
IOSR Journal of Computer Engineering (IOSRJCE)

ISSN: 2278-0661 Volume 3, Issue 3 (July-Aug. 2012), PP 50-55
www.iosrjournals.org

www.iosrjournals.org 50 | Page

Modeling Object Oriented Applications by Using Dynamic

Information for the Iterative Recovery of Collaborations and

Roles (Collaboration Browser Model)

1
Smt Vedavati R Tiwari,

2
Shri M.D Panchamukhi

1, 2 Dept of Cse Khkie Vidyagiri Dharwad-4

Abstract: The paper presents the Collaboration-based or role-based design that decompose an application

into tasks performed by a subset of applications’ classes. Collaborations provide a larger understanding and

reuse than classes. They form an important aid in the maintenance and evolution of software. The extraction of

collaborations is therefore an important issue in the design recovery. The paper presents an iterative approach

that uses the dynamic information to support recovery and understanding of collaborations.

 The paper presents the details of prototype “Collaboration Browser” modeled for querying of dynamic

information using collaborations. The prototype modeled intends to eliminate visual representations that are

laborious and expensive to understand and hence represents dynamic information on the collaboration browser
in the form of collaboration patterns through which the developer can perform querying to extract and

understand the collaborations between instances of classes in Java programming application. The collaboration

browser is developed in Java language on Net beans 6.0 platform using Swings feature of Java.

Keywords: collaboration-based design, design recovery, program understanding, object-oriented reverse

engineering, dynamic analysis.

I. Introduction
 In contrast to procedural applications, where a specific functionality is often identified with a

subsystem or module, the functionality in object-oriented systems comes from the cooperation of interacting

objects and methods.
In designing object-oriented applications, the importance of modeling how objects cooperate to achieve a

specific task is well recognized. Collaboration-based or role-based design decomposes an object-oriented

application into a set of collaborations between classes playing certain roles. Each collaboration encapsulates an

aspect of the application and describes how instances of class interact to achieve a specific task. The recovery of

collaborations from the code is an important aid for understanding and maintaining object-oriented applications.

However, detecting and deciphering interactions of objects in the source code is not easy: polymorphism makes

it difficult to determine which method is actually executed at runtime, and inheritance means that each object in

a running system exhibits behavior which is defined not only in its class, but also in each of its super classes.

This difficulty is further aggravated in case of the languages like Java where many instances of different class

types collaborate interactively and also repeatedly and methods are never statically bound. To get a better

understanding of the dynamic interactions between instances, developers often turn to tools which display the
run-time information as interaction diagrams. Designers of such tools are confronted with the challenge of

dealing with a huge amount of trace information and presenting it in an understandable form to the developer.

Several visualization techniques, such as information murals, program animation and execution pattern views

have been proposed to reduce the amount of trace information presented and to facilitate its navigation.

This paper proposes an approach to the recovery and study of collaborations by using dynamic information, but

does not rely heavily on visualization techniques. The most visualization tools display an entire trace and give

the user a feel for the overall behavior of an application, and paper proposes focusing on understanding much

smaller chunks of interactions and the roles that classes play in these. The paper proposes developing a tool

prototype, the Collaboration Browser, to demonstrate the validity of approach. Collaboration Browser is used to

query run-time information iteratively to answer concrete questions about collaborations and interactions

between instances of classes of Java programs.

Collaboration-based or role-based designs decompose an application into tasks performed by a subset of the
applications’ classes. Collaborations provide a larger unit of understanding and reuse than classes, and are an

important aid in the maintenance and evolution of the software. The extraction of collaborations is therefore an

important issue in design recovery

This paper presentation is not oriented primarily towards program visualization. It simply presents the use of a

sequence diagram (visualization) to generate and display the collaboration pattern. The paper concentrates on

the prototype tool that supports the recovery and understanding of collaborations.

Modeling Object Oriented Applications by Using Dynamic Information for The Iterative Recovery of

www.iosrjournals.org 51 | Page

The paper is organized as follows.

It starts with the design of prototype, its architecture and then implementation details as to how to iteratively

recover collaborations and roles. It is a reverse engineering process. It starts from program of object-oriented

concept, then gets the run-time execution trace or dynamic information of the program and then designs the

model or prototype i.e, collaboration browser used to recover collaborations and roles. This mainly helps the

developer who can perform querying to extract and understand the collaborations between instances of classes
in Java programming application. The extraction of collaborations is an important issue in the design recovery.

