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Abstract : In this paper the proposed design, called bit-swapping LFSR (BS-LFSR), is composed of an LFSR 

and a 2 × 1 multiplexer. When used to generate test patterns for check-based built-in self-tests, it reduces the 

number of transitions that occur at the check-chain input during check shift operation by 50% when compared 

to those patterns produced by standard LFSR. Hence, it reduces the overall switching activity in the circuit 

under test during test applications. The BS-LFSR is combined with a check chain-ordering algorithm that 

orders the cells in a way that reduces the average and peak power (check and capture) in the test cycle or while 

checking out a response to a sign pattern analyzer. These techniques have a substantial effect on average- and 

peak-power reductions with negligible effect on fault coverage or test application time. Experimental results 

bench mark circuits show up to 65% and 55% reductions in average and peak power, respectively. 

Keywords: Built-in self-test (BIST), linear feedback shift register (LFSR), low-power test, pseudorandom 

pattern generator, scan-chain ordering,  

 

I.       INTRODUCTION 
        In recent years, the design for low power has become one of the greatest challenges in high-

performance very large scale integration (VLSI) design. As a consequence, many techniques have been 

introduced to minimize the power consumption of new VLSI systems. However, most of these methods focus 
on the power consumption during normal mode operation, while test mode operation has not normally been a 

predominant concern. However, it has been found that the power consumed during test mode operation is often 

much higher than during normal mode operation [1]. This is because most of the consumed power results from 

the switching activity in the nodes of the circuit under test (CUT), which is much higher during test mode than 

during normal mode operation [1]–[3].Several techniques that have been developed to reduce the peak and 

average power dissipated during scan-based tests can be found in [4] and [5]. A direct technique to reduce 

power consumption is by running the test at a slower frequency than that in normal mode. This technique of 

reducing power consumption, while easy to implement, significantly increases the test application time [6]. 

Furthermore, it fails in reducing peak-power consumption since it is independent of clock frequency. Another 

category of techniques used to reduce the power consumption in scan-based built-in self-tests (BISTs) is by 

using scan chain-ordering techniques [7]–[13]. These techniques aim to reduce the average-power consumption 

when scanning in test vectors and scanning out captured responses. Although these algorithms aim to reduce 
average-power consumption, they can reduce the peak power that may occur in the CUT during the scanning 

cycles, but not the capture power that may result during the test cycle (i.e., between launch and capture). The 

design of low-transition test-pattern generators (TPGs) is one of the most common and efficient techniques for 

low-power tests [14]–[20]. These algorithms modify the test vectors generated by the LFSR to get test vectors 

with a low number of transitions. The main drawback of these algorithms is that they aim only to reduce the 

average-power consumption while loading a new test vector, and they ignore the power consumption that results 

while scanning out the captured response or during the test cycle. Furthermore, some of these techniques may 

result in lower fault coverage and higher test application time. Other techniques to reduce average-power 

consumption during scan-based tests include scan segmentation into multiple scan chains [6], [21], test-

scheduling techniques [22], [23], static compaction techniques [24], and multiple scan chains with many scan 

enable inputs to activate one scan chain at a time [25]. The latter technique also reduces the peak power in the 
CUT.             

              On the other hand, in addition to the techniques mentioned earlier, there are some new approaches that 

aim to reduce peak-power consumption during tests, particularly the capture power in the test cycle. One of the 

common techniques for this purpose is to modify patterns using an X-filling technique to assign values to the 

don’t care bits of a deterministic set of test vectors in such a way as to reduce the peak power in the  test vectors 

that have a peak-power violation [26]–[29]. This paper presents a new TPG, called the bit-swapping linear 

feedback shift register (BS-LFSR), that is based on a simple bit swapping technique applied to the output 
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sequence of a conventional LFSR and designed using a conventional LFSR and a 2 × 1 multiplexer. The 

proposed BS-LFSR reduces the average and instantaneous weighted switching activity (WSA) during test 

operation by reducing the number of transitions in the scan input of the CUT. The BSLFSR is combined with a 

scan-chain-ordering algorithm that reduces the switching activity in both the test cycle (capture power) and the 

scanning cycles (scanning power). 

 

II.     Proposed Approach To Design The Bs-Lfsr 
The proposed BS-LFSR for test-per-scan BISTs is based upon some new observations concerning the 

number of transitions produced at the output of an LFSR. 

Definition: Two cells in an n-bit LFSR are considered to be adjacent if the output of one cell feeds the input of 

the second directly (i.e., without an intervening XOR gate). 

