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 Abstract : Finding meaningful patterns and useful trends in large datasets has attracted considerable interest 

recently, and one of the most widely studied problems in this area is the identification and formation of clusters, 

or densely populated regions in a dataset. Prior work does not adequately address the problem of large datasets 

and minimization of I/O costs.  The objective of this paper is to present a Triangle-density based clustering 

technique, which we have named as TDCT, for efficient clustering of spatial data. This algorithm is capable of 

identifying embedded clusters of arbitrary shapes as well as multi-density clusters over large spatial datasets. 

The Polygon approach is being used to perform the clustering where the number of points inside a triangle 

(triangle density) of a polygon is calculated using barycentric formulae. This is because of the fact that 

partitioning of the data set can be performed more efficiently in triangular shape than in any other polygonal 

shape due to its smaller space dimension. The ratio of number of points between two triangles can be found out 

which forms the basis of nested clustering. Experimental results are reported to establish the superiority of the 

technique in terms of cluster quality and complexity.  

Keywords: Clustering, Density- based, Density Confidence, Polygon approach, Triangle-density.  
 

I. INTRODUCTION 
In this paper, the technique of data clustering has been examined, which is a particular kind of data mining 

problem. The process of grouping a set of physical or abstract objects into classes of similar objects is called 

clustering. A cluster is a collection of data objects that are similar to one another within the same cluster and are 

dissimilar to the objects in other clusters [1]. Given a large set of data points (data objects); the data space is 

usually not uniformly occupied. Data Clustering identifies the sparse and the crowded places, and hence 

discovers the overall distribution patterns of the data set. Besides, the derived clusters can be visualized more 

efficiently and effectively than the original dataset. Mining knowledge from large amounts of spatial data is 

known as spatial data mining. It becomes a highly demanding field because huge amounts of spatial data have 

been collected in various applications ranging from geo-spatial data to bio-medical knowledge. The amount of 

spatial data being collected is increasing exponentially and has far exceeded human’s ability to analyze them. 

Recently, clustering has been recognized as a primary data mining method for knowledge discovery in spatial 

database. The development of clustering algorithms has received a lot of attention in the last few years and new 
clustering algorithms are proposed.  

 
Figure 1- Formation of clusters 

 

Major clustering techniques have been classified into partitional, hierarchical, density-based, grid-based and 
model-based. Among these techniques, the density-based approach is famous for its capability of discovering 

arbitrary shaped clusters of good quality even in noisy datasets [2]. Density Based Spatial Clustering of 

Applications with Noise (DBSCAN) and Ordering Points to Identify the Clustering Structure (OPTICS) are two 

of the most popular density based clustering algorithms. In density-based clustering algorithms, a cluster is 

defined as a high-density region partitioned by low-density regions in data space. They can find out the clusters 

of different shapes and sizes from the large amount of data containing noise and outliers. Fig. 1 depicts the 

formation of clusters of similar data. This project, which is primarily motivated by Density Based Clustering, 

aims at proposing a new density based clustering technique for efficient clustering of spatial data. The rest of the 

paper is organized as follows. Section 2 provides a selected literary review on density based, grid based and 

other multi-density as well as variable density data clustering techniques. Section 3 illustrates the background of 

the proposed work and section 4 gives the final proposed algorithm. In section 5, we present the experimental 

results and the performance analysis of the work following the complexity analysis in section 6. Lastly, we 
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conclude with a summary and conclusion in section 7. Section 8 acknowledges the organizations that guided us 

through this research.   
 

II. RELATED WORKS 
This section portrays a selected literary review on some of the previous works in this field specially some 

relevant density based as well as grid based clustering techniques. 

