
IOSR Journal of Computer Engineering (IOSR-JCE) 

e-ISSN: 2278-0661, p-ISSN: 2278-8727, Volume 28, Issue 1, Ser. 1 (Jan. – Feb. 2026), PP 72-88 

www.iosrjournals.org 

 

DOI: 10.9790/0661-2801017288                              www.iosrjournals.org                                               72 | Page 

Real-Time BER Prediction In OFDM Systems Via Online 

Ensemble Learning With Adaptive Random Forests And 

Online SVR 
 

Dr. R. Karthikeyan, Dr. P. Senthilraj 
(Department Of Computer Science, Sri Sankara Arts And Science College, Kanchipuram, Tamil Nadu, India.) 

 

Abstract: 
Background: Next-generation wireless networks need ultra-low latency and high reliability, which can only be 

achieved by real-time bit error rate (BER) prediction in the next generation of wireless systems based on 

OFDM. Conventional methods reduce multi-dimensional channel states to scalars and lose information, and 

thus perform sub-optimally over dynamic conditions. In this paper, there is a proposal of a new online ensemble 

model that integrates Adaptive Random Forests (ARF) and Online Support Vector Regression (OSVR) to 

streamline the prediction of the BER. The framework manages concept drift by using dynamic tree management 

and is computationally efficient through adaptive support vector pruning, has theoretical convergence, and 

regret of 𝑂(𝑇 𝑙𝑜𝑔 𝑇).  
Methods: The proposed ARF-OSVR is compared with four baselines, namely, XGBoost-RF, Deep LSTM-BER, 

ResNet-OFDM, and Transformer-AMC. With extensive validation of IEEE 802.11a specifications over AWGN, 

Rayleigh, and Rician fading channels, it is proven to be of superior performance to four state-of-the-art 

approaches.  

Results: A demonstration of robust performance is shown over a distance of 120 km/h at both AWGN, Rayleigh, 

and Rician channels, a variety of modulation schemes (QPSK, 16-QAM, 64-QAM), and a variety of mobility 

schemes of up to 120 km/h. Findings indicate a 27.1% and 15.7% increase in MAE and RMSE, respectively, a 

correlation of above 0.93, and a latency of less than 2ms (1.9 ms). The statistical analysis promotes the 

significance (p < 0.001, Wilcoxon signed-rank test) and 95% intervals.  

Conclusion: It is convenient to implement the proposed framework in 5G/6G networks in real-time to support 

adaptive modulation, resource allocation, and ultra-reliable low-latency communications, and it is superior to 

the current ML and DL framework. 
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I. Introduction 
Next-generation wireless networks need ultra-low latency and high reliability, which can only be 

achieved by real-time bit error rate (BER) prediction in the next generation of wireless systems based on 

OFDM. Conventional EESM methods reduce multi-dimensional channel states to scalars and lose information, 

and thus perform sub-optimally over dynamic conditions. In this paper, there is a proposal of a new online 

ensemble model that integrates Adaptive Random Forests (ARF) and Online Support Vector Regression 

(OSVR) to streamline the prediction of the BER. The framework manages concept drift by using dynamic tree 

management and is computationally efficient through adaptive support vector pruning, has theoretical 

convergence, and regret of 𝑂(𝑇 𝑙𝑜𝑔 𝑇). The proposed ARF-OSVR is compared with four baselines, namely, 

XGBoost-RF, Deep LSTM-BER, ResNet-OFDM, and Transformer-AMC With extensive validation of IEEE 

802.11a specifications over AWGN, Rayleigh, and Rician fading channels, it is proven to be of superior 

performance to four state-of-the-art approaches. A demonstration of robust performance is shown over a 

distance of 120 km/h at both AWGN, Rayleigh, and Rician channels, a variety of modulation schemes (QPSK, 

16-QAM, 64-QAM), and a variety of mobility schemes of up to 120 km/h. Findings indicate a 27.1% and 

15.7% increase in MAE and RMSE, respectively, a correlation of above 0.93, and a latency of less than 2ms 

(1.9 ms). The statistical analysis promotes the significance (p < 0.001, Wilcoxon signed-rank test) and 95% 

intervals. It is convenient to implement the proposed framework in 5G/6G networks in real-time to support 

adaptive modulation, resource allocation, and ultra-reliable low-latency communications, and it is superior to 

the current ML and DL frameworks. The increasing wireless communication is necessitated by the fact that the 

fifth-generation (5G) and other subsequent networks are coming out with ultra-reliable low-latency 
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communications (URLLC) due to the requirement of the precise real-time assessment of the channel quality [1], 

[2]. The foundation of modern wireless networks (Long Term Evolution (LTE), Wi-Fi, and 5G New Radio) is 

orthogonal frequency division multiplexing (OFDM), which remains very ineffective in ensuring reliable 

operation in dynamic propagation conditions [3], [4]. In this regard, real-time and correct prediction of the bit 

error rate (BER) has become a vital facilitator to adaptive modulation and coding (AMC), link adaptation, and 

resource allocation techniques necessary to address the high latency and reliability demands [5], [6]. The 

accurate BER prediction is a critical factor in the design, performance analysis, and optimization of wireless 

systems. Specifically, BER forecasts can be used to create dynamic coding and modulation rates based on 

changing channel conditions in rate-adaptive systems and data link protocols [7]. But in frequency-selective 

fading channels often experienced in practical systems based on the OSCE model, the BER computation given 

the instantaneous per-subcarrier signal-to-noise ratios (SNRs) is computationally intractable, and a range of 

approximation and prediction methods have been developed [8]. Traditional methods are based on the efficient 

mapping of multi-dimensional channel state information to a single effective SNR value through the use of 

exponential signal-to-noise ratio (EESM) [9]. The Chernoff bound-based EESM model compresses the set of 

per-subcarrier SNRs into a single, linearly predictable scalar value. Although efficient, EESM-based techniques 

have four basic weaknesses: (i) loss of information, as correlation patterns across subcarriers that are essential 

to accurate prediction are lost; (ii) parameter 𝜆 must be optimized over a large space, offline, per modulation 

and coding scheme (MCS); (iii) nonlinear fading profiles are inadequately captured; and (iv) no adaptation to 

real-time streaming channel conditions is possible [10]. 

Recently, machine learning (ML) has shown very promising prospects in overcoming these drawbacks 

by carrying out wireless communication activities, such as channel estimation [11], automatic modulation 

classification [12], and interference elimination [13]. However, the majority of current ML-based BER 

predictive models have limitations for practical implementation. Deep learning networks like LSTM, ResNet, 

and hybrid networks are highly accurate in prediction, but they require lengthy offline training, a large amount 

of computation, and a huge memory footprint that is unrealistic to run in real-time applications [14]–[16]. 

Furthermore, they usually make assumptions about the channel statistics that are not dynamic and cannot be 

modified due to concept drift in mobile environments [17], [18]. 

These challenges inspired this work to tackle the research problem of designing a computationally 

efficient, as well as dynamically adaptive to the dynamic wireless environment, real-time BER prediction 

framework. Specifically, we target three unresolved challenges: 

1. Information Loss - EESM and associated compression methods do not encode correlation between 

subcarriers, leading to lower prediction of frequency-selective fading channels [19], [20]. 

2. Concept drift Adaptation - The propagation conditions of most current BER prediction techniques are 

stationary, and the prediction rates of such schemes deteriorate in the presence of time-varying channel 

conditions [21], [22]. 

3. Latency – State-of-the-art ML models are typically associated with latencies of more than 5 ms, which 

cannot be tolerated by sub-millisecond URLLC demands of 5G and more [23], [24]. 

 

This research study will answer the following research questions: 

RQ1: Are online ensemble learning systems capable of producing better BER predictions than conventional 

techniques and at real-time computation levels? 

RQ2: What can be done to adapt to concept drift with the adaptive mechanisms in time-varying wireless 

channels without degrading the performance of prediction? 

RQ3: What are the theoretical guarantees of convergence and optimality of online ensemble BER predictors in 

streaming? 

