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Abstract: In Recent days exchange XML data more often in organizations and business sectors, so there is an 

increasing need for effective and efficient processing of queries on XML data. This paper presents a wide 

analysis to identify the efficiency of XML tree pattern matching algorithms. Previous years many methods have 

been proposed to match XML tree queries efficiently. In particularly TwigStack, OrderedTJ, TJFast and 

TreeMatch algorithms. All algorithms to achieve something through these own ways like structural relationship 

including Parent – Child (P-C) relationship (denoted as ‘/’) and Ancestor-Descendent (A-D) relationships 

(denoted as ‘//’) and more. Finally, we report our results to show that which algorithm is superior to previous 

approaches in terms of the performance. 
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I.  Introduction 

 The extensible markup language XML has recently emerged as a new standard for information 

representation and exchange on the internet [1]. With the rapidly increasing popularity of XML for data 

representation, there is a lot of interest in query processing over data. Since the data objects in a variety of 

languages (e.g XPath [2], XQuery [3]) are typically trees, twig (A small tree) pattern matching is the central 

issue. XML data may be very large, complex and have deep nested elements. Thus, efficiently finding all 
patterns in an XML database is a major concern of XML query processing. 

 

    book 

 

      title           author 

 

  XML          jane 

Fig 1: XPath query 

 

An XML query pattern commonly can be represented as a rooted, labeled tree (Twig), for example Fig 1 shows 

an example XPath query:  

Book [title = ‟XML‟] // author [.   = „jane‟] 
 Such a complex query tree pattern can be naturally decomposed into a set of basic P-C and A-D 

relationship between pairs and nodes [4]. The above example query are the ancestor-descendent relationship 

(book, author) and the parent-child (book, title) and (title, XML) and (author, jane). 

 
Fig 2: sample XML tree 

 

XML twig pattern algorithms is a selection predicate on multiple elements in an XML document. Such 

query patterns can generally be represented as node - labeled trees. Matching a twig pattern against an XML 

database is to find all occurrence of the pattern in the database. For example given a query twig pattern Q and an 

XML database D, a match of Q in D is identified by a mapping from nodes in Q to nodes in D such that              
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( i). query node predicates are satisfied by the corresponding database nodes. (ii). The structural relationships [4] 

between query nodes are satisfied.  The query twing   pattern in fig 3 and the database tree in fig 2. This query 

twig pattern has one match in the data tree that maps the nodes in the query to the root of the data and its first 

and third sub trees. 

 
Fig 3: Query twig pattern 

 
II.  XML Twig pattern matching algorithms 

 An XML query contains two parts one is value match and another one is twig match. The above XPath 

query(fig 1) contains „XML‟ is a value match and another is a twig match. Labeling and Computing is the main 
view of the twig pattern, labeling assign each element in the XML document tree an integer label to capture the 

structural information of documents and computing use labels to answer the twig pattern without traversing the 

original document.  Mainly  there  are  two  labeling schemes,  such as  containment labeling schemes [5] and 

Dewey ID labeling schemes [6]. Several algorithms based on the containment labeling scheme have been 

developed to process twig queries. Prior work on XML twig pattern processing decomposes a twig pattern into a 

set of binary relationships which can be either parent - child or ancestor - descendant relationships. After that, 

each binary relationship is processed using structural join techniques and the final match results are obtained by 

merging individual binary join results together. The main problem with the above solution is that it may 

generate large and possibly unnecessary intermediate results because the join results of individual binary 

relationships may not appear in the final results. 

 The following sections we going to comparative analysis about few existing tree pattern matching 

techniques in particularly TwigStack, OrderedTJ, TJFast  with TreeMatch [5][7][8][9].  
 

III.  TwigStack 
 Based on the containment labeling scheme, Bruno et al. [5] proposed a novel “holistic” XML twig 

pattern matching method called TwigStack. When all edges in query pattern are ancestor – descendant (A-D) 

relationships, Twigstack ensures that each root – to – leaf intermediate solution is merge – joinable. 

  TwigStack has been proved to be I/O optimal in terms of output sizes for queries with only A-D edges, 

their algorithms still cannot control the size of intermediate results for queries with parent-child (P-C) edges. To 

get a better understanding of this limitation, let us take an experimented with TreeBank datasets [10] tested three 

twig queries patterns (as shown in Table 1), each of which contains at least one P-C edge. TwigStack operates 
two steps: 1. a list of intermediate path solutions is output as intermediate results and 2. the intermediate path 

solutions in the first step are merge-joined to produce the final solutions. 