A. Density Based Approach: Most partitioning methods cluster objects based on the distance between the 

objects. Such methods can find only spherical-shaped clusters and encounter difficulty at discovering clusters of 

arbitrary shapes. Other clustering methods have been developed based on the notion of the density. Their 
general idea is to continue growing the given cluster as long as the density (number of objects or data points) in 

the neighborhood exceeds some threshold; that is for each data point within a given cluster, the neighborhood of 

a given radius has to contain at least a minimum number of points. Such a method can be used to filter out noise 

(outliers) and discover clusters of arbitrary shape. To discover clusters with arbitrary shape, density based 

clustering methods have been developed. These typically regard clusters as dense regions of objects in the data 

space that are separated by regions of low density. DBSCAN [2] grow clusters according to a density-based 

connectivity analysis. OPTICS extends DBSCAN [2] to produce a cluster ordering obtained from a wide range 

of parameter settings. The idea behind density based clustering approach is that the density of points within a 

cluster is higher as compared to those outside of it. DBSCAN [2] is a density based clustering algorithm capable 

of discovering clusters of various shapes even in presence of noise. The key idea of DBSCAN is that for each 

point of a cluster, the neighborhood of a given radius (ε) has to contain at least a minimum number of points and 
the density in the neighborhood has to exceed some threshold. It is efficient for large spatial databases but, for 

massive datasets, it becomes very time consuming, even if the use of R* tree is made. Another drawback of 

DBSCAN is that due to the use of the global density parameters, it fails to detect embedded or nested clusters. 

B. Grid Based Approach: Grid-based methods quantize the object space into a finite number of cells that form a 

grid structure. All of the clustering operations are performed on the grid structure. The main advantage of this 

approach is its fast-processing time, which is independent of the number of data objects and dependent only on 

the number of cells in each dimension in the quantized space. There is high probability that all data points that 

fall into the same grid cell belong to the same cluster. Therefore all data points belonging to the same cell can be 

aggregated and treated as one object [3]. It is due to this nature that grid-based clustering algorithms are 

computationally efficient which depends on the number of cells in each dimension in the quantized space. It has 

many advantages such as the total number of the grid cells is independent of the number of data points and is 

insensitive ofthe order of input data points. Some of the popular grid-based clustering techniques are STING [4], 
WaveCluster [5],CLIQUE [6], pMAFIA [7] etc. STING [4] uses a multi resolution approach to perform cluster 

analysis. Theadvantage of STING is that it is query-independent and easyto parallelize. However the shapes of 

clusters have horizontalor vertical boundaries but no diagonal boundary is detected. WaveCluster [5] also uses a 

multidimensional grid structure. Ithelps in detecting clusters of data at varying levels of accuracy. It 

automatically removes outliers and is very fast. However, it is not suitable for high dimensional data 

sets.CLIQUE [6] is a hybrid clustering method that combines theidea of both density-based and grid-based 

approaches. Itautomatically finds subspaces of the highest dimensionality and is insensitive to the order of 

input.Moreover, it has goodscalability as the number of dimensions in the data increases.However, the accuracy 

of the clustering result may bedegraded at the expense of simplicity of the method. pMAFIA[7] is an optimized 

and improved version of CLIQUE. It usesthe concept of adaptive grids for detecting the clusters. Itscales 

exponentially to the dimension of the cluster of the highest dimension in the data set. 
C. Clustering Over Multi Density Data Space: One of the main applications of clustering spatial databases is to 

find clusters of spatial objects which are close to each other. Most traditional clustering algorithms try to 

discover clusters of arbitrary densities, shapes and sizes. Very few clustering algorithms show preferable 

efficiency when clustering multi-density datasets. This is also because small clusters with small number of 

points in a local area are possible to be missed by a global density threshold. Some clustering algorithms that 

can cluster on multi-density datasets are Chameleon [8], SNN [9] (shared nearest neighbor), and the multi-stage 

density-isoline algorithm and so on. Chameleon [8] can handle multi-density datasets, but for large datasets the 

time complexity is too high. SNN [9] algorithm can find clusters of varying shapes, sizes and densities and can 

also handle multi-density dataset. The disadvantage of SNN is that the degree of precision is low on the multi-

density clustering and finding outliers. The multi-stage density-isoline algorithm [10] clusters datasets by the 

multi-stage way and the idea of density-isoline. The disadvantage of the algorithm is that each cluster cannot be 

separated efficiently. DGCL [11] is based on density-grid based clustering approach. But, since it uses a uniform 
density threshold it causes the low density clusters to be lost. 