II. The Model Collaboration Browser Design
The design of collaboration browser is preceded by the task that parses the dynamic information obtained from

execution trace of sample java application. The tool or the prototype Collaboration browser is developed using

JDK 1.6 on netbeans platform with usage of Profile for execution trace of Object Oriented Application. The

tools generates collaboration patterns and allows the developer to re query and thus understand and recover the

collaborations.

Figure 1. Collaboration browser window

Panels a, b and c list the sender classes, the receiver classes and the invoked methods respectively. Panel d lists

collaboration patterns.

It presents the dynamic information to the user through four basic elements of information: sender classes,

receiver classes, invoked methods and collaboration patterns. Each of these four elements is displayed on the

screen in a separate panel as seen in Figure 1 Panels a, b and c list the sender classes, the receiver classes and the
invoked methods respectively. Panels d list collaboration patterns. Collaboration patterns are designed using

sequence diagrams. Sequence diagrams are drawn using UML feature of netbeans 6.0. The different buttons are

defined for iterative querying of the information displayed on the panels a,b,c and d.

Various functionalities of the command buttons of the browser

Method: After selecting the sender class, receiver class clicking on method button sets focus to all the methods

those are interfaces for the selected classes.

Class: After selecting method, clicking on class sets focus to methods sender and receiver class.

Pattern: After selecting method, clicking on pattern sets focus to all collaboration patterns within which the

selected method is invoked.

Filter: After selecting the sender class, receiver class clicking on filter filters or deletes interfaces or the methods
of the selected two classes from the methods panel.

Self sends: After clicking on sender class, clicking on self send deletes the method from the methods panel for

the selected sender class.

Current: Clicking on current displays current execution trace of the program.

Colab: Clicking on Colab sets the display to the base of of the collaboration pattern and also stes focus on

sender class and receiver class and also focuses collaboration instances of the two highlighted classes.

Modeling Object Oriented Applications by Using Dynamic Information for The Iterative Recovery of

www.iosrjournals.org 52 | Page

III. The prototype architecture:

Figure 2. Prototype Architecture

The architecture consists of three layers

Presentation layer: It consists of Graphical User Interface and classification browser that presents execution

trace classified as panels for sender class, receiver class and interface and methods. It also consists of panel for

collaboration pattern for which values are to be generated depending on execution trace repository.

Logic layer: It consists of java implementation classes and functions for event-driven programming.

Database layer: It consists of schemas, tables of the execution trace.

Architecture Components:

The Collaboration Browser supports three basic kinds of operations:

 querying the current base of dynamic information

 editing the base of dynamic information through filtering out information or loading a collaboration

instance,

 querying the dynamic information of the selected collaboration pattern

The Queries are numbered as (Q1,Q2,Q3,Q4 and Q5), editing (E1, E2, E3, E4) and displaying functions (D1,

D2, D3).

Query about the interface of a class. These queries are of the form

Q1: what methods of class A are invoked by class B?
Selecting sender and receiver classes, the user requests a list of the methods displayed in panel c.

Q2: which classes are senders and receivers of the following method?

Conversely, selecting a method in panel c, the developer can request the list of senders

and receivers of the selected method.

Query about a collaboration.
By selecting the method of interest (panel c) the following query can be answered:

Q3: what collaboration patterns result from this method invocation?

Panel d lists the collaboration patterns that have selected method in their invoked method list

Q4: For the selected collaboration pattern which are the sender class, receiver class and the methods.

Panel a highlights sender class, panel b highlights receiver class and panel c lists the methods and also highlights

the methods those are interfaces between the sender class

Query about a role. These queries are of the form:
Q5: given a collaboration pattern what are all the methods that collaborate the senders and receivers ?

The developer can request a list of receivers which play this role in the same collaboration pattern and the

corresponding senders.

Editing the dynamic information. To focus the investigation on the events of interest the developer can filter

out method invocation events which are not relevant by specifying sender classes, receiver classes and methods

to be filtered out. This reduces the amount of dynamic information to be analyzed and presented.

Another option for focusing on events of interest is to load an instance of one collaboration pattern as the current

base of information. This allows the developer to focus on analyzing one collaboration pattern.

The browser queries operate on a current execution trace. When the tool starts up, the current trace corresponds

to original execution trace obtained through instrumenting and executing the application. In the course of the

iterative process this trace can be edited by the user (using the buttons in panel f) to:
E1: remove method invocation events from the trace for selected senders, receivers and methods,

E2: remove method invocation events which are self-sends,

E3: set the current trace to an instance of a selected collaboration pattern, or

E4: reset the current trace to the original execution trace.