Lemma 1: Each cell in a maximal-length n-stage LFSR (internal or external) will produce a number of 

transitions equal to −1. After going through a sequence of . Clock cycles. 
Proof: The sequence of 1s and 0s that is followed by one bit 

position of a maximal-length LFSR is commonly referred to as an m-sequence. Each bit within the LFSR will 

follow the same m-sequence with a one-time-step delay. The m-sequence generated by an LFSR of length n has 

a periodicity of −1. It is a well-known standard property of an m-sequence of length n that the total number of 

runs of consecutive occurrences of the same binary digit is −1. [3], [30]. The beginning of each run is marked 

by a transition between 0 and 1; therefore, the total number of transitions for each stage of the LFSR is  −1. 
This lemma can be proved by using the toggle property of the XOR gates used in the feedback of the LFSR 

[32]. 

 
Fig. 1. Swapping arrangement for an LFSR. 

 

Lemma 2: Consider a maximal-length n-stage internal or external LFSR (n > 2). We choose one of the cells and 
swap its value with its adjacent cell if the current value of a third cell in the LFSR is 0 (or 1) and leave the cells 

unswapped if  

 
Fig. 2. External LFSR that implements the prime polynomial  + x + 1 and the proposed swapping 

arrangement. 

 

The third cell has a value of 1 (or 0). Fig. 1 shows this arrangement for an external LFSR (the same is 

valid for an internal LFSR). In this arrangement, the output of the two cells will have its transition count reduced 

by = transitions. Since the two cells originally produce 2 ×  transitions, then the resulting 

percentage saving is % = 25% [32]. 
            In Lemma 2, the total percentage of transition savings after swapping is 25% [31]. In the case where cell 

x is not directly linked to cell m or cell m+ 1 through an XOR gate, each of the cells has the same share of 

savings (i.e., 25%).   Lemmas 3–10 show the special cases where the cell that drives the selection line is linked 
to one of the swapped cells through an XOR gate. In these configurations, a single cell can save 50% transitions 

that were originally produced by an LFSR cell. Lemma 3 and its proof are given; other lemmas can be proved in 

the same way. 
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         Lemma 3: For an external n-bit maximal-length LFSR that implements the prime polynomial  + x + 1 as 

shown in Fig. 2, if the first two cells (  and ) have been chosen for swapping and cell n as a selection line, 

then  (the output of MUX2) will produce a total transition savings of  compared to the number of 

transitions produced by each LFSR cell, while  has no savings (i.e., the savings in transitions is concentrated 

in one multiplexer output, which means that  will save 50% of the original transitions produced by each LFSR 
cell). 

          Proof: There are eight possible combinations for the initial state of the cells , , and . If we then 
consider all possible values of the following state, we have two possible combinations (not eight, because the 

value of  in the next state is determined by the value of   in the present state; also, the value of  in the next 

state is determined by “   xor ” in the present state). Table I shows all possible and subsequent states. 
           It is important to note that the overall savings of 25% is not equally distributed between the outputs of the 

multiplexers as in Lemma 2.This is because the value of    in the present state will affect the value of  and its 

own value in the next state (  (Next) =    and   (Next) = “    xor  ”). To see the effect of each cell in 

transition savings, Table 1 shows that  will save one transition when moving from state (0,0,1)  to(1,0,0), from 
(0,1,1) to (1,0,0), from (1,0,1) to (0,1,0), or from (1,1,1) to (0,1,0). In the same time, o1 will increase one 

transition when moving from (0,1,0) to (0,0,0), from (0,1,0) to (0,0,1), from (1,0,0) to (1,1,0), or from (1,0,0) to 

(1,1,1). Since o1 increases the transitions in four possible scenarios and save transitions in other four scenarios, 

then it has a neutral overall effect because all the scenarios have the same probabilities. For , one transition is 
saved when moving from (0,1,0) to (0,0,0), from (0,1,0) to (0,0,1), from (0,1,1) to (1,0,0), from (1,0,0) to 

(1,1,0), from (1,0,0) to (1,1,1), or from (1,0,1) to (0,1,0). At the same time, one additional transition is incurred 

when moving from state (0,0,1) to (1,0,0) or from (1,1,1) to (0,1,0). This gives  an overall saving of one 
transition in four possible scenarios where the initial states has a probability of 1/8 and the final states of 

probability 1/2; 

 
Table 1: POSSIBLE AND SUBSEQUENT STATES FOR CELLS , , AND  (SEE FIG. 2) 

 

Hence,  P  save is given by 

Psave = 1/8 × 1/2 + 1/8 × 1/2 + 1/8 × 1/2 + 1/8 × 1/2 = 1/4. 

