries. “ _” denotes the return node in query

Xpath expressions: TQ1: //*[A]/B//C, TQ2://A[B][not (C)], TQ3://A/B[following-sibling::C] and

 TQ4://A/B[following-sibling::*[not(D)]/E]

 Based on the theoretical analysis, We studies a series of holistic algorithms with TreeMatch [9] to

achieve a best performance of the tree pattern matching algorithms.

< <

Efficiency of TreeMatch Algorithm in XML Tree Pattern Matching

www.iosrjournals.org 23 | Page

6.1 Analysis of TreeMatch
 Now we go through Algorithm 1. Line 1 locates the first elements whose paths match the individual

root-leaf path pattern. In each iteration, a leaf node fact is selected by getNext function (line 3). The purpose of

line 4, 5 is to insert the potential matching elements to outputlist. Line 6 advances the list Tfact and line 7 updates
the set encoding.
Algorithm 1: Algorithm TreeMatch for class Q/,//,*

1 locateMatchLabel(Q);

2 while (¬end(root)) do
3 fact= getNext(topBranchingNode);

4 if (fact is a return node)

5 addToOutputList(N A B(fact), cur(Tfact));

6 advance(Tfact); // read the next element in Tfact

7 updateSet(fact); // update set-encoding

8 locateMatchLabel(Q); //locate next element with

 Matching path

9 emptyAllSets(root);

 Line 8 locates the next matching element to the individual path. Finally, when all data have been

processed, we need to empty all sets in Procedure EmptyAllSets (Line 9) to guarantee the completeness of output

solutions.

Algorithm 2: Procedures and Functions in TreeMatch
1 Procedure locateMatchLabel(Q)

 1: for each leaf q Є Q, locate the extended Dewey

 label eq in list Tq such that eq matches the

 individual root- leaf path

 Procedure addToOutputList(q,eqi)

 1: for each eq Є Sq do

 2: if (satisfyTreePattern(eqi,eq))

 3: outputList(eq).add(eqi);

 Function satisfyTreePattern(eqi,eq)

 1: if (bitVector(eq,qi) = „1‟) return true;

 2: else return false;

 Procedure updateSet(q,e)
 1: cleanSet(q,e);

 2: add e to set Sq; //set the proper bitVector(e)

 3: if (¬is Root(q) Λ (bitVector(e)=”1…1”))

 updateAncestorSet(q);

 Procedure cleanSet(q,e)

 1: for each element eq Є Sq do

 2: if (satisfyTreePattern(eq,e))
 3: if (q is a return node)

 4: addToOutputList(N A B(q),e);

 5: if (isTopBranching(q))

 6: if (there is only one element in Sq)

 7: output all elements in outputList(eq);

 8: else merge all elements in outputList(eq)

 To outputList(ea), where ea=NAB(eq);

 9: delete eq from set Sq;

 Procedure updateAncestorSet(q)

 1: /*Assume that q' = NAB(q)*/

 2: for each e Є Sq' do

 3: if (bitVector(e, q) = 0)

 4: bitVector(e, q) = 1;

 5: if (¬is Root(q) Λ (bitVector(e)=”1…1”))

 6: updateAncestorSet(q');
 Procedure emptyAllSets(q)

 1: if (q is not a leaf node)

 2: for each child c of q do EmptyAllSets(c);

 3: for each element e Є Sq do cleanSet(q,e);

Efficiency of TreeMatch Algorithm in XML Tree Pattern Matching

www.iosrjournals.org 24 | Page

In Procedure addToOutputList(q; eqi), it add the potential query answer eqi to the set of Seq, where q is the

nearest ancestor branching node of qi (i.e. NAB(qi) = q). Procedure updateSet accomplishes three tasks. First,

clean the sets according to the current scanned elements. Second, add e into set and calculate the proper

bitVector.

Finally, we need recursively update the ancestor set of e. Because of the insertion of e, the bitVector

values of ancestors of q need update.

 Algorithm getNext(see Algorithm 3) is the core function called in TreeMatch, in which we accomplish
two tasks. For the first task to identify the next processed node, Algorithm getNext(n) returns a query leaf node f

according to the following recursive criteria (i) if n is a leaf node, f=n(line 2); else (ii) n is a branching node,

then suppose element ei matches node n in the corresponding path solution(if more than one element that

matches n, ei is the deepest one by level)(line 7,8), we return fmin such that the current element emin in Tfmin has

the minimal label in all ei by lexicographical order(line 13,20) For the second task of getNext, before an element

eb is inserted to the set Sb, we ensure that eb is an ancestor (or parent) of each other element ebi to match node b

in the corresponding path solutions (line 13). If there are more than one element to match the branching node b,

ebi is defined as their deepest(i.e. maximal) element(line 8).