 

Table 1: number of intermediate path solutions produced by TwigStack against treebank data 

Query Output paths Useful paths Useless paths 

V P[./DT]//PRP_DOLLAR_ 10663 5 99.9% 

S[./JJ]/NP 70988 10 99.9% 

S[.//VP/IN]//NP 702391 22565 96.8% 

 

 An immediate observation from the table 1 is that TwigStack outputs many intermediate paths that are 

not merge-joinable [5]. For all three queries, more than 95% intermediate paths produced by TwigStack in the 

first step are “useless” to final answers [11]. The main reason for such bad performance is that in the TwigStack, 

it assumes that all edges in queries are A-D relationships and therefore output many useless intermediate results 

when queries contain P-C relationships. TwigStack cannot answer queries with wildcards in branching nodes.  

For example in Fig 4, the parent of B should be an ancestor of C 

      * 
 

      B         C 

Fig 4: queries with wildcard 
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IV.  OrderedTJ 
In OrderedTJ [7], an element contributes to final results only if the order of its children accords with 

the order of corresponding query nodes. If we call edges between branching nodes and their children as 

branching edges and denote the branching edge connecting to the n‟th child as the n‟th branching edge, we 
analytically demonstrate that when the ordered query contains only ancestor - descendant relationship from the 

second branching edge, OrderedTJ is I/O optimal among all sequential algorithms that read the entire input. In 

other words, the optimality of OrderedTJ allows the existence of parent-child edges in non-branching edges and 

the first branching edge. The  results show that the effectiveness, scalability and efficiency of holistic twig 

algorithms for ordered twig pattern.  

Given an ordered twig pattern Q and an XML database D, a match of Q in D is identified by a mapping 

from the nodes in Q to the elements in D, such that:  (i) the query node name predicates are satisfied by the 

corresponding database elements; and (ii) the parent-child and ancestor-descendant relationships between query 

nodes are satisfied by the corresponding database elements; and (iii) the order of query sibling nodes are 

satisfied by the corresponding database elements. In particular, based on the containment labeling scheme, given 

any query node q and its right-sibling r (if any), their corresponding elements, say eq and er, must satisfy that 
eq.end<er.start. In other words, we do not allow eq to be an ancestor of er. The answers to query Q with n nodes 

can be represented as a list of n-ary tuples, where each tuple (eq1 ,eq2,...,eqn) consists of the database elements that 

identify a distinct match of Q in D. 

 Fig 5(a-c) show three example ordered twig patterns based on the data tree of Fig 5 (d). For each 

branching node, we used a symbol “<” in a box to mark its all children ordered. For example, the query solution 

for Q2 is only (book1, chpater2, title2, ”related work”, section3 ). Note that if Q2 were an unordered query, then 

there are two more answers to involve in section1, section2. 

   Chapter                                      book                                             book             

 

 
 title           section                   chapter         section              author                chapter 

 

 
                                title                                                             title                  section 

 
                 “related work” 
     (a) Q1            (b) Q2    (c) Q3 

 

 
             book1(1,25,1) 

 

 

     (2,3,2)    (4,10,2)          (11,17,2)          (18,24,2) 

     author1       chapter1          chapter2           chapter3 

 

 

          (5,7,3)  (8,9,3)   (12,14,3)  (15,16,3)   (19,21,3) (22,23,3) 

          Title1  section1     title2      section2       title3      section3 

 

 
        (6,6,4)                 (13,13,4)                    (20,20,4)  

     “Introduction”   “related work”           “algorithm” 

 

          (d) XML tree 

Fig 5: example ordered twig query and an XML tree 

 

 OrderedTJ output much less intermediate results, OrderedTJ scales linearly with the size of the 

database,  OrderedTJ is not optimal and outputting less useless intermediate results. 

 

V.  TJFast 
 We have presented two holistic algorithms for answering XML twig queries in previous sections. 

Interestingly, all these two algorithms use the same containment labeling scheme. While the containment 

scheme preserves the positional information within the hierarchy of an XML document, we observe that  this is 

not the  only labeling scheme that can be used for XML twig query processing. Indeed, there are at least two 

limitations in the containment scheme. 