D. Clustering Over Variable Density Space: Most of the real life datasets have a skewed distribution and may 

also contain nested cluster structures the discovery of which is very difficult. Therefore, we discuss two density 

based approaches, OPTICS [12] and EnDBSCAN [13], which attempt to handle the datasets with variable 

density successfully. OPTICS can identify embedded clusters over varying density space. However, its 
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execution time performance degrades in case of large datasets with variable density space and it cannot detect 

nested cluster structures successfully over massive datasets. In EnDBSCAN [13], an attempt is made to detect 

embedded or nested clusters using an integrated approach. Based on our experimental analysis in light of very 

large synthetic datasets, it has been observed that EnDBSCAN can detect embedded clusters; however, with the 

increase in the volume of data, the performance of it also degrades. EnDBSCAN is highly sensitive to the 

parameters MinPts and ε. In addition to the above mentioned parameters, OPTICS requires an additional 

parameter i.e. ε' 

Based on our selected survey and experimental analysis, it has been observed that: 

1) Density based approach is most suitable for quality cluster detection over massive datasets. 

2) Grid based approach is suitable for fast processing of large datasets. 

3) Almost all clustering algorithms require input parameters, accurate determination of which are very difficult, 

especially for real world data sets containing high dimensional objects. Moreover, the algorithms are highly 

sensitive to those parameters. 

4) None of the techniques discussed above, is capable in handling multi-density datasets as well as multiple 

intrinsic or nested clusters over massive datasets qualitatively. 

E. Motivation: Most partitioning methods cluster objects based on the distance between them. Such methods 

can find only spherical-shaped clusters and encounter difficulty at discovering clusters of arbitrary shapes. So 

other clustering methods have been developed based on the notion of density. The general idea is to continue 
growing the given cluster as long as the density (number of objects or data points) in the “neighborhood” 

exceeds some threshold; this is, for each data point within a given cluster, the neighborhood of a given radius 

has to contain at least a minimum number of points. Such a method can be used to filter out noise (outliers) and 

discover cluster of arbitrary shapes. These typically regard clusters as dense regions of objects in the data space 

that are separated by regions of low density (representing noise). DBSCAN grow regions with sufficiently high 

density into clusters and discover clusters of arbitrary shape in spatial database with noise according to a 

density-based connectivity analysis. It defines a cluster as a maximal set of density-connected points.  

The major drawback in such clustering approaches is the processing time. The time to scan the whole database 

and cluster accordingly is a major area of concern. This project is motivated by the density-based clustering 

approaches to discover nested clusters and clusters of arbitrary shapes. Fig. 2 displays a Nested cluster and a 

Multi-density cluster.  The basic idea is to reduce the processing time and enhance the efficiency henceforth. For 

the fulfillment of the requirements of the undertaken research the sampling technique is proposed. It is used as a 
data reduction technique because it allows a large data set to be represented by a much smaller random sample 

(or subset) of the data. An advantage of sampling for data reduction is that the cost of obtaining a sample is 

proportional to the size of the sample, as opposed to the whole data set size. Other data reduction techniques can 

require at least one complete pass through. Sampling is a natural choice for progressive refinement of a reduced 

data set. Such a set can be further refined by simply increasing the sample size. This technique of clustering can 

be efficiently used in a spatial database, where we can choose to define clusters geographically based on how 

closely different areas are located. Better cluster quality and more acceptable complexity are the major features 

of the proposed approach.      

 

 
Figure 2- Nested clusters, Multi-density Clusters 

 

III. THEORITICAL BACKGROUND OF THE PROPOSED WORK 
The distribution of data in a data set is not uniform in general. Some portions of the data space are highly dense 

while some portions are sparse. The problem associated here is efficient clustering of spatial data points to 

discover nested clusters and clusters of arbitrary shapes using density based clustering technique. 

A. Definitions: 

Here, we introduce some definitions which are used in the proposed algorithm: 

Definition 1 Triangle Density: The number of spatial point objects within a particular triangle of a particular 

polygon (octagon). 

Definition 2 Useful Triangle: Only those triangles which are populated i.e., which contain data points will be 

treated as useful triangle. 

Definition 3 Neighbor Triangle: Those triangles which have a common edge (edge neighbors) to the current 

triangle are the neighbors of the current triangle. Fig. 3 shows the neighbor triangles (in grey shade) of the 

current triangle 1. 
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Figure. 3- Neighbor triangles (shaded in gray) of the triangle 1 

 

Definition 4 Density Confidence of a triangle: If the ratio of the densities of the current triangle and one of its 

neighbors is greater than β (user’s input) then the two triangles can be merged into the same cluster. Therefore 

the following condition should be satisfied: β ≤ dn (TP1) / dn (Tp2) where dn represents the density of the 

particular triangle. 