To address these challenges, we propose a novel online ensemble learning framework (ARF-OSVR) 

that synergistically integrates Adaptive Random Forests (ARF) with Online Support Vector Regression 

(OSVR). The suggested framework fills the most crucial gaps in the current BER prediction methods and offers 

a basis for the next-generation adaptive wireless communication systems with strict real-time requirements. The 

main contributions of this article are as follows: 

1. Novel Ensemble Architecture: We present ARF-OSVR, a real-time predictive BER framework that 

dynamically responds to changing wireless conditions by implementing drift-aware weighting models [25]. 

2. Theoretical Foundation: Convergence ensures and regret bounds: guarantees the formal performance of 

learning in the streaming case of O(TlogT). 

3. Concept Drift Handling: A proactive drift-detection mechanism is built in to modify ensemble composition 

in channels with rapid changes in order to allow robust performance on mobile channels up to 120 km/h. 

4. Experimental Validation: Evaluation under the IEEE 802.11a specifications, a 27.1% decrease in mean 

absolute error and 15.7% decrease in root mean square error was observed over state-of-the-art baselines, and 

2 ms latency was achieved. 
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The rest of this paper is structured as follows. Section II provides a study of the related literature on 

BER prediction and online learning in wireless communications. Section III presents the system model and 

problem formulation. Section IV details the proposed ARF-OSVR methodology with theoretical guarantees. 

Section V discusses implementation details as well as computational analysis. Section VI reports experimental 

results. Section VII concludes with directions for future research, which also highlights practical implications as 

well as future directions. 

 

II. Related Works 
Early BER prediction algorithms of an OFDM system concentrated on compression-based algorithms 

in which multi-dimensional channel states were mapped to scalar metrics (to provide computational efficiency). 

Conventional useful SINR mapping (EESM) algorithms compress per-subcarrier SINRs to scalar effective 

quantities by using exponential averaging, with modulation and coding-scheme-dependent parameters 

determined offline by large-scale link-level simulations. These are computationally efficient, with the same 

complexity as O(N), but have the drawbacks of irreversible information losses due to compression, constant 

parameter estimates that must be estimated offline in advance during every MCS, and cannot easily capture 

complex inter-subcarrier interactions, and have no mechanism to adapt to time-varying channels. Generalized 

BER evaluation of index modulation-based OFDM systems was done by Abdullahi et al. [1], whereas BER 

probability and capacity limits in deterministic doubly-selective channels were referred to by Dominguez-Bolao 

et al. [4]. Hilario-Tacuri et al. [8] analyzed the BER analysis of NOMA-OFDM 5G networks with non-linear 

high-power amplifiers, and Haque et al. [7] studied the BER of hybrid PAPR reduction methods. 

In recent literature, techniques of supervised learning that learn directly from channel state to error 

probability mappings have been discussed. The potential of adaptive learning can be evident in the case of the 

Ay et al. [2] noise-adaptive machine learning framework to optimize user grouping in dynamic IM-OFDMA 

systems. The application of deep learning methods, in particular, has demonstrated potential success, where 

Essai Ali et al. [5] utilize peephole LSTM networks to estimate channel states in an OFDM 5G network, and 

have also proved the ability to model temporal correlations. Zhang et al. [24] have proposed intelligent LSTM 

demodulation of the OFDM-DCSK system, and Salama et al. [18] have evaluated DNN and LSTM nonlinear 

compensators with the improved performance of the DCO-OFDM system. Nonetheless, LSTM architectures are 

computationally expensive (O(H 2 T) when H is the hidden dimension and T is the sequence length) to train, 

take more than hours to converge, and do not have online learning capabilities. 

Convolutional and residual network designs have realized the current state-of-the-art accuracy at a high 

cost of computation. Mei et al. [12] integrated Convolutional Recurrent Neural Networks with ResNet into the 

receiver of the OFDM, which enhanced the resistance to impairments in the channel. Bai et al. [3] implemented 

a range and velocity estimation based on ResNet in mmWave OFDM systems. These deep architectures have 

memory footprints of over 30 MB and 4-6 ms latencies. Van Luong et al. [22] showed that deep learning-aided 

optical IM/DD OFDM is similar to RF-OFDM in terms of throughput, whereas Singh and Saha [19] presented a 

survey of machine/deep learning based estimation and detection of diverse channel imperfections. 

Transformer-based approaches have become potent features of long-range dependency capturing. 

Kumar and Majhi [11] introduced triple attention-aided Vision Transformers to automatic modulation 

classification in RIS-assisted MIMO-OFDM with system impairments. Sahu [16] designed gated transformer 

structures of AMC. Titouni et al. [21] proposed a hybrid CNN-XGBoost in wireless communication systems. 

Transformer models are effective at capturing complex patterns, but they need larger datasets to pre-train 

effectively (more than 40 MB), substantial memory (40 MB), and inference latency of 6-8 ms. 

Ensemble learning methods have been found to enhance the generalization and strength. Mienye and 

Sun [13] conducted a survey of the ensemble learning concepts such as bagging, boosting, and stacking, and 

noted their efficacy to enhance generalization. Jha and Mishra [10] used XGBoost-RF ensembles to determine 

signal integrity of a coherent communication system and showed that these models paired with XGBoost-RF 

yielded 15-20% improvement in accuracy compared to single models. Yu et al. [23] forecasted BER based on 

meta information using random forests. The ensemble extreme learning machine-based equalizers for OFDM 

systems were suggested by Saideh et al. [17]. Nevertheless, such methods usually do not adapt to concept drift 

online, have theoretical convergence insurance, and can be computed in real time. There has been a lack of 

studies that focus on real-time BER prediction in online learning techniques that have found many applications 

in wireless-based applications. 

Mirsalari et al. [14] proposed channel estimation of the least squares support vector regression-OFDM 

systems under impulsive noise, and this approach is resistant to outliers but does not offer BER prediction as 

channel estimation. In an online gradient update, Goutay et al. [6] used machine learning for MU-MIMO 

receive processing in OFDM systems and showed that online learning was feasible in wireless scenarios, but 

unlike with error rate prediction, equalization was performed. Jebur et al. [9] designed an effective machine 

learning based channel estimation of an OFDM system. The article by Zhang et al. [25] suggested the support 
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vector regression in the reduction of PAPR in the CO-OFDM systems. Sreelekha et al. [20] performed the 

analysis of BER prediction in the MIMO OFDM systems that employ modified dyadic wavelet transform-based 

channel estimation. Mrabet et al. [15] conducted a survey on applied machine learning applied to optical 

networks based on the OFDM. 

Existing approaches face critical deployment challenges: excessive computational complexity (3-7 ms 

latency), offline training demands Monte Carlo-simulated labels, a fixed model without adaptation to concept 

drift, and memory requirements (20-40 MB) too large to run on resource-limited devices, and no theoretical 

claims as to convergence and optimality. The work on online learning in wireless communications is less 

focused on predicting BER and more on channel estimation and equalization, has not theoretically studied 

convergence with wireless-specific concept drift patterns, does not discuss real-time latency limits of URLLC, 

and seldom involves multiple online learners in ensemble frameworks. 

 

Table 1: Comparative Analysis of BER Prediction Methods in Terms of Adaptability, Accuracy, and Latency 
Method Info Loss Online 

Adapt 

Theory Latency Accuracy Reference 

LSTM-based None Offline None 3-5ms +20% [5], [18], [24] 

CNN/ResNet None Offline None 4-6ms +22% [3], [12] 

Transformer None Offline None 6-8ms +25% [11], [16] 

Ensemble 
(XGBoost/RF/ELM) 

Low Offline None 2-3ms +18% [10], [13], [17], [23] 

Online SVR Moderate Limited None 2-4ms +12% [14], [25] 

ML-enhanced CE Low Offline None 2-3ms +15% [6], [9], [19] 

ARF-OSVR None Online Convergence + 

Regret 
1.9ms +27% Proposed 

 

The paper has identified the trade-offs between traditional, deep learning, and ensemble methods of 

predicting BER, as highlighted in Table 1. The suggested ARF-OSVR solution is more flexible and precise, 

with a low latency; therefore it can be applied in real-time. 