       If the LFSR is allowed to move through a complete cycle of  states, then Lemma 1 shows that the 

number of transitions expected to occur in the cell under consideration is . Using the swapping approach, in 

1/4 of the cases, a saving of one transition will occur, giving a total saving of 1/4 ×   = . Dividing one 

figure by the other, we see that the total number of transitions saved at  is 50%.  
        In the special configurations shown in Table 2 (i.e. Lemmas 3–10), if the cell that saves 50% of the 

transitions is connected to feed the scan-chain input, then it saves 50% of the transitions inside the scan chain 

cells, which directly reduces the average power and also the peak power that may result while scanning in a new 

test vector. 

          Table 3 shows that there are 104 LFSRs (internal and external) whose sizes lie in the range of 3–168 

stages that can be configured to satisfy one or more of the special cases in Table II to concentrate the  transition 
savings in one multiplexer output. 

                                                                                             



Peak- and Average-Power Reduction in Check-Based BIST by using Bit-Swapping LFSR and Check- 

www.iosrjournals.org                                                            39 | Page 

 
Table 2:SPECIAL CASES WHERE ONE CELL SAVES 50% OF THE TRANSITIONS 

 

 
Table 3: LFSRS THAT SATISFY ONE OR MORE OF LEMMAS 3–10 

 

III.      Important Properties Of The Bs-Lfsr 
There are some important features of the proposed BS-LFSR that make it equivalent to a conventional 

LFSR. The most important properties of the BS-LFSR are the following. 

       1) The proposed BS-LFSR generates the same number of 1s and 0s at the output of multiplexers after 

swapping of two adjacent cells; hence, the probabilities of having a 0 or 1 at a certain cell of the scan chain 

before applying the test vectors are equal. Hence, the proposed design retains an important feature of any 

random TPG. Furthermore, the output of the multiplexer depends on three different cells of the LFSR, each of 

which contains a pseudorandom value. Hence, the expected value at the output can also be considered to be a 
pseudorandom value. 

        2) If the BS-LFSR is used to generate test patterns for either test per- clock BIST or for the primary inputs 

of a scan-based sequential circuit (assuming that they are directly accessible) as shown in Fig. 3, then consider 

the case that will be swapped with  and  with , . . . ,  with  according to the value of  which 
is connected to the selection line of the multiplexers (see Fig. 3). In this case, we have the same exhaustive set 

of test vectors as would be generated by the conventional LFSR, but their order will be different and the overall 

transitions in the primary inputs of the CUT will be reduced by 25% [32]. 

 

IV.      Cell Reordering Algorithm 
              Although the proposed BS-LFSR can achieve good results in reducing the consumption of average 
power during test and also in minimizing the peak power that may result while scanning a new test vector, it 

cannot reduce the overall peak power because there are some components that occur while scanning out the 

captured response or while applying a test vector and capturing a response in the test cycle. To solve these 

problems, first, the proposed BS-LFSR has been combined with a cell-ordering algorithm presented in [11] that 

reduces the number of transitions in the check chain while checking out the captured response. This will reduce 

the  

 

 
Fig. 3. BS-LFSR can be used to generate exhaustive patterns for test-per clock BIST. 

 

overall average power and also the peak power that may arise while scanning out a captured response. The 

problem of the capture power (peak power in the test cycle) will be solved by using a novel algorithm that will 
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reorder some cells in the scan chain in such a way that minimizes the Hamming distance between the applied 

test vector and the captured response in the test cycle, hence reducing the test cycle peak power (capture power). 

In this scan-chain-ordering algorithm, some cells of the ordered scan chain using the algorithm in [11] will be 

reordered again in order to reduce the peak power which may result during the test cycle. This phase mainly 

depends on an important property of the BS-LFSR. This property states that, if two cells are connected with 

each other, then the probability that they have the same value at any clock cycle is 0.75. (In a conventional 
LFSR where the transition probability is 0.5, two adjacent cells will have the same value in 50% of the clocks 

and different values in 50% of the clocks; for a BS-LFSR that reduces the number of transition of an LFSR by 

50%, the transition probability is 0.25, and hence, two adjacent cells will have the same value in 75% of the 

clock cycles.) Thus, for two connected cells (cells j and k), if we apply a sufficient number of test vectors to the 

CUT, then the values of cells j and k are similar in 75% of the applied vectors. Hence, assume that we have cell 

x which is a function of cells y and z. If the value that cell x will have in the captured response is the same as its 

value in the applied test vector (i.e., no transition will happen for this cell in the test cycle) in the majority of 

cases where cells y and z have the same value, then we connect cells y and z together on the scan chain, since 

they will have the same value in 75% of the cases. This reduces the possibility that cell x will undergo a 

transition in the test cycle. The steps in this algorithm are as follows. 

1) Simulate the CUT for the test patterns generated by the BS-LFSR. 