Definition 5 Reachability of a triangle: A triangle p is reachable from a triangle q if p is a neighbor triangle of q 

and triangle p satisfies the density confidence condition w.r.t. triangle q. 

Definition 6 Neighbor Polygon: Those polygons (in our case octagons) which are formed from classified data 

points (points which lie in merged triangles) of the current polygon as its center are called as neighbor polygons 

of the current polygon. Fig. 4 shows a neighbor polygon 2 of polygon 1.  

 
Figure 4- Neighbor polygon 2 of polygon 1 

 

Definition 7 Reachability of a polygon: A polygon 2 is reachable from polygon 1 if 2 is neighbor polygon of 1.  

Definition 8 Cluster: A cluster is defined to be the set of points belonging to the set of reachable triangles and 

polygons. A cluster C is a non-empty subset satisfying the following conditions,  

For all u, v: if u belongs to C and v is reachable from u then v belongs to C where u and v are polygons 

(octagon) and, 

For each u, v belonging to C, for all p and q that belongs to u or v and p belongs to C and q is reachable from p 

w.r.t. β then q also belongs to C, where p,q are triangles of an octagon . Triangle-reachable relation follows 

symmetric and transitive property within a octagon of an cluster C. 

Definition 9 Noise: Noise is simply the set of points belonging to the octagons (or triangles) not belonging to 

any of its clusters. Let C1, C2, ....C3 be the clusters w.r.t. β, then noise = {no_ p| p belongs to dataset, for all i no_ 
p does not belong to C where no_ p is the set of points in triangle p or polygon u and Ci (i=1,..., k). 

B. Density Confidence: The density confidence for a given set of triangles reflects the general trend and 

distribution of the data points of that set. If the density of one triangle varies greatly from the others it will not 

be included in the set. If the density confidence of a current triangle with one of its neighbor triangle does not 

satisfy the density confidence condition than that neighbor triangle is not included into the currently considered 

dense area. On the contrary, if it satisfies the condition than we treat the neighbor triangle as a part of the 

considered dense area and merge the triangle with the dense area. In comparison to other methods of setting a 

global threshold, this method has the ability to recognize the local dense areas in the data space where multi-

density clusters exist. 

With correspondence to the above definitions, three lemmas are stated: 

Lemma 1: Let C be a cluster w.r.t. β and let u be any polygon in C and p be any triangle in u. Then C can be defined 

as a set, S= {s and st  |    s is polygon-reachable from u and st   is triangle-reachable from p  w.r.t. β within every u of C}   

Proof: Suppose T is a triangle, where T belongs to st  and T is not triangle-reachable from p w.r.t.  β or G is an 

octagon, where G belongs to s and G is not polygon-reachable from u. But, a cluster according to Def. 8 will be 

the set of points which are triangle-reachable from p and polygon-reachable from u. Therefore, we come to a 

contradiction and hence the proof. 

Lemma 2: A triangle of a polygon or a polygon corresponding to noise points is not triangle-reachable or polygon-

reachable from any of the clusters respectively. For a triangle p we have, all p: p is not reachable from any triangle in 

C i.e. p does not belong to C and for a polygon u we have, all u: u is not reachable from any polygon in C i.e. u does 

not belong to C. 

Proof: Suppose, C be a cluster w.r.t. β and let p be a triangle of an octagon corresponding to noise points and u be any 

polygon corresponding to noise points. Let p be triangle-reachable from C, then p belongs to C. and u be polygon-

reachable from C, then u belongs to C. But, this violates the Def. 9 that noise points are belonging to triangles or 

octagons that are not triangle-reachable or polygon-reachable from any of the clusters respectively. Therefore, we 
come to the conclusion that p is not reachable from any triangle in C and u is not reachable from any octagon in C. 

Lemma 3: A triangle T or a polygon G can be triangle-reachable and polygon-reachable from only a single unique 

cluster. 