Algorithm 3: getNext(n)

1: if (isLeaf(n)) then

2: return n
3: else

4: for each ni Є NDB(n) do

5: fi = getNext(ni)

6: if (isBranching(ni) Λ ¬empty(Sni))

7: return fi

8: else ei = max{p|p Є MB(ni, n)}

 9: end for

10: max = maxargi{ei}

11: for each ni Є NDB(n) do

12: if (Ve Є MB(ni, n) : e Є ancestors(emax))

13: return fi;
14: endif

15: end for

16: min = minargi{fi|fi is not a return node}

17: for each e Є MB(nmin, n)

18: if (e Є ancestors(emax)) updateSet(Sn, e)

19: end for

20: return fmin

21: end if

Function MB(n; b)

1: if (isBranching(n)) then

2: Let e be the maximal element in set Sn
3: else

4: Let e = cur(Tn)

5: end if

6: Return a set of element a that is an ancestor of e such

 that a can match node b in the path solution of e to

 path pattern pn

Example : We use the query and document in Fig 8 to illustrate TreeMatch algorithm. Table 2

demonstrates the current access elements, the sets encoding and the corresponding output elements. There are

two branching nodes in the query. Firstly, B1, D1 and E1 are scanned. C1 and C2 are added into the set SC, but

their bitVectors is “10” and “01”, which indicate that C1 and C2 have only one child respectively. In this
scenario, recall that TJFast may output path solutions A1=A2=C1=D1 and A1=A2=C1=C2=E1, which might

be useless to final results. Thus, our algorithm TreeMatch diminishes the unnecessary I/O cost. Next, E2 is

scanned and the bitVector(C1) becomes “11” as C1 has two children now. Similarly, the bitVector(A1) is “11”

too. In this moment, we guarantee that A1 matches the whole pattern tree, as all bits in bitVector(A1) is 1.

Efficiency of TreeMatch Algorithm in XML Tree Pattern Matching

www.iosrjournals.org 25 | Page

Finally, when B2 is scanned, A2 is added to set SA. Therefore, Treematch outputs two final results B1 and B2.

Note that there are no useless nodes output here.

 A 0

 A1

 B C 0.0 0.1

 B1 A2

 D E

 0.1.0 0.1.2

 B2 C1

 0.1.2.0 0.1.2.1 0.1.2.2

 D1 C2 E2

 0.1.2.1.2

 E1

 (a) query (b) data

Fig 8: illustration to Algorithm TreeMatch for class Q/,//,*

Through this example, we illustrates two differences between TJFast and TreeMatch. (1) TJFast

outputs one useless intermediate path A1=A2=C1=C2=E1, but TreeMatch uses the bitVector encoding to solve

this problem. (2) TJFast outputs the path solution for all nodes in query, but TreeMatch only outputs nodes for

return nodes (i.e. node B in the query) to reduce I/O cost.

Table 2: set encoding for the example in fig 8

Current elements Set encoding SA Set encoding SC

B1,D1,E1 <0,”10”,Ø>
<0.1.2,”10”, Ø>,

<0.1.2.1,”01”, Ø>

B1,D1,E2 <0,”11”,”0.0”>
<0.1.2,”11”, Ø>,

<0.1.2.1,”01”, Ø>

B2,D1,E2
<0,”11”,”0.0”>

<0.1,”11”,”0.1.0”>
<0.1,”11”, Ø>,

<0.1.2.1,”01”, Ø>

6.2 Comparative analysis table of previous algorithms with TreeMatch
Table 3: Summary of algorithm analysis

Algorithms Labeling scheme Optimality Query Output list

TwigStack Containment optimal in terms

of output sizes

and not optimal

for PC

Unordered Many useless

intermediate results when

queries contain P-C

relationships

OrderedTJ Containment Not a optimal Ordered much less intermediate

results

TJFast Extended Dewey Not fully optimal Unordered one useless intermediate

path and it is outputs the

path solution for all nodes
in query

TreeMatch Extended Dewey

and bitvector

Fully optimal Ordered restriction,

Negation and

wildcard

No useless paths

 Based on previous detailed discussions, table 3 illustrates the comparative analysis of previous tree

pattern matching algorithms with TreeMatch with the key factors of labeling schemes, optimality, query and

output list.