The present work fills these gaps with four major contributions: hybrid feature engineering that 

maintains critical channel information and yet retains computational tractability, online ensemble framework to 

combine ARF and OSVR to attain robust performance by diversity of ensembles and adaptability to concept 

drift, theoretical foundations to provide convergence guarantees and regret bounds, 𝑂 ( 𝑠𝑞𝑟𝑡(𝑇 𝑙𝑜𝑔 𝑇)) online 

learning with concept drift, and real time performance with a 1.9 ms latency and a 12.4 MB memory footprint to 

meet URLLC specifications with 27.1% improvement on best baselines. 

 

III. System Model And Problem Formulation 
OFDM System Model 

Figure 1 depicts the system-level architecture, with the viable flow of the input features (channel state, 

modulation type, and Doppler frequency) through the feature extraction, ARF-OSVR blocks, and the output 

layer. The feedback loop will make sure that it dynamically adapts to channel variations in order to estimate 

BER accurately. In this paper, we consider an orthogonal frequency-division multiplexing (OFDM) system that 

uses 𝑁 subcarriers and works in a time-varying multipath fading environment, which is a common scenario in 

5G and future wireless networks. OFDM separates a wideband channel into a variety of narrowband orthogonal 

subcarriers, which helps reduce inter-symbol interference (ISI) and offers protection against frequency-selective 

fading, which records variations at instantaneous subcarrier levels. 

 

The transmitted signal on the 𝑘 − 𝑡ℎ subcarrier at time 𝑡 is given by: 

𝑥𝑘(𝑡) = 𝑠𝑘(𝑡)𝑒𝑗2𝜋𝑓𝑘𝑡…. (1) 
where 𝑠𝑘(𝑡) is the modulated symbol (e.g., QAM or PSK) for the 𝑘 − 𝑡ℎ subcarrier, and 𝑓𝑘denotes the 

frequency of the 𝑘 − 𝑡ℎ subcarrier, ensuring orthogonality among subcarriers. The exponential term represents 

the carrier modulation in complex baseband form. 

 

After transmission through the wireless channel, the received signal is expressed as: 

𝑦𝑘(𝑡) = ℎ𝑘(𝑡)𝑥𝑘(𝑡) + 𝑛𝑘(𝑡)…. (2) 
where ℎ𝑘(𝑡) is the complex channel coefficient capturing multipath fading, Doppler shifts, and 

temporal variations, while 𝑛𝑘(𝑡)…. is additive white Gaussian noise (AWGN), modeled as 𝑛𝑘(𝑡) ∼ CN(0, σ2). 

 

The instantaneous signal-to-noise ratio (SNR) for each subcarrier is then computed as: 

𝛾𝑘(𝑡) =
∣ ℎ𝑘(𝑡)2 ∣ 𝐸𝑠

𝜎2
… . (3) 
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with 𝐸𝑠 denoting the average symbol energy. This per-subcarrier SNR quantifies real-time channel 

quality and serves as the fundamental feature for BER prediction. 

 

 
Figure 1: System Architecture of the Proposed ARF-OSVR Model for BER Prediction 

 

The resulting channel state is represented as a high-dimensional vector: 

𝛤(𝑡) = [𝛾1(𝑡), 𝛾2(𝑡), … , 𝛾𝑁(𝑡)] … . (4) 
This formulation, in contrast to traditional SNR-based methods that operate on scalars, retains fine-

grained channel information, giving a more accurate learning-based BER prediction under very dynamic 

conditions. BER prediction of the dynamic wireless channel is based on the OFDM system model. Each 

subcarrier is linked with its instantaneous SNR, and they constitute the high-dimensional channel state 𝛤(𝑡). In 

contrast to the scalar SNR compression techniques, this representation conserves variances in subcarriers, which 

are very critical for an effective prediction of BER in realistic fading scenarios. The conceptual framework in 

Figure 2 involves the combination of feature extraction, Adaptive Random Forest (ARF), and Online SVR 

(OSVR). It highlights the adaptive weighting and feedback mechanism that provides the training online, 

concept drift adaptation, and regret minimization. 

 

Problem Statement 

Traditional ways of estimating bit error rate (BER) simplify the high-dimensional channel state vector 

to a single effective SNR value: 

Γ(𝑡) = [γ1(t), γ2(t), … , γN(t)]…. (5) 

Even though this scalar compression is computationally appealing, it cannot eliminate finer-grained 

subcarrier-level data. Consequently, these techniques tend to give less than optimal predictions of BER in a 

fading, high mobility user environment, or ultra-reliable low-latency communication (URLLC), where 

capturing instantaneous variations in the channel are very important. 

 

To overcome these limitations, we formulate BER prediction as a real-time supervised learning problem: 

𝐵𝐸𝑅(𝑡) = 𝑓(𝛤(𝑡), 𝜃(𝑡)), …. (6) 
Here, 𝜃(𝑡) refers to a collection of time-varying parameters to fit dynamic wireless-induced 

conditions, while 𝑓(⋅) represents a non-linear mapping from the channel state vector to the instantaneous BER. 

The primary objective is to design a predictive model that not only captures the complex non-linear 

dependencies between subcarrier SNRs and BER but also ensures responsiveness under stringent latency 

constraints. 
 

 
Figure 2: Proposed ARF-OSVR Framework for Real-Time BER Prediction in OFDM Systems 
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In particular, the system has to provide credible BER estimates with a latency of 2 ms, thus meeting 

the needs of URLLC and allowing the robustness of adaptive modulation, coding, and link adaptation in next-

generation wireless networks. 

In contrast to the traditional methods, which shrink the wireless channel to a single scalar measure, the 

proposed method maintains complete information at the subcarrier level and incorporates adaptive online 

learning. The design option improves stability and makes the framework especially suitable in practice in 5G 

and new 6G scenarios, where non-stationary and heterogeneous channel dynamics conditions dominate: 

𝐵𝐸𝑅(𝑡) = E[e ∣ 𝛤(𝑡), 𝜃(𝑡)], …. (7) 
where 𝑒 ∈ {0,1} represents the binary error event (with 𝑒 = 1 for decoding error and 𝑒 = 0for 

successful reception), Γ(t) denotes the instantaneous channel state information at the subcarrier level, and 𝜃(𝑡) 

encapsulates additional system parameters. To approximate this conditional expectation, we employ a hybrid 

ensemble predictor that combines two complementary online learners. The ensemble output is expressed as: 

𝑦̂(𝑡)  = 𝛽(𝑡)𝑦̂𝐴𝑅𝐹(𝑡) + (1 − 𝛽(𝑡))𝑦̂𝑂𝑆𝑉𝑅(𝑡)…. (8) 

Here, 𝑦̂𝐴𝑅𝐹(𝑡) denotes the prediction obtained from Adaptive Random Forests, which are capable of 

detecting and adapting to concept drift in real time. In contrast, 𝑦̂𝑂𝑆𝑉𝑅(𝑡)  corresponds to the output of Online 

Support Vector Regression, which models the highly non-linear relationship between SNR variations and BER. 

The adaptive weight 𝛽(𝑡) regulates the relative influence of the two predictors and is updated based on 

instantaneous prediction error, which ensures that the ensemble dynamically prioritizes the most reliable learner 

under prevailing channel conditions. 

This formulation is not only theoretically sound, as it relates BER prediction to a conditional 

expectation model, but it is also more useful in practice as it integrates drift-resistant and non-linear predictors 

into a single online learning model. 

 

In the proposed framework, the adaptive weight update is determined by a stochastic gradient rule: 

𝛽(𝑡 + 1) = 𝛽(𝑡) + 𝜂𝛻𝐿(𝑡),         𝐿(𝑡) =∣ 𝑦̂(𝑡) − 𝐵𝐸𝑅𝑡𝑟𝑢𝑒(𝑡) ∣2 … . (9) 

η denotes the learning rate. According to this mechanism, the ensemble is dynamically assigned a 

greater weight to those predictors that exhibit good performance at a specific time, only to guarantee the ability 

to withstand variable channel conditions. It is especially very important that Adaptive Random Forests (ARF) 

and Online Support Vector Regression (OSVR) have been integrated to allow addressing concept drift and non-

linear channel mapping simultaneously. Such a combination represents a novel contribution to the domain of bit 

error rate (BER) prediction. 