Proof: Let C1 and C2 are two clusters w.r.t. β and let p be any triangle and u be any polygon in C1 and q  is any 

triangle and v is any polygon in C2. Suppose a triangle T is triangle-reachable from both p and q or a polygon G is 
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polygon-reachable from both u and v, then T belongs to C1 and T belongs to C2 or G belongs to C1 and G belongs to 
C2 . This will mean that the clusters C1 and C2 should be merged. This violates the basic notion that clusters are unique 

sets. Thus, we can conclude that if T is triangle-reachable from p w.r.t. β, T is not triangle-reachable from q w.r.t. β 

and if G is polygon-reachable from u, then G is not polygon-reachable from v, i.e. T belongs to C1 and T does 

not belong to C2 or G belongs to C1 and G does not belong to C2. Therefore the lemma has been proved.  
 

IV.      THE PROPOSED ALGORITHM 
There are functional components like creating the polygon, finding the number of points in each triangle of a 

polygon (density), identify the maximum dense triangle, traversal of neighboring triangles, merging two 

triangles and finding the farthest point of each merged triangle that are needed to be implemented to give out 

quality clusters . 

A. Creating A Polygon: Since we are using the polygon approach, we need a data point as a center of the 

polygon. Any arbitrary unclassified point can be used to start with. Here, we are using an octagon to serve our 

purpose. Thus we have eight equal triangles after sub-division of the regular octagon. By increasing the number 
of sides of the polygon from eight to higher we can have higher number of triangular sub-divisions that can lead 

to more accurate clustering.  The octagon is formed by creating eight equal triangles from a point and an initial 

radius. This initial radius is called the Epsilon Distance, ε given as an input parameter by the user. Fig. 5 shows 

the octagon formed with ε as radius and any arbitrary unclassified point as center. All the vertices of the 

triangles are calculated at a ε-distance from the center point using trigonometric formulas. The found vertices 

are joined from the center using straight lines. Lastly the vertices are joined with one another using straight lines 

and this goes on iteratively till all the triangles are formed and joined to form the final octagon. 

 
Figure 5-Polygon (octagon) created with neighborhood radius as ε 

 

B. Compute Density Of Each Triangle: The total number of points in each triangle is its density (triangle 

density). To compute the density we need to find the location of a point wrt the triangles. It is required to 

identify the points lying inside a triangle. For this purpose the barycentric formulae [17] are used. Using these 

formulae we find the number of points lying in each triangle and hence find the density of each triangle. Each 

triangle is given an identifier in numbers (1, 2, 3…..., 8). Points are also given identifiers corresponding to 
which triangle they lie in. Only useful triangles are used for merging.  Fig. 6 given below shows the above stated 

case. 

 
Figure 6- Density of each triangle of the octagon 

 

C. Identify The Maximum Dense Triangle: We will require the densest triangle from the octagon to start with. 

This is because of the fact that consideration of any other dense triangle other than the maximum dense triangle 

will result in merging of two clusters with different density. This is obtained by counting the number of points in 

each triangle and comparing them with each other. This gives out the densest triangle. This is required to start 

the traversal of neighboring triangles. Fig.  7 portrays this case. 

 
Figure 7- Finding the maximum dense triangle 

 

D. Traversal Of Neighboring Triangles: Starting from the densest triangle we traverse the neighboring 

triangles in both directions. First we can start in clockwise direction and when completed we may go in anti-
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clockwise direction. The basic purpose of traversing is to find the ratio between two adjacent triangles which 

share the same edge among them (neighbor triangles). Fig. 8 given below shows the possible ways of traversal.  

 
Figure 8- Traversal of neighbor triangles from maximum dense triangle 

 

E. Merging Two Triangles: A triangle can be merged with its neighbor triangle if the ratio of densities between 

them is greater than a threshold set by the user i.e. the triangle satisfies the density confidence condition w.r.t its 

neighbor. Thus these reachable triangles can be considered as the same cluster. This process is performed 

iteratively till no more triangles of an octagon can be merged in either direction. Fig. 9 shows a case in which 

two neighboring triangles are merged into one cluster satisfying the density confidence condition.   

 
Figure 9- Merging of triangles (in light grey) if density confidence is fulfilled 

 

However, two cases can be considered with regard to density confidence of a triangle 

Case  1: If TP1 &  TP2 are two triangles of a polygon such that dn (TP1) > dn (TP2), where dn represents the density 

of a particular triangle, then  : β ≥ dn (TP1) / dn (Tp2) and  β is set any value in the interval [2.5,1.43] which is 

found after rigorous experimentation. 