VII. Conclusion

 In this paper, we proposed the problem of XML twig pattern matching and surveyed some recent works

and algorithms. TreeMatch has an overall good performance in terms of labeling schemes, optimality, query

processing, outputlist (table 3) and the ability to process extended XML tree patterns (twigs). The previous twig

Efficiency of TreeMatch Algorithm in XML Tree Pattern Matching

www.iosrjournals.org 26 | Page

pattern matching algorithms (TwigStack, OrderedTJ and TJFast) requires more features than TreeMatch

algorithm. TreeMatch to achieve such optimal query classes so, from this points we can say that TreeMatch twig

pattern matching algorithm can answer complicated queries and has good performance.

VIII. Acknowledgments
 We feel very humble and happy to thank below mentioned authors (reference paper‟s) who initiated

and motivated us to research and develop knowledge. And also we feel happy to dedicate our work credit to

those authors for getting interest on these topics and give enthusiasm to do future enhancements.

References
[1] Tim Bray, Jean Paoli, C.M. Sperberg -McQueen and Eve Maler. Extensible markup language (XML) 1.0 second edition W3C

recommendation. Technical report RSC-XML-20001006, World Wide Web consortium, October 2000.

[2] W3C. XML Path Language (XPath) 1.0. "http://www.w3.org/TR/xpath", 1999.

[3] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, and J. Simeon. XQuery 1.0: An XML query language.

"http://www.w3.org/TR/xquery", November 2003.

[4] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, and D. Srivastava. Structural joins: A primitive for efficient XML

query pattern matching. In ICDE, pages 141–152, February 2002.

[5] N. Bruno, D. Srivastava, and N. Koudas, Holistic twig joins: optimal XML pattern matching, In Proceedings of the ACM SIGMOD

International Conference on Management of Data, 2002, pp. 310–321.

[6] I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram, E. J. Shekita, and C. Zhang, Storing and querying ordered XML using a

relational database system, In Proceedings of the ACM SIGMOD International Conference on Management of Data, 2002, pp.

204–215.
[7] J. Lu, T. W. Ling, T. Yu, C. Li, and W. Ni. Efficient processing of ordered XML twig pattern matching. In DEXA, pages 300–309,

2005.
[8] J. Lu, T. Chen, and T. W. Ling. TJFast: Efficient processing of XML twig pattern matching. Technical report, National university

of Singapore, 2004.

[9] J. Lu, T. W. Ling, Z. Bao, and C. Wang. Extended xml tree pattern matching: theories and algorithms. IEEE transactions on

knowledge and data engineering, vol.23, no. 3, march 2011

[10] H. V. Jagadish and S. AL-Khalifa, Timber: A native XML database, Tech. report, University of Michigan, 2002.

[11] Lu Jiaheng, Efficient Processing Of Xml Twig Pattern Matching, doctoral diss., Shanghai Jiao Tong University, China, 2006

[12] C Y Chan, W Fan, and Y Zeng, Taming xpath queries by minimizing wildcard steps, Proceedings of 30th International Conference

on Very Large Data Bases, 2004, pp. 156–167.

Authors profile
1
M.Muthukumaran pursuing M.Tech (CSE) in PRIST University, Tamilnadu, India. He has received the

Master of Computer Applications degree at the University of Madras, Chennai, India. He has more than six
years experience in IT industry and two years experienced as Assistant professor. His area of interest is Data

warehouse, Data Mining and Data Engineering.

2
R.Sudha received her Master of Engineering in Computer Science and Engineering from Pavendar

Bharathidasan College of Engineering Under Anna University, India. She is Currently working as Assistant
professor in Prist University,Trichy. She has Published a paper titled “ A System Tool for Identification of
RAGAS using MIDI (Musical Instrument Digital Interface) for CMIR (Classical Music Information
Retrieval)” in International Conference held in Dubai 28-30,2009. Published a paper titled “Adaptive

Location Aided Routing in Mobile ad-hoc Network(ALARM)” in a National Conference held in PSNA college, Dindugal
2006. And her area of Interest includes Multimedia (Musical Information Retrieval), Database and Networking.