1. The information contained by a single containment label is very limited. For example, we cannot get the path 

information from any single containment label. 

< < 

< 

< 
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2. While wildcard steps in XPath are commonly used when element names are unknown or do not matter[12]. 

 The containment labeling scheme is difficult to answer queries with wildcards in branching nodes. For 

example, consider an XPath: “//a/*/[b]/c”. where “*” denotes a wildcard symbol which can match any single 

element. The containment labels of a, b and c do not provide enough information to determine whether they 

match the query or not. This is because even if b and c are descendants of a and their level difference with a is 2, 

b and c may not be query answers, as they do not have the common parent. 

 
        (a) query  (b) containment         (c) Dewey ID 

Fig 6: wildcard query processing 

  
However,Dewey ID [77] labeling scheme can efficiently overcome the above two limitations. In DeweyID [6], 

each element is labelled by a vector to show the path from the root to this element. Fig 6(c) shows the example 
XML data with Dewey ID labeling scheme. From this figure, we see that b1(“1.1”) and c1(“2.1”) have not the 

same parent, for their prefixes are not the same (i.e. 1≠ 2). This example shows that unlike containment, the 

Dewey ID labeling scheme can provide path information and thus support the evaluation of queries with 

wildcards in branching nodes. 

 TJFast outputs one useless intermediate path and it is outputs the path solution for all nodes in query 

[9]. It does not produce the individual solution for each node when there are multiple return nodes in a query. 

TJFast cannot work with ordered restriction and negation function [9]. 

 
VI. Introduction to TreeMatch 

 Previous XML tree pattern matching algorithms do not fully exploit the “optimality” [9] of holistic 

algorithms. TwigStack guarantees that there is no useless intermediate result for queries with only AD 

relationships. Therefore, TwigStack is optimal for queries with only A-D edges. 

 Previous algorithms focus on XML tree pattern queries with only P-C and A-D relationships. Little 

work has been done on XML tree queries which may contain wildcards, negation function and order restriction, 

all of which are frequently used in XML query languages such as XPath and XQuery. In this analysis, we take 
an XML tree pattern with negation function, wildcards and/or order restriction as extended XML tree pattern. 

Fig 7, for example, shows four extended XML tree patterns. Query (a) includes a wildcard node “*”, which can 

match any single node in an XML database. Query (b) includes a negative edge, denoted by “¬”. This query 

finds A that has a child B, but has no child C. In XPath language [2], the semantic of negative edge can be 

presented with “not” Boolean function. Query (c) has the order restriction, which is equivalent to an XPath 

“//A/B[following-sibling::C]”. The “<” in a box shows that all children under A are ordered. The semantics of 

order-base tree pattern is captured by a mapping from the pattern nodes to nodes in an XML database such that 

the structural and ordered relationships are satisfied. Finally, Query (d) is more complicated, which contains 

wildcards, negation function and order restriction.  

  *   A   A   A 

            ¬ 

      A           B          B            C                        B            C                       B            * 
          ¬ 

 

       C                  D             E 

              (a) TQ1          (b) TQ2           (c) TQ3          (d) TQ4 

Fig 7: Example extended XML tree pattern queries. “ _” denotes the return node in query 

 

Xpath expressions: TQ1: //*[A]/B//C, TQ2://A[B][not (C)], TQ3://A/B[following-sibling::C] and 

       TQ4://A/B[following-sibling::*[not(D)]/E] 

        

 Based on the theoretical analysis, We studies a series of holistic algorithms with TreeMatch [9] to 

achieve a best performance of the tree pattern matching algorithms. 
 

< < 
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6.1 Analysis of TreeMatch 
 Now we go through Algorithm 1. Line 1 locates the first elements whose paths match the individual 

root-leaf path pattern. In each iteration, a leaf node fact is selected by getNext function (line 3). The purpose of 

line 4, 5 is to insert the potential matching elements to outputlist. Line 6 advances the list Tfact and line 7 updates 
the set encoding.  
Algorithm 1: Algorithm TreeMatch for class Q/,//,* 

 

1 locateMatchLabel(Q); 

2 while (¬end(root)) do 
3     fact= getNext(topBranchingNode); 

4     if (fact  is a return node) 

5         addToOutputList(N A B(fact ), cur(Tfact)); 

6     advance(Tfact); // read the next element in Tfact 

7     updateSet(fact); // update set-encoding 

8     locateMatchLabel(Q); //locate next element with 

    Matching path 

9    emptyAllSets(root); 

 Line 8 locates the next matching element to the individual path. Finally, when all data have been 

processed, we need to empty all sets in Procedure EmptyAllSets (Line 9) to guarantee the completeness of output 

solutions. 
 