2) Identify the group of vectors and responses that violate the peak power. 
3) In these vectors, identify the cells that mostly change their values in the test cycle and cause the peak-power 

violation. 

4) For each cell found in step 3), identify the cells that play the key role in the value of this cell in the test cycle. 

 5) If it is found that, when two cells have a similar value in the applied test vector, the concerned cell will most 

probably have no transition in the test cycle, then connect these cells together. If it is found that, when two cells 

have a different value, the cell under consideration will most probably have no transitions in the test cycle, then 

connect these cells together through an inverter. 

    It is important to note that this phase of ordering is done when necessary only, as stated in step 2 of the 

algorithm description that the group of test vectors that violates the peak power should be identified first. Hence, 

if no vector violates the peak power, then this phase will. not be done. In the worst case, this phase is performed 

in few subsets of the cells. This is because, if this phase of ordering is done in all cells of the scan chain, then it 
will destroy the effect of algorithm found in [11] and will substantially increase the computation time. 

 

 
Table 4: TEST LENGTH NEEDED TO GET TARGET FAULT COVERAGE FOR LFSR AND BS-LFSR 

 

 
Table 5: EXPERIMENTAL RESULTS OF AVERAGE- AND PEAK-POWER REDUCTION OBTAINED BY 

USING THE PROPOSED TECHNIQUES 
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V.       Experimental Results 
           A group of experiments was performed on full-scan ISCAS’89 benchmark circuits. In the first set of 

experiments, the BS-LFSR is evaluated regarding the length of the test sequence needed to achieve a certain 

fault coverage with and without the scan-chain-ordering algorithm. Table 4 shows the results for a set of ten 
benchmark circuits. The columns labeled n, m, and PI refer to the sizes of the LFSR, the number of flip-flops in 

the scan chain, and the number of primary inputs of the CUT, respectively. The column labeled RF indicates the 

percentage of redundant faults in the CUT, and fault coverage (FC) indicates the target fault coverage where 

redundant faults are included. The last four columns show the test length needed by a deterministic test (i.e., the 

optimal test vector set is stored in a ROM), a conventional LFSR, a BS-LFSR with no scan-chain ordering, and 

the BS-LFSR with scan-chain ordering, respectively. The results in Table 4 show that the BS-LFSR needs a 

shorter test length than a conventional LFSR for many circuits even without using the check chain-ordering 

algorithm. It also shows that using the scan-chain ordering algorithm with BS-LFSR will shorten the required 

test length. The second set of experiments is used to evaluate the BS-LFSR together with the proposed scan-

chain-ordering algorithm in reducing average and peak power. For each benchmark circuit, the same numbers of 

conventional LFSR and BS-LFSR patterns are applied to the full scan configuration. Table 5 shows the obtained 
results for the same benchmark circuits as in Table 4. The column labeled test length (TL) refers to the number 

of test vectors applied to the CUT. The next three columns show the FC, average WSA per clock cycle 

(WSAavg), and the maximum WSA in a clock cycle (WSApeak) for patterns applied using the conventional 

LFSR. The next three columns show FC, WSAavg, and WSApeak for the BS-LFSR with ordered scan chain. 

Finally, the last two columns show the savings in average and peak power by using the BS-LFSR with the scan-

chain-ordering algorithm. 

      In order to provide a comparison with the techniques published previously by other authors, Table 6 

compares the results obtained in [15]. 

 

                                        
Table 6: COMPARISON WITH RESULTS OBTAINED IN [15] 

                                                                                       

 
Table7: COMPARISON OF PEAK-POWER REDUCTIONS WITH RESULTS IN [25] 

 

           Table 6 compares the TL, FC, and average-power reduction (WSAavg). It is clear that the proposed 

method is much better for most of the circuits, not only in average-power reduction but also in the test length 

needed to obtain good fault coverage. Finally, Table 7 compares the results obtained by the proposed technique 

for peak-power reduction with those obtained in [25]. It is clear from the table that the proposed method has 

better results for most of the benchmark circuits. 

 

VI.      Conclusion 
                A low-transition TPG that is based on some observations about transition counts at the output 

sequence of LFSRs has been presented. The proposed TPG is used to generate test vectors for test-per check 

BISTs in order to reduce the switching activity while scanning test vectors into the scan chain. Furthermore, a 

novel algorithm for scan-chain ordering has been presented. When the BS-LFSR is used together with the 

proposed scan-chain-ordering algorithm, the average and peak powers are substantially reduced. The effect of 

the proposed design in the fault coverage, test-application time, and hardware area overhead is negligible. 

Comparisons between the proposed design and other previously published methods show that the proposed 

design can achieve better results for most tested benchmark circuits. 
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