Case 2: If TP1 &  TP2 are two triangles of a polygon such that dn (TP1) < dn (TP2), where dn represents the density 
of a particular triangle, then  : β ≤ dn (TP1) / dn (Tp2) and  β is set any value in the interval [0.4,0.7] which is 

found after rigorous experimentation. 

F. Finding The Farthest Points From Each Merged Triangle: Now we are to proceed to the next polygon for 

clustering. For this we need the next data point to be considered as the center point. This point can be taken from 

the farthest points of the merged triangles of the current polygon (bordering points). We find the farthest point 

of each merged triangle of the octagon. This can be done by finding the distance of all the points of the triangle 

from the octagon center using distance formulae. Hence, the points for which the distances are the maximum are 
the farthest points. Then we take one of them as our next center and continue. This goes on iteratively till we 

create octagons with all unclassified farthest points of merged triangles. After this, in 7 we repeat 2 through 6 till 

we can classify no more and we henceforth assign cluster_id to the cluster obtained. Then we repeat step 1 

through 7 till the whole data set is classified and all clusters are formed. Fig. 10 visualizes the above mentioned 

stage.          

 
Figure 10- Formation of the next octagon (in blue) from one of the farthest points (in green) 

Procedure of TDCT: 

The execution of the proposed algorithm includes the following steps:  

1. Creating the octagon taking an arbitrary unclassified point as center and epsilon distance (ε) as radius. 

2. Compute the number of points in each triangle of an octagon (density). 

3. Identify the maximum dense triangle of the octagon. 

4. Traverse the neighboring triangles starting from the dense triangle in both directions and finding the   

ratio between two triangles w.r.t points in them. 
5. Merging two triangles if ratio is greater than a certain threshold (β) and mark them as classified. 

6. Find the farthest points of the merged triangles and creating the next octagon out of them. 

7. Repeat step 2 through 7 till we can classify no more into a cluster and assign cluster_id. 

8. Repeat step 1 through 8 till whole dataset is classified and all clusters are formed. 

 



A Density Based Clustering Technique For Large Spatial Data Using Polygon Approach 

www.iosrjournals.org                                                              7 | Page 

a) b) 

             
Figure 11(a) & 11(b) - Application of polygon approach in dataset 

 

V.    Results and performance analysis 
To evaluate the technique in terms of quality of clustering, the algorithm was also applied on the 

Chameleon t4.8k.dat, t5.8k.dat, t8.8k.dat and t7.10k.dat datasets [9]. Fig. 12(a),12(b),12(c) & 12(d) shows the 

result of clustering in Chameleon t4.8k.dat, t7.10k.dat, t8.8k.dat and t5.8k.dat datasets respectively. The results 

obtained are shown in Fig. 15(a) and 15(b) respectively. From our rigorous experiments it has been found that 

the clustering result is dependent on the threshold β which varies in the interval [0.4, 0.7]. The epsilon distance ε 

is set between 2.8 to 4 for optimized results. 

                              a)                                b) 

c) d)  

     
Figure 12(a),12(b),12(c) & 12(d)- Chameleon t4.8k.dat, t7.10k.dat, t8.8k.dat and t5.8k.dat datasets respectively  

 
From the experimental results given above, we can conclude that TDCT is highly capable of detecting 

intrinsic as well as multi-density clusters qualitatively. However, using the idea of grid-based clustering along 

with TDCT can result in more accurate results which is again a future scope of research. 

VI. COMPLEXITY ANALYSIS 
The partitioning of the neighborhood of an arbitrary data point into a polygon containing m non-overlapping 

triangles result in a complexity of O(m). Finding of the densest triangle among m triangles within a polygon 

requires O(m). The expansion of the cluster results in O(N*m) time complexity, where N is the number of data 

points in  the cluster formed and m << N in the average case. If the number of clusters obtained is nc then, the 

overall time complexity for the clustering will be O(nc  2*m*N). 