This work presents a novel framework for real-time BER prediction in OFDM systems that preserve 

per-subcarrier SNR values, which avoids the information loss of traditional methods. The ARF–OSVR 

ensemble combines online adaptation with non-linear regression, while an adaptive weighting mechanism 

prioritizes the best-performing predictor under changing channel conditions as well. The framework also 

provides theoretical guarantees of ensemble convergence and bounded regret, rarely addressed in prior work, 

and achieves sub-2 ms latency, making it suitable for 5G/6G real-time deployment. On the whole, it provides an 

end-to-end solution to precise, low-latency BER prediction in dynamic wireless conditions. 

 

IV. BER Prediction Methodology 
Proposed Framework 

We suggest an online ensemble learning model that integrates the Adaptive Random Forests (ARF) 

and Online Support Vector Regression (OSVR) to address the limitations of traditional estimation methods of 

BER. This hybrid design empowers the complementary design of both designs: ARF offers resilience to concept 

drift and dynamically adapts to streaming data, whereas OSVR offers the non-linear mapping between 

subcarrier-level SNRs and BER. 

 

Formally, we restate the BER prediction as a conditional expectation problem defined over the full channel 

state: 

𝐵𝐸𝑅(𝑡) = 𝐸[𝑒 ∣ 𝛤(𝑡), 𝜃(𝑡)] … . (14) 

where 𝑒 ∈ {0,1}denotes the binary error event (with 𝑒 = 1 for decoding error and 𝑒 = 0 for correct 

reception), 𝛤(𝑡) = [𝛾1(𝑡), 𝛾2(𝑡), … , 𝛾𝑁(𝑡)], represents the instantaneous channel state vector across all 

subcarriers, and 𝜃(𝑡)  corresponds to the set of time-varying model parameters, which are updated online to 

track channel dynamics. 

Unlike conventional scalar SNR compression or the LUT-based method, such a formulation guarantees 

lossless channel representation and is also operationally real-time. The proposed ARF-OSVR framework 

records fine-grained temporal and frequency variations in the channels of the OFDM by exploiting directly the 

high-dimensional structure of Γ (t). In addition, in contrast to offline Monte Carlo simulation techniques, the 
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proposed solution is naturally adaptive and scalable; therefore, it is applicable in 5G/6G ultra-reliable low-

latency communication (URLLC) systems where latency budgets are extremely stringent. 

Figure 3 illustrates that we construct a 52-dimensional feature vector x(t)∈R52, which is classified in 

statistical, spectral, temporal, wavelet, and information-theoretic domains. Each feature group represents 

distinct channel properties, which are guaranteed to provide a complete representation of channel characteristics 

to ensure accurate prediction of the BER: 

𝑥(𝑡) = [𝑓𝑠𝑡𝑎𝑡 , 𝑓𝑠𝑝𝑒𝑐 , 𝑓𝑡𝑒𝑚𝑝 , 𝑓𝑤𝑎𝑣𝑒 , 𝑓𝑖𝑛𝑓𝑜]
𝑇

… . (15) 

In order to capture the complete statistical and structural characteristics of the wireless channel, a 

comprehensive 52-dimensional feature set is constructed. 

 

The first type comprises statistical features (4 dimensions), and they characterize the distribution of the 

received signal-to-noise ratio (SNR) by using the first four moments. The mean is given by: 

𝛭𝛾(𝑡) =
1

𝑁
∑ 𝛾𝑘(𝑡)

𝑁

𝑘=1

… . (16) 

While the variance is expressed as: 

      𝜎𝛾
2(𝑡) =  

1

𝑁
∑(𝛾𝑘(𝑡) − 𝜇𝛾)2

𝑁

𝑘=1

… . (17) 

 

Adaptive Random Forest (ARF) Component 

The Adaptive Random Forest (ARF) module employs an ensemble architecture consisting of MMM 

decision trees, each dynamically weighted according to its predictive performance. The weight of the 𝑖 − 𝑡ℎ tree 

at time 𝑡 is defined as 

𝑤𝑖(𝑡) = exp (
−1

𝑡
∑ (ŷi

(j)
− y(j))2

𝑡

𝑗=𝑡−w

) … . (30) 

where ŷi

(j)
 denotes the prediction of the 𝑖 − 𝑡ℎ tree at time 𝑗, y(j) is the corresponding ground truth, and 

www is the evaluation window size. This weighting scheme ensures that trees with consistently lower error 

maintain higher influence in the ensemble. 

 

The overall ensemble prediction is obtained as a weighted aggregation of individual tree outputs: 

 

𝑦̂𝐴𝑅𝐹(𝑥) =
∑𝑖=1

𝑀 𝑖𝑤𝑖(𝑡)𝑇𝑖(𝑥)

∑𝑖=1
𝑀 𝑤𝑖(𝑡)

… . (31) 

where 𝑇𝑖(𝑥) represents the prediction of the 𝑖 − 𝑡ℎ tree for input 𝑥. 
Dynamic tree management is implemented through classical random forest principles: bootstrap 

sampling at the data level, random feature selection with √𝐷 features per split, maximum tree depth limited to 

15, and a minimum of 10 samples per leaf node. 

To handle concept drift, the algorithm continuously monitors tree performance. If a tree’s weight falls 

below a threshold defined as 

𝑤𝑖(𝑡) < 0.1 ⋅ 𝑚𝑎𝑥𝑗wj(t) … . (32) 

It is replaced by a newly trained tree using the most recent 500 samples, thereby ensuring adaptability 

to evolving data distributions as well. 

 

The computational complexity of the ARF component is 

𝑂(𝑀√𝐷𝑙𝑜𝑔𝑁𝑙𝑒𝑎𝑓) … . (33) 

Where 𝑀 is the number of trees, 𝐷 is the feature dimension, and 𝑁𝑙𝑒𝑎𝑓 is the average number of leaf 

nodes per tree. 
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Figure 4: ARF Component Workflow 

 

Figure 4 depicts the workflow of the Adaptive Random Forest (ARF) component, where multiple 

decision trees operate in parallel with dynamically updated weights. The ensemble adapts to streaming data by 

leveraging error-based weighting and drift detection, enabling robust performance under varying channel 

conditions. 

 

Online Support Vector Regression (OSVR) Component 

The OSVR module performs non-linear regression to predict the target variable based on input features 

𝑥. The regression function is defined as 

𝑓𝑆𝑉𝑅(𝑥) = ∑𝑖=1
𝑛, 𝛼𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏, 𝐾(𝑥𝑖 , 𝑥) = 𝑒𝑥𝑝 (−

−∥ 𝑥𝑖 − 𝑥 ∥2

2𝜎2
) … . (34) 

where 𝐾(𝑥𝑖 , 𝑥) is the Radial Basis Function (RBF) kernel, 𝛼𝑖 are the support vector coefficients, 𝑏 is 

the bias term, and 𝑛 is the current number of support vectors. 

Online updates are performed using stochastic gradient descent (SGD) whenever the ϵ\epsilonϵ-

insensitive loss criterion is exceeded, ensuring continuous adaptation to streaming data. To maintain 

computational efficiency, support vectors are pruned if their age exceeds 1000 frames or if their coefficient 

satisfies ∣ 𝛼𝑖 ∣< 10−4. The resulting computational complexity of OSVR is 

𝑂(𝑛𝑠𝐷) … . (35) 

where 𝑛𝑠 is the number of support vectors and 𝐷 is the input feature dimension. 

 

 
Figure 5: Cross-functional layout 
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Theoretical Analysis 

The ARF-OSVR framework is theoretically robust under non-stationary channel conditions. 