Modeling Object Oriented Applications by Using Dynamic Information for The Iterative Recovery of

www.iosrjournals.org 53 | Page

Implementation and testing

Figure 3 class diagram of the example

1. The approach uses dynamic information recorded from program execution. For each method invocation

event sender class, receiver class and name of invoked method is recorded.

2. Pattern matching is used to eliminate similar execution sequences in the execution trace. This makes the
developer not to confront the entire trace of execution but rather with the collaboration patterns.

3. The tool Collaboration browser lets the developer query the dynamic information in terms of classes and

interactions of interest. Thus allows the developer to refine the investigation to focus on collaborations of

interest

IV. Types of Tests carried
a)Recovery of collaborations of java.lang.String

 Start by querying about the interface that class java.lang.String presents to other classes in Java. Table

1 shows the methods of class java.lang.String which are invoked by other Java classes
 The Table1 depicts that there is overlap in the table cells. That is, some methods of java.lang.String are

invoked by instances of two different classes.

Table1 java.lang.String interface matrix

For example , both Java.lang.ClassLoader and Sun. misc. Floating Decimal invoke charAt(int).

equals(Object) method is invoked by instances of three different classesJava.util.Hashtable, Java.lang.System

and Javax.swing.ArrayTable. Both Javax.swing.text.GapContent and Java.lang.AbstractBuilder invoke

<init>(char[],int,int) and both orgUI.employee and orgUI.manager invoke <init>(String).

Using the collaboration browser we group methods in the interface String class presents to the

ClassLoader and look at the shortest collaboration patterns in which these methods occur. This is accomplished
by interactively selecting methods and posing queries of the form Q3:”what are the collaboration patterns in

which instance of ClassLoader invokes the methods(indexOf(int) and charAt(int)) on an instance of String class.

These queries and the corresponding response are shown schematically in Table 2 and Table 3.

Modeling Object Oriented Applications by Using Dynamic Information for The Iterative Recovery of

www.iosrjournals.org 54 | Page

Table 2 the contexts i.e. collaboration patterns for the selected method.

The interface indexOf(int)) occurs in two different contexts as shown in Table 2 by loading an instance

of the patterns Java.lang.ClassLoader .

Table 3 shows two interfaces .The interfaces of the collaboration pattern are shown in bold face font. The name

of the collaboration pattern is named after the method of a class which is the root of a call tree.

Table 3 collaborations involving the ClassLoader-string interface

You can concentrate on String charAt , to learn about the how String class invokes charAt() method.

By loading an instance of the collaboration patterns orgUI_ClassLoader and orgUI_JLabel (E3 function) and

querying about interfaces (Q1 and Q2 queries) we can arrive at charAt(int) collaboration which describes the

predictable participants as shown in the Table 4. The variation in the call tree resulting from invocation of

charAt() is due to the different kinds of user events. The role of classes is represented simply by means of the

interface they represent in the collaboration.

 The test can be continued for discovering other collaboration patterns in which the instances of
java.lang.String participate. By using Q4 ,it is investigated that java.lang.String participates in nine main

collaborations. It required 18 queries. The method E1 and E2 are not demonstrated for the example.

V. Conclusions:
The application begins with an execution trace and condenses this information by representing program

behavior in terms of collaboration patterns. It presents this information to developers in terms of sender classes,

receiver classes, invoked methods and collaboration patterns and allows developers to query each of these items

in terms of the others. In this way it lets a developer focus on the aspect of the application of interest without

wading through a lot of trace information and the output is checked for 19 collaboration patterns resulted after
instrumenting sample code.

Table 4. Participant classes for interface charAt(int)

Modeling Object Oriented Applications by Using Dynamic Information for The Iterative Recovery of

www.iosrjournals.org 55 | Page

This is how Collaboration Browser is used to discover important collaborations in an application and to

understand the roles that classes play in these collaborations. The approach is promising and is used to discover

important collaborations in an application and to understand the roles that classes play in these collaborations.

References:
[1] Visualising the behavior of Object Oriented Systems Proceedings of 9

th
 Annual Conference on OOP Systems, languages and

Applications

[2] Execution patterns in Object Oriented Visualization IBM Research center, Wim DePauw, David Lorenz

[3] Roles and classes in OOP- Reenskuag

[4] white papers for Toolbox for IT: it.toolbox.com

[5] Getting Dynamic: Java & UML Interaction diagrams by Stephen Palmer

[6] Netbeans 6.0 UML tutorials

[7] MySQL Reference manual

[8] The JFC Swing tutorial by Kathy Walruth