Algorithm 2: Procedures and Functions in TreeMatch 
1 Procedure locateMatchLabel(Q) 

    1: for each leaf q Є Q, locate the extended Dewey 

         label eq in list Tq such that eq matches the 

         individual root-  leaf path 

   Procedure addToOutputList(q,eqi) 

    1: for each eq Є  Sq do 

    2:           if (satisfyTreePattern(eqi,eq)) 

    3:                   outputList(eq).add(eqi); 

  Function satisfyTreePattern(eqi,eq) 

    1: if (bitVector(eq,qi) = „1‟) return true; 

    2: else return false; 

  Procedure updateSet(q,e) 
    1: cleanSet(q,e); 

    2: add e to set Sq; //set the proper bitVector(e) 

    3: if (¬is Root(q) Λ (bitVector(e)=”1…1”)) 

 updateAncestorSet(q); 

   Procedure cleanSet(q,e) 

    1: for each element eq Є Sq do  

    2:       if (satisfyTreePattern(eq,e)) 
   3:             if (q is a return node) 

   4:                 addToOutputList( N A B(q),e); 

   5:             if (isTopBranching(q)) 

   6:                  if (there is only one element in Sq)  

   7:                  output all elements in outputList(eq); 

   8:                  else merge all elements in outputList(eq) 

            To outputList(ea), where ea=NAB(eq);  

   9: delete eq from set Sq; 

  Procedure updateAncestorSet(q) 

   1: /*Assume that q' = NAB(q)*/ 

   2: for each e Є Sq' do  

   3:       if (bitVector(e, q) = 0) 

   4:           bitVector(e, q) = 1; 

   5:           if (¬is Root(q) Λ (bitVector(e)=”1…1”)) 

   6:                       updateAncestorSet(q'); 
  Procedure emptyAllSets(q) 

   1: if (q is not a leaf node) 

   2:       for each child c of q do EmptyAllSets(c); 

   3: for each element e Є Sq do cleanSet(q,e); 
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In Procedure addToOutputList(q; eqi ), it add the potential query answer eqi to the set of Seq, where q is the  

nearest  ancestor branching  node of   qi (i.e. NAB(qi) = q). Procedure updateSet accomplishes three tasks. First, 

clean the sets according to the current scanned elements. Second, add e into set and calculate the proper 

bitVector.  

Finally, we need recursively update the ancestor set of e. Because of the insertion of e, the bitVector 

values of ancestors of q need update. 

 

 Algorithm getNext(see Algorithm 3) is the core function called in TreeMatch, in which we accomplish 
two tasks. For the first task to identify the next processed node, Algorithm getNext(n) returns a query leaf node f 

according to the following recursive criteria (i) if n is a leaf node, f=n(line 2); else (ii) n is a branching node, 

then suppose element ei matches node n in the corresponding path solution(if more than one element that 

matches n, ei is the deepest one by level)(line 7,8), we return fmin such that the current element emin in Tfmin has 

the minimal label in all ei by lexicographical order(line 13,20) For the second task of getNext, before an element 

eb is inserted to the set Sb, we ensure that eb is an ancestor (or parent) of each other element ebi to match node b 

in the corresponding path solutions (line 13). If there are more than one element to match the branching node b, 

ebi is defined as their deepest(i.e. maximal) element(line 8). 

 
Algorithm 3: getNext(n) 

 

1:  if (isLeaf(n)) then 

2:        return n 
3: else 

4:     for each ni Є NDB(n) do 

5:          fi = getNext(ni) 

6:          if ( isBranching(ni) Λ ¬empty(Sni ) ) 

7:                  return fi 

8:          else ei = max{p|p Є MB(ni, n)} 

 9:     end for 

10:    max = maxargi{ei} 

11:   for each ni Є NDB(n) do 

12:       if (Ve Є MB(ni, n) : e Є ancestors(emax)) 

13:            return fi; 
14:       endif 

15:     end for 

16:      min = minargi{fi|fi is not a return node} 

17:      for each e Є MB(nmin, n) 

18:         if (e Є ancestors(emax) ) updateSet(Sn, e) 