Convergence (Theorem 1): Under smooth, bounded, and Lipschitz-continuous assumptions, the mean-

square error of BER prediction converges asymptotically: 

lim
t→∞

E[(ŷBER(t) − BER∗ (t))2] = O(LP
2 + η∞) … . (44) 

 
 

where 𝐿𝑃    is the Lipschitz constant and 𝜂∞ represents residual variance due to online updates. 

Regret Bound (Lemma 1): The cumulative regret over T time steps is bounded as 

𝑅𝑒𝑔𝑟𝑒𝑡(𝑇) ≤ 𝑂(√𝑇𝑙𝑜𝑔𝑇) … . (45) 

It is stated that the ensemble can adjust effectively to the changing channel conditions and manage 

long-term prediction error. Such theoretical assurances emphasize the strength of the ARF-OSVR method, 

compared to traditional deep learning or lookup table (LUT)-based models, which can break down in dynamic 

and non-stationary wireless conditions. 

 

Pseudocode 

Algorithm 1: ARF-OSVR Real-Time BER Prediction 

𝐼𝑛𝑝𝑢𝑡: 𝑆𝑁𝑅 𝑠𝑡𝑟𝑒𝑎𝑚 {𝛤(𝑡)}𝑡=1
∞ , 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡 𝐷0 

𝑂𝑢𝑡𝑝𝑢𝑡: 𝐵𝐸𝑅 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 {ŷ(𝑡)}𝑡=1
∞  

𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔: 
𝑀 =  10 (𝐴𝑅𝐹 𝑡𝑟𝑒𝑒𝑠), 𝜎 =  2.0 (𝑅𝐵𝐹 𝑘𝑒𝑟𝑛𝑒𝑙 𝑤𝑖𝑑𝑡ℎ) 
𝜏 =  0.1 (𝑡𝑟𝑒𝑒 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) 
𝑊 =  500 (𝑑𝑟𝑖𝑓𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑛𝑑𝑜𝑤) 
𝜂_𝛽 =  0.01 (𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒) 
𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆: 
1: 𝐴𝑅𝐹 ←  {𝑇1, . . . , 𝑇𝑀} 𝑤𝑖𝑡ℎ 𝑒𝑞𝑢𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤𝑖  =  1/𝑀 
2: 𝑂𝑆𝑉𝑅 ←  𝑇𝑟𝑎𝑖𝑛 𝑜𝑛 𝐷_0, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑆 =  {} 
3: 𝛽 ←  0.5 (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡) 
4: 𝐵𝑢𝑓𝑓𝑒𝑟 𝐵 ←  𝑒𝑚𝑝𝑡𝑦 𝑞𝑢𝑒𝑢𝑒 (𝑠𝑖𝑧𝑒 𝑊) 
𝑴𝒂𝒊𝒏 𝑳𝒐𝒐𝒑 (𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝒇𝒓𝒂𝒎𝒆 𝒕): 
5: 𝑅𝑒𝑐𝑒𝑖𝑣𝑒 𝛤(𝑡)  =  [𝛾1(𝑡), . . . , 𝛾𝑁(𝑡)] 
6: 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠: 𝑥(𝑡)  ←  𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝛤(𝑡))  // 52 − 𝑑𝑖𝑚 
𝟕: // 𝑪𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔 

8: ŷ𝐴𝑅𝐹(𝑡)  ←  
𝛴𝑖=1

𝑀  𝑤𝑖(𝑡) · 𝑇𝑖 . 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑥(𝑡))

𝛴𝑖=1
𝑀 𝑤𝑖(𝑡)

 

9: ŷ𝑆𝑉𝑅(𝑡)  ←  𝑂𝑆𝑉𝑅. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑥(𝑡)) 
𝟏𝟎: // 𝑬𝒏𝒔𝒆𝒎𝒃𝒍𝒆 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 
11: ŷ(𝑡)  ←  𝛽(𝑡) · ŷ𝐴𝑅𝐹(𝑡)  +  (1 − 𝛽(𝑡)) · ŷ𝑆𝑉𝑅(𝑡) 
𝟏𝟐: // 𝑹𝒆𝒄𝒆𝒊𝒗𝒆 𝒈𝒓𝒐𝒖𝒏𝒅 𝒕𝒓𝒖𝒕𝒉 
(𝒗𝒊𝒂 𝑪𝑹𝑪 𝒇𝒆𝒆𝒅𝒃𝒂𝒄𝒌 𝒂𝒇𝒕𝒆𝒓 𝒅𝒆𝒄𝒐𝒅𝒊𝒏𝒈) 

13: 𝑦(𝑡)  ←  𝐺𝑒𝑡𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ()  // 𝑆𝑒𝑒 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 𝐼𝑉. 𝐽 
𝟏𝟒: // 𝑼𝒑𝒅𝒂𝒕𝒆 𝑪𝒐𝒎𝒑𝒐𝒏𝒆𝒏𝒕 𝑾𝒆𝒊𝒈𝒉𝒕𝒔 
15: 𝑓𝑜𝑟 𝑖 =  1 𝑡𝑜 𝑀 𝑑𝑜 
16:   𝑒𝑖(𝑡)  ←  (𝑇𝑖 . 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑥(𝑡))  −  𝑦(𝑡))² 

17:   𝑤𝑖(𝑡 + 1)  ←  𝑒𝑥𝑝 (−
1

𝑊
∑ 𝑒𝑖(𝑗)

𝑡

𝑗=𝑡−𝑊+1

) 

18: 𝑒𝑛𝑑 𝑓𝑜𝑟 
𝟏𝟗: // 𝑹𝒆𝒑𝒍𝒂𝒄𝒆 𝑼𝒏𝒅𝒆𝒓𝒑𝒆𝒓𝒇𝒐𝒓𝒎𝒊𝒏𝒈 𝑻𝒓𝒆𝒆𝒔 
20: 𝑖𝑓 𝑚𝑖𝑛𝑖 𝑤𝑖(𝑡)  <  𝜏 · 𝑚𝑎𝑥𝑖  𝑤𝑖(𝑡) 𝑡ℎ𝑒𝑛 
21:   𝑖𝑤𝑜𝑟𝑠𝑡  ←  𝑎𝑟𝑔𝑚𝑖𝑛𝑖  𝑤𝑖(𝑡) 
22:   𝑇𝑖𝑤𝑜𝑟𝑠𝑡

 ←  𝑁𝑒𝑤𝑇𝑟𝑒𝑒(𝐵𝑢𝑓𝑓𝑒𝑟 𝐵)  // 𝑇𝑟𝑎𝑖𝑛 𝑜𝑛 𝑟𝑒𝑐𝑒𝑛𝑡 𝑑𝑎𝑡𝑎 

23:    𝑤𝑖𝑤𝑜𝑟𝑠𝑡
 ←  𝑚𝑒𝑎𝑛(𝑤𝑗) 

24: 𝑒𝑛𝑑 𝑖𝑓 
𝟐𝟓: // 𝑼𝒑𝒅𝒂𝒕𝒆 𝑶𝑺𝑽𝑹 
26: 𝑖𝑓 |ŷ𝑆𝑉𝑅(𝑡)  −  𝑦(𝑡)|  >  𝜀 𝑡ℎ𝑒𝑛  // 𝜀 − 𝑖𝑛𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑙𝑜𝑠𝑠 
27:   𝛼 ←  𝑆𝐺𝐷_𝑈𝑝𝑑𝑎𝑡𝑒(𝑂𝑆𝑉𝑅, 𝑥(𝑡), 𝑦(𝑡)) 
28:   𝑖𝑓 𝑎𝑔𝑒(𝛼)  >  1000 𝑜𝑟 |𝛼|  <  10^{−4} 𝑡ℎ𝑒𝑛 
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29:     𝑆 ←  𝑆 \ {𝛼}  // 𝑃𝑟𝑢𝑛𝑒 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 
30:   𝑒𝑛𝑑 𝑖𝑓 
31: 𝑒𝑛𝑑 𝑖𝑓 
𝟑𝟐: // 𝑫𝒓𝒊𝒇𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏 & 
𝑬𝒏𝒔𝒆𝒎𝒃𝒍𝒆 𝑾𝒆𝒊𝒈𝒉𝒕 𝑨𝒅𝒂𝒑𝒕𝒂𝒕𝒊𝒐𝒏 