Algorithms No. of 

Parameters 

Optimized 

for 

Structure Multi-

Density 

Cluster 

Embedded 

Clusters 

Complexity Noise 

Handling 

K-means No. of 

clusters 

Separated 

Clusters 

Spherical No No O(ltkN) No 

K-modes No. of 

clusters 

Separated 

Clusters, 

Large 

Datasets  

Spherical No No O(ltkN) No 

PAM No. of 

clusters 

Separated 

Clusters, 

Large 

Datasets 

Spherical No No O(ltk(N-k)
2
) No 
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CLARA No. of 

clusters 

Relatively 

Large 

Datasets 

  

Sph

eric

al 

      No 

 

No 

 

O(ksz2+k( N-k)) No 

CLARANS No. of 

clusters, 

Max no. of 

neighbors 

Better than 

PAM, 

CLARA 

 Spherical No No O(kN2
) No 

BIRCH Branching 

Factor, 

Diameter, 

Threshold 

Large data Spherical No No O(N) Yes 

ROCK No. of 

clusters 

Small noisy 

data 

Arbitrary No No O(N2
+Nmmma+N2logN) Yes 

CHAMELEON 3(k-nearest 

neighbors, 

MIN-SIZE, 

αc
) 

Small 

datasets 

Arbitrary Yes No O(N2
) Yes 

DBSCAN 2(MinPts, 

ε) 

Large 

datasets 

Arbitrary No No O(N log N) using R* 

tree 

Yes 

OPTICS 3(MinPts, ε, 

ε') 

Large 

datasets 

Arbitrary Yes Yes O(N log N) using R*
 

tree 

Yes 

DENCLUE 2(MinPts, 

ε) 

Large 

datasets 

Arbitrary No No O(N log N) using R* 

tree 

Yes 

Wave  Cluster No. of cells 

for each 

dimension, 

No. of 

applications 

of 

transform 

Any Shape, 

Large Data 

Any Yes No O(N) Yes 

STING No. of cells 

in lowest 

level, No. 

of objects in 

cell 

Large 

spatial 

datasets 

Vertical 

and 

horizontal 

boundary 

No No O(N) Yes 

CLIQUE Size of the 

grid, 

minimum 

no. of 

points in 

each grid 

cell 

High 

dimensional, 

Large 

datasets 

Arbitrary No No O(N) Yes 

MAFIA Size of the 

grid, 

minimum 

no. of 

points in 

each grid 

cell 

High 

dimensional, 

Large 

datasets 

Arbitrary No No O(ckl
) Yes 

GDCT 2 (n, β) Large 

datasets 

Arbitrary Yes Yes O(N) Yes 
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TDCT 2(ε, β) 
 

Large 

datasets 

Arbitrary Yes Yes O(nc  2*m*N) Yes 

Table 1: Comparison of the Proposed Algorithm (TDCT) with its counterparts 

DBSCAN requires two input parameters MinPts and β. Moreover, it cannot detect embedded clusters. 

OPTICS on the other hand, requires three input parameters MinPts, ε and ε'. But, it can detect embedded 
clusters. However, its performance degrades while detecting multiple nested clusters over massive datasets. 

Again, GDLC and Density-isoline algorithms can detect multi-density clusters but fail to detect intrinsic cluster 

structures. GDCT [14] requires the number of grid cells, i.e. n and threshold β as input parameters. TDCT needs 

epsilon distance, ε and threshold β as input parameter Moreover, from our experiments we conclude that the 

threshold β does not vary significantly with different datasets so it can be set beforehand and need not be entered 

by the user. The algorithm can effectively detect embedded clusters over variable density space as well as 

multiple nested clusters. A detailed comparison is given in Table 1. 

Advantages of proposed algorithm (TDCT): 

The advantages of the proposed algorithm are: 

1) Embedded cluster Detection 

2) O(nc  2*m*N) complexity 
3) Handling of huge datasets 

4) Handling of single linkage problem 
5) Lesser number of parameters than its counterparts 
 

VII. CONCLUSION 
This paper presents a clustering technique for massive numeric datasets. The clustering algorithm is based on 

density approach and can detect global as well as embedded clusters. Experimental results are reported to establish the 
superiority of the algorithm in light of several synthetic data sets. In this project we have only considered two-dimensional 
objects. But, spatial databases also contain extended objects such as polygons. Therefore, there is scope for scaling the 
proposed algorithm to detect clusters in such datasets with minor modifications, research of which is in progress. From a 
proper analysis of the designed technique, it can be safely concluded that the algorithm developed is working properly to a 

great extent. 
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