19:      end for 

20:       return fmin 

21:   end if 

 

Function MB(n; b) 

1:  if (isBranching(n)) then 

2:      Let e be the maximal element in set Sn 
3:  else 

4:      Let e = cur(Tn) 

5:  end if 

6: Return a set of element a that is an ancestor of e such 

    that a can match node b in the path solution of e to 

    path pattern pn 

 

Example : We use the query and document in Fig 8 to illustrate TreeMatch algorithm. Table 2 

demonstrates the current access elements, the sets encoding and the corresponding output elements. There are 

two branching nodes in the query. Firstly, B1, D1 and E1 are scanned. C1 and C2 are added into the set SC, but 

their bitVectors is “10” and “01”, which indicate that C1 and C2 have only one child respectively. In this 
scenario, recall that TJFast may output path solutions A1=A2=C1=D1 and A1=A2=C1=C2=E1, which might 

be useless to final results. Thus, our algorithm TreeMatch diminishes the unnecessary I/O cost. Next, E2 is 

scanned and the bitVector(C1) becomes “11” as C1 has two children now. Similarly, the bitVector(A1) is “11” 

too. In this moment, we guarantee that A1 matches the whole pattern tree, as all bits in bitVector(A1) is 1. 
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Finally, when B2 is scanned, A2 is added to set SA. Therefore, Treematch outputs two final results B1 and B2. 

Note that there are no useless nodes output here. 

 

      A     0 

      A1 

 
           B        C          0.0            0.1 

            B1             A2 

         D       E    

      0.1.0        0.1.2 

           B2     C1 

 

       0.1.2.0   0.1.2.1  0.1.2.2 

            D1        C2            E2 

 

       0.1.2.1.2 

            E1 

       (a) query     (b) data 
 

Fig 8: illustration to Algorithm TreeMatch for class Q/,//,* 

 

Through this example, we illustrates two differences between TJFast and TreeMatch. (1) TJFast 

outputs one useless intermediate path A1=A2=C1=C2=E1, but TreeMatch uses the bitVector encoding to solve 

this problem. (2) TJFast outputs the path solution for all nodes in query, but TreeMatch only outputs nodes for 

return nodes (i.e. node B in the query) to reduce I/O cost. 

    

Table 2: set encoding for the example in fig 8 

Current elements Set encoding SA Set encoding SC 

B1,D1,E1 <0,”10”,Ø> 
<0.1.2,”10”, Ø>, 

<0.1.2.1,”01”, Ø> 

B1,D1,E2 <0,”11”,”0.0”> 
<0.1.2,”11”, Ø>, 

<0.1.2.1,”01”, Ø> 

B2,D1,E2 
<0,”11”,”0.0”> 

<0.1,”11”,”0.1.0”> 
<0.1,”11”, Ø>, 

<0.1.2.1,”01”, Ø> 

 

6.2  Comparative analysis table of previous algorithms with TreeMatch 
Table 3: Summary of algorithm analysis 

Algorithms Labeling scheme Optimality Query Output list 

TwigStack Containment optimal in terms 

of output sizes 

and not optimal 

for PC 

Unordered Many useless 

intermediate results when 

queries contain P-C 

relationships 

OrderedTJ Containment Not a optimal Ordered much less intermediate 

results 

TJFast Extended Dewey Not fully optimal Unordered one useless intermediate 

path and it is outputs the 

path solution for all nodes 
in query 

TreeMatch Extended Dewey 

and bitvector 

Fully optimal Ordered restriction, 

Negation and 

wildcard 

No useless paths 

 Based on previous detailed discussions, table 3 illustrates the comparative analysis of previous tree 

pattern matching algorithms with TreeMatch with the key factors of labeling schemes, optimality, query and 

output list. 

 
VII.  Conclusion 

 In this paper, we proposed the problem of XML twig pattern matching and surveyed some recent works 

and algorithms. TreeMatch has an overall good performance in terms of labeling schemes, optimality, query 

processing, outputlist (table 3) and the ability to process extended XML tree patterns (twigs). The previous twig 
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pattern matching algorithms (TwigStack, OrderedTJ and TJFast ) requires more features than TreeMatch 

algorithm. TreeMatch to achieve such optimal query classes so, from this points we can say that TreeMatch twig 

pattern matching algorithm can answer complicated queries and has good performance. 
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