33: 𝑑(𝑡)  ←  𝐷𝑟𝑖𝑓𝑡𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒(𝐵)  // 𝐾𝑆 − 𝑡𝑒𝑠𝑡 𝑜𝑛 𝑟𝑒𝑐𝑒𝑛𝑡 𝑤𝑖𝑛𝑑𝑜𝑤 
34: 𝛥𝑝𝑒𝑟𝑓(𝑡)  ←  |𝑒𝑟𝑟𝑜𝑟𝐴𝑅𝐹(𝑡)  −  𝑒𝑟𝑟𝑜𝑟𝑆𝑉𝑅(𝑡)| 

35: 𝛽(𝑡 + 1)  ←  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤𝑑𝑟𝑖𝑓𝑡 · 𝑑(𝑡) +  𝑤𝑝𝑒𝑟𝑓 · 𝛥𝑝𝑒𝑟𝑓(𝑡)) 

𝟑𝟔: 𝒊𝒇 𝒅(𝒕)  >  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑠𝑒𝑣𝑒𝑟𝑒 𝑡ℎ𝑒𝑛 
37:   // 𝑅𝑒𝑠𝑒𝑡 𝑒𝑛𝑡𝑖𝑟𝑒 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 
38:   𝐴𝑅𝐹 ←  𝑅𝑒𝑡𝑟𝑎𝑖𝑛𝐴𝑙𝑙𝑇𝑟𝑒𝑒𝑠(𝐵) 
39:   𝑂𝑆𝑉𝑅 ←  𝑅𝑒𝑡𝑟𝑎𝑖𝑛𝑆𝑉𝑅(𝐵) 
40: 𝑒𝑛𝑑 𝑖𝑓 
𝟒𝟏: // 𝑼𝒑𝒅𝒂𝒕𝒆 𝒃𝒖𝒇𝒇𝒆𝒓 
42: 𝐵. 𝑎𝑝𝑝𝑒𝑛𝑑((𝑥(𝑡), 𝑦(𝑡))) 
43: 𝑖𝑓 |𝐵|  >  𝑊 𝑡ℎ𝑒𝑛 𝐵. 𝑝𝑜𝑝_𝑓𝑟𝑜𝑛𝑡() 𝑒𝑛𝑑 𝑖𝑓 
𝟒𝟒: 𝒓𝒆𝒕𝒖𝒓𝒏 ŷ(𝒕) 

 

V. Experimental Setup And Design 
Three representative wireless environments were experimented to capture a variety of channel 

dynamics. The initial one was a static indoor stationary laboratory environment with a 20 MHz bandwidth and a 

2.4 GHz frequency. The second scenario was pedestrian mobility along a campus path at 3-5km/h, and scenario 

three was controlled vehicular movement at 20km/h within a parking area. In both cases, 500 OFDM frames 

were modulated with 16-QAM to achieve adequate testing of BER prediction results. Hardware results revealed 

that MAE (~20% higher than simulated) was higher than with simulation because of non-idealities such as 

imperfect synchronization and carrier frequency offset, but correlation was still well above 0.91 in all 

conditions, and the real-time latency was held close to 2.3 ms/frame. 

The proposed ARF-OSVR framework simulation study was aimed at testing real-time BER prediction 

in various wireless environments. Key simulation parameters given as Table 3: 

 

Table 3: Simulation Parameters 
Parameter Value / Setting Description 

Training Frames 50,000 OFDM frames Used to train the ARF-OSVR model 

Test Frames 10,000 OFDM frames Used for independent evaluation of prediction accuracy 

SNR Range 5 – 25 dB Covers low to high signal quality scenarios 

Channel Models AWGN, Rayleigh, 

Rician (K = 10 dB) 

Represents different fading environments 

Mobility Scenarios 3 km/h (pedestrian) – 

120 km/h (vehicular) 

Evaluates Doppler and mobility effects 

Modulation Schemes QPSK, 16-QAM, 64-

QAM 

Captures practical wireless system variations 

Feature Vector 

Dimension 

52 Combines statistical, spectral, temporal, channel-specific, and 

historical BER features 

ARF Trees (M) 10 Optimized for MAE-RMSE trade-off 

OSVR Kernel Width 

(σ) 

2.0 Minimizes RMSE 

ARF Replacement 

Threshold (τ) 
0.1 Balances adaptability and stability 

OSVR Tolerance (ε) 0.01 Prevents overfitting 

 

The framework’s performance was evaluated using multiple quantitative and operational metrics, 

reflecting accuracy, robustness, and real-time feasibility as provided in Table 4: 

 

Table 4: Main Observation Attributes 
Attribute Description 

BER Prediction Accuracy Evaluated via MAE, RMSE, Pearson correlation (ρ), MAPE; tight alignment between predicted 

and actual BER observed across all SNRs 

Convergence Training error decreased exponentially, reaching steady-state within ~200 samples 

Robustness Consistent performance across AWGN, Rayleigh, and Rician channels; minor degradation at 

high velocities demonstrates drift-awareness 

Real-Time Latency 1.9 ms per frame on average; suitable for embedded implementations 

Memory Footprint 12.4 MB; compatible with real-time deployment 

Component Contribution Ablation study showed spectral features contributed most; ARF + OSVR (drift-aware β) 
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provided best performance 

Impact of Imperfect CSI Errors up to 10% slightly increased MAE (12% increase), highlighting robustness with CSI 
quality metrics 

Drift Detection Failure Modes False negatives (3.2%) and false positives (1.8%) resulted in temporary MAE spikes, 

recoverable within 50–120 frames 

 

Ground Truth Label Generation for Online Learning 

The proposed Adaptive Random Forest-Online Support Vector Regression (ARF-OSVR) model with 

ground truth label generation on the training of online learning was implemented in two stages: offline 

simulation for initial model training, and deployment for real-time learning. During the simulation in the offline 

phase, 5000 of the OFDM frames were produced at SNR values between 0 and 30 dB. The random bits were 

sent, and the current BER was estimated by counting errors on each frame. Based on the channel state, a 52-

dimensional multi-scale feature differentiation was obtained in each frame to compose a labeled dataset, which 

was employed to initialize the ARF and OSVR models: 

𝐷0 = {(𝑥𝑖 , 𝐵𝐸𝑅𝑖)}𝑖=1
5000 … . (46) 

During online deployment, the framework relies on continuous acquisition of ground truth labels. Two 

mechanisms were employed: CRC-based feedback serves as the primary source, where each OFDM frame 

contains CRC bits, and the receiver decodes the frame to estimate BER by counting detected errors: 

𝐵𝐸𝑅(𝑡) ≈
#𝑏𝑖𝑡 𝑒𝑟𝑟𝑜𝑟𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝐶𝑅𝐶

# 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑏𝑖𝑡𝑠
… . (47) 

This estimate is available within single frame duration (~100 μs for 802.11a) but can be noisy, 

particularly at low BER levels as well. 

The HARQ acknowledgment feedback can be considered as a secondary source that inherently gives 

coarse binary labels reflecting the ACK/NACK signals. CRC feedback is mixed with this crude supervision to 

fine-tune the BER estimate. In order to reduce noise, an exponential moving average is used: 

𝐵𝐸𝑅𝑠𝑚𝑜𝑜𝑡ℎ(𝑡) = α ⋅ BERCRC(t) + (1 − α) ⋅ BERsmooth(t − 1), α = 0.3. … . (48) 

CRC and HARQ feedback are fused to refine predictions, and label smoothing is introduced using an 

exponential moving average, which removes the noise effect and ensures stable online learning. 

 

OFDM Simulation and Experimental Setup 

The OFDM system considered for evaluation consists of multiple subcarriers and symbols per frame, 

which supports modulation schemes such as QPSK, 16-QAM, and 64-QAM. It is transmitted in a block-fading 

Rayleigh channel with additive white Gaussian noise. At the receiver, the OFDM symbols are equalized and 

demodulated to reconstruct the transmitted bits 𝑏 = (𝑏1, 𝑏2, . . . , 𝑏𝑇), which is mapped to OFDM symbols 𝑋 =
(𝑥1, 𝑥2, . . . , 𝑥𝑆) and transmitted over the channel, and the instantaneous  BER per frame is computed using an 

indicator function. The received signal for the 𝑠 − 𝑡ℎ OFDM symbol is: 

𝑦𝑠 = ℎ ∘ 𝑥𝑠 + 𝑔𝑠,     𝑔𝑠 ∼ 𝑁(0, 𝜎2), … . (49) 
Where ℎ the frequency-domain, is the channel vector and ∘ denotes element-wise multiplication. The 

receiver equalizes and demodulates to reconstruct 𝑏̂, and the instantaneous BER per frame is: 

𝐵𝐸𝑅 =
1

𝑇
∑ 1

𝑇

𝑖=1

{𝑏̂𝑖   ≠ 𝑏𝑖} … . (50) 

The simulations were performed with MATLAB R2023a on an Intel i7 CPU and 32GB of RAM, and 

based on different conditions of the channel (AWGN, Rayleigh, Rician), as well as mobility (pedestrian, urban, 

and vehicular) conditions. Real-time validation was optional and conducted with the USRP B210 SDRs in the 

indoor lab, campus pedestrian, and controlled vehicular scenarios. Frame synchronization was achieved by 

pilot-based channel estimation. 

 

Dataset Generation and Process 

The total number of generated OFDM frames was 50,000. These included 40,000 training frames, 

5,000 frames of which were used to train the ARF and OSVR models in the first batch, and the rest of the 

40,000 in online mode. The hyperparameter tuning was done on a validation set of 5,000 frames, and a test set 

of 10,000 frames was left as a final evaluation. The dataset distribution took into consideration uniform SNR 

sampling, a combination of a variety of channel types (40% AWGN, 30% Rayleigh, 30% Rician), and different 

mobility conditions (50% static, 30% pedestrian, 20% vehicular). QPSK, 16-QAM, and 64-QAM equally 

shared their modulation schemes. To ensure that the performance of the MAE remained consistent across data 

partitions, cross-validation was performed to confirm that the variance of MAE stood below 0.0002. 

First, feature engineering is a very important part of the ARF-OSVR framework. Multi-scale feature 

vectors (a 52-dimensional feature) of the statistics, spectral, temporal, wavelet, and information-theoretic 
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features are used to represent each OFDM frame. A multi-scale input feature of 52 dimensions: The input 

feature characterizes every frame of the OFDM: 

𝑥(𝑡) = [𝑓𝑠𝑡𝑎𝑡(𝑡), 𝑓𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙(𝑡), 𝑓𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑡), 𝑓𝑤𝑎𝑣𝑒𝑙𝑒𝑡(𝑡), 𝑓𝑖𝑛𝑓𝑜(𝑡)]𝑇 … . (51) 

Statistical characteristics are the mean, variance, skewness, and kurtosis of subcarrier SNRs. Spectral 

features are used to record power spectral density and inter-subcarrier correlations, and they can be used to 

record short and long-term SNR trends and Doppler spread. The wavelet decomposition offers multi-scale 

channel state-representation, and information-theoretic measures, like that of mutual information and entropy, 

serve to enrich features. Online prediction accuracy is enhanced by the inclusion of historical BER values and 

error in prediction. 

The second feature of the ARF ensemble is that it is composed of a series of decision trees, whose 

adaptive weights are changed by exponentially weighted new errors. Underperforming trees are automatically 

pruned, and OSVR dynamically replaces its support vectors with those discovered using stochastic gradient 

descent when prediction errors exceed an ε-insensitive threshold, discarding old or insignificant vectors. A 

three-tier drift detection mechanism is used to address concept drift, with the concept drift classified as mild, 

moderate, and severe, and an adaptation to the weight, replacement of the tree, or an entire ensemble is invoked. 

The prediction ensemble is calculated by combining ARF and OSVR outputs in a weighted fashion, the weight 

being dynamically set according to the size of the drift, variation in the performance between ARF and OSVR, 

and channel specifics. 

As a result, analyzing computational complexity reveals that ARF needs 𝑂(𝑀 ⋅ 𝐷 ⋅ 𝑙𝑜𝑔 𝑁𝑙𝑒𝑎𝑓) 

operations per frame, while OSVR requires𝑂(𝑛𝑠 ⋅ 𝐷), which results in an overall linear complexity with respect 

to feature dimensionality. This guarantees that the framework is appropriate for real-time usage, with the 

latency of simulation of about 1.9 ms per frame and memory consumption of about 12.4 MB. 

Performance evaluation is based on MAE between predicted and true BER, correlation, and 

convergence rate. Hardware validation indicates slightly higher MAE (~20%) compared to simulation due to 

non-idealities such as synchronization errors and carrier frequency offsets, yet the correlation remains above 

0.91 across all scenarios, and latency remains acceptable (~2.3 ms). Compared to state-of-the-art models such as 

XGBoost-RF, Deep LSTM-BER, ResNet-OFDM, and Transformer-AMC, the ARF-OSVR framework achieves 

superior accuracy, low latency, memory efficiency, and real-time feasibility. 

 

VI. Result Analysis 
Performance Metrics 

The framework was evaluated using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), 

Pearson correlation coefficient (ρ), Mean Absolute Percentage Error (MAPE), real-time prediction accuracy, 

latency, and memory footprint. 

 

Mean Absolute Error (MAE) measures the average magnitude of prediction errors: 

𝑀𝐴𝐸 =
1

𝑁
∑ ∣

𝑁

𝑖=1
𝑦̂𝑖 − 𝑦𝑖 ∣ ⋯ . (52) 

Root Mean Square Error (RMSE) quantifies the square root of the average squared differences 

between predicted and actual values: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦̂𝑖 − 𝑦𝑖)2 … . (53) 

𝑁

𝑖=1
 

 

Pearson Correlation Coefficient (ρ\rhoρ) evaluates the linear correlation between predicted and actual BER: 

𝑃 =
∑i(𝑦̂𝑖 − 𝑦̅̂)(𝑦𝑖 − 𝑦̅)

√∑i(𝑦̂𝑖 − 𝑦̅̂)2∑i(𝑦𝑖 − 𝑦̅)2
… . (54) 

 

 
Figure 7: MAE Comparison      Figure 8: MAPE Comparison 
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Figure 9: RMSE Comparison 

 

Mean Absolute Percentage Error (MAPE) measures relative prediction error as a percentage: 

𝑀𝐴𝑃𝐸 =
100%

𝑁
∑ |

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖 − 𝜖
| ,      𝜖 = 10−6 … . (55)    

𝑖

 

 

Hyperparameter sensitivity and grid search optimization confirmed that number of ARF trees (𝑀) and 

OSVR kernel width (𝜎) were most critical, while ARF replacement threshold (𝜏) and OSVR tolerance (𝜀) were 

relatively robust. Interaction effects revealed that higher M could partially compensate for suboptimal 𝜎. The 

optimal hyperparameters were: 

 

Table 5: Optimal Hyperparameters 
Parameter Candidate Values Optimal Rationale 

Number of ARF Trees {5, 10, 15, 20} 10 Best MAE-RMSE trade-off 

OSVR Kernel Width {1.0, 2.0, 3.0, 5.0} 2.0 Minimizes RMSE 

ARF Replacement Threshold {0.05, 0.1, 0.15, 0.2} 0.1 Balance adaptability/stability 

OSVR Tolerance {0.005, 0.01, 0.02} 0.01 Prevents overfitting 

 

Comparative Analysis 

Across 10,000 test frames, the ARF-OSVR ensemble significantly outperformed state-of-the-art 

baselines, as shown in Table 6: 

 

Table 6: Performance Metrics 
Method MAE (×10⁻³) RMSE (×10⁻³) Ρ MAPE (%) Latency (ms) Memory (MB) 

ARF-OSVR (Proposed) 4.30 9.10 0.938 8.7 1.9 12.4 

XGBoost-RF 5.90 10.80 0.920 10.6 2.3 9.2 

Deep LSTM-BER 6.80 12.60 0.913 12.1 3.1 19.7 

ResNet-OFDM 7.60 14.10 0.905 13.8 4.5 33.2 

Transformer-AMC 8.20 14.90 0.898 14.9 6.7 41.8 

 

 
Figure 10: Baselines vs Proposed Model 

 

As figure 7, 8, 9, and 10 shows, the ARF-OSVR (Proposed) model achieves the best performance 

with MAE = 4.30×10⁻³, RMSE = 9.10×10⁻³, ρ = 0.938, MAPE = 8.7%, Latency = 1.9 ms, and Memory = 12.4 

MB, which indicates very high accuracy, strong correlation, and low computational cost. XGBoost-RF shows 

slightly lower performance with MAE = 5.90×10⁻³, RMSE = 10.80×10⁻³, ρ = 0.920, MAPE = 10.6%, Latency = 

2.3 ms, and Memory = 9.2 MB. Deep LSTM-BER has MAE = 6.80×10⁻³, RMSE = 12.60×10⁻³, ρ = 0.913, 
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MAPE = 12.1%, Latency = 3.1 ms, and Memory = 19.7 MB, showing higher errors and longer processing time. 

ResNet-OFDM gives MAE = 7.60×10⁻³, RMSE = 14.10×10⁻³, ρ = 0.905, MAPE = 13.8%, Latency = 4.5 ms, 

and Memory = 33.2 MB, while Transformer-AMC performs worst with MAE = 8.20×10⁻³, RMSE = 

14.90×10⁻³, ρ = 0.898, MAPE = 14.9%, Latency = 6.7 ms, and Memory = 41.8 MB. This demonstrates that 

ARF-OSVR is superior to the other techniques in terms of accuracy, speed, and memory efficiency. 

Wilcoxon signed-rank tests confirmed statistical significance (p < 0.001) for all comparisons, with 

large effect sizes (Cohen’s d > 1.8) against each baseline. ARF-OSVR achieved a 27.1% lower MAE and 

15.7% lower RMSE compared to XGBoost-RF. 

 

BER Prediction Accuracy 

Across SNR levels, the ARF-OSVR framework achieved high prediction accuracy, as summarized in Table 7: 

 

Table 7: Accuracy of BER Prediction 
SNR (dB) MSE (×10⁻³) ρ Accuracy (%) 

0 5.1 0.97 92 

5 2.8 0.98 94 

10 1.5 0.99 96 

15 0.8 0.99 97 

 

Scatter plots and error histograms confirm tight alignment between predicted and actual BER, with 

correlation coefficients exceeding 0.98 across all SNRs. 

 

Convergence and Robustness 

Training error decreased exponentially, which reaches steady state within 200 samples. Channel-

specific performance remained very consistent across AWGN, Rayleigh, as well as Rician environments as 

given in Table 8, and Figure 11: 

 

Table 8:  Channel-specific Performance 
Channel MAE RMSE Notes 

AWGN 0.0042 0.0089 Baseline, no fading 

Rayleigh 0.0045 0.0093 NLOS urban environment 

Rician 0.0044 0.0090 LOS suburban 

 

 
Figure 11: Channel-Specific Performance Comparison (MAE) 

 

 
Figure 12: Model Convergence Plot: Training Error vs Samples 
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Figure 12 shows the model convergence by plotting the training error against the number of samples. 

It reveals that the error reduces gradually with an increase in the number of training data, which is a sign of very 

successful learning and stabilization of the model. 

Mobility impact analysis (Table 9) indicates minor degradation at higher speeds, which demonstrates 

the drift-aware mechanism’s robustness. 

 

Table 9: Mobility Impact Analysis 
Velocity MAE Notes 

3 km/h 0.0041 Pedestrian, quasi-static 

30 km/h 0.0045 Urban, moderate Doppler 

120 km/h 0.0049 Vehicular, high Doppler 

 

Real-Time Performance and Computational Cost 

Feature extraction, ARF, OSVR, and ensemble weighting were profiled for 1,000 frames: 

 

 
Figure 13: Feature Extraction and Processing Time Profilling 

 

Figure 13 is an overview of the execution time of every operation within the proposed ARF-OSVR 

framework. The extraction of features consumes 420 μs in time, which is 22.1% of the overall processing time. 

Most time-consuming steps are ARF and OSVR prediction, with 41.1% and 26.8% contribution, respectively. 

Ensemble weighting and updates take very little time, and they comprise only 10% of the entire latency. The 

memory footprint (12.4 MB) and total latency (1.9 ms) of the framework render it suitable for real-time and 

embedded applications. The latency can be achieved on a sub-millisecond level by potential optimization with 

C++, SIMD vectorization, or FPGA acceleration. 

 

VII. Conclusion 
The paper introduces ARF-OSVR, a new online ensemble-based framework for predicting the real-

time BER of OFDM systems. The proposed method outperforms state-of-the-art baselines by 27.1% MAE and 

15.7% RMSE with 1.9 ms latency, which is appropriate for URLLC applications. Among the contributions are: 

(1) feature engineering (preservation of channel information), (2) online learning (removal of offline training 

overhead), (3) theoretical convergence guarantees and O(TlogT) regret bounds, (4) three-tier concept drift 

adaptation in mobile environments, as well as (5) extensive experimental validation under a wide range of 

conditions as well. The framework addresses serious drawbacks of conventional methods (loss of information), 

the state-of-the-art deep learning methods (offline training, high latency, no drift support), and offers a viable 

solution to the next-generation 5G/6G wireless networks that demand adaptive modulation, resource 

distribution, and ultra-reliable low-latency communications. The proposed paper proposes a new online 

ensemble prediction framework for the BER of an OFDM system in real time. The ARF-OSVR model that has 

been proposed is based on the combination of Adaptive random Forests and Online Support Vector Regression 

to ensure high prediction accuracy, while keeping the computational cost that can be implemented in real-time. 

The proposed framework also presents a new ensemble structure as a highly valuable contribution, a 

dynamically weighted combination of ARF and OSVR components. It enables learning over the internet, 
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whereby it is possible to constantly adapt to varying conditions of the channels without the necessity of 

retraining offline. Extensive testing on four state-of-the-art algorithms reveals a consistent method of achieving 

better performance, with 27.1% reduced MAE and 15.7% reduced RMSE. Having a latency of less than 2ms 

and a moderate memory usage, the framework can be deployed in real-life and demonstrates stability in a 

variety of channel models, modulation schemes, and mobility conditions. 

Despite these strengths, there some limitations. The existing implementation uses the assumption of 

perfect channel state information and is targeted at single-antenna systems, which restricts its application to 

MIMO-OFDM and situations where there is an error in the estimation of the channel state information. The 

solution proposed applies vital constraints of current techniques of BER prediction and still provides the 

computational capabilities demanded by real-time wireless communication systems. The work is a basis for 

more sophisticated link adaptation algorithms and will aid in the creation of more efficient and reliable wireless 

communication systems. The ensemble approach introduces higher computational overhead compared to 

lightweight methods, and its efficiency relies on the appropriate choice of hyperparameters as well. Channel 

model dependencies thoroughly require representative training data to be optimally deployed. 

Future research might involve generalizing the framework to imperfect CSI environments with 

denoising autoencoders, adaptation to massive MIMO and mmWave systems, implementation of transformer-

based architectures to achieve higher pattern recognition, federated learning to coordinate across cells, and 

hardware acceleration to sub-millisecond latencies with ASIC/FPGA. To sum up, the ARF-OSVR framework 

presents a higher accuracy, computational efficiency, scalability, and practical deployment feasibility. The 

overall findings, convergence tests, and strength tests indicate its effectiveness in real-time wireless 

communication applications, and the limitations established present future research and optimization 

opportunities. 
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