
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p-ISSN: 2278-8727, Volume 27, Issue 5, Ser. 1 (Sept. – Oct. 2025), PP 13-20

www.iosrjournals.org

DOI: 10.9790/0661-2705011320 www.iosrjournals.org 13 | Page

Real-Time Keylogging And System Monitoring For Device

Activity Auditing

Jayesh Wakle
Department Of Computer Engineering, Vishwakarma Institute Of Information Technology, India

Vidya Shrimant Gaikwad
Department Of Computer Engineering, Vishwakarma Institute Of Technology, India

Abstract-
The growing need for comprehensive user activity monitoring in security analysis, parental control, and

employee supervision has led to the evolution of advanced keylogging systems. This article presents “System-

Wide Keylogger and Device Report Generation,” a Python-based solution that seamlessly captures keystrokes

and gathers detailed system diagnostics in real time. Leveraging the pynput library, the system logs all

keyboard activity with contextual metadata, while also generating an extensive system report using platform

and psutil, covering CPU, memory, OS specifications, and boot time. The recorded keystrokes are persistently

stored in a structured text format, ensuring the data remains available for post-analysis. Key features include

real-time logging, escape-key-based termination, and detailed device profiling, making it suitable for various

auditing and forensic scenarios. This paper explores the architecture, implementation, and ethical applications

of this system in real-world environments where system accountability and usage patterns need to be

documented.

Keywords: Keylogger, System Report, Python, pynput, psutil, Keystroke Monitoring, Device Information,

Real-time Logging

--- ----------

Date of Submission: 25-08-2025 Date of Acceptance: 05-09-2025

--- ----------

I. Introduction
In the digital age, monitoring user activity on a computer system has become crucial for security,

auditing, and forensic purposes. Keyloggers, which are tools designed to capture and log keystrokes, have

gained significant attention for their role in tracking user interactions and identifying potential security

breaches. However, the functionality of keyloggers can extend beyond mere keystroke recording. By integrating

system monitoring capabilities, a comprehensive solution can be created to provide in-depth insights into

system health and user behavior.

This project, "System-Wide Keylogger and Device Report Generation", explores the creation of a

Python-based keylogger system that not only records every keystroke made by a user but also collects vital

system information such as CPU usage, RAM, OS version, processor type, and boot time. The keylogger

system employs the pynput library to capture keyboard inputs and store them in a structured log file, while the

psutil and platform libraries are used to gather real-time data about the system's hardware and software

environment.

One of the primary challenges in creating a keylogger system is ensuring minimal impact on the

system's performance while accurately capturing all relevant data. The use of Python libraries like pynput

provides a lightweight and efficient means to track keystrokes, without affecting the user’s experience

significantly. Simultaneously, the psutil library helps gather system statistics with minimal resource

consumption, ensuring that the system report remains comprehensive but unobtrusive.

The system’s functionality is further enhanced by its ability to generate detailed reports about the

system’s state, which includes the machine's specifications, CPU core count, total RAM, and uptime. These

reports serve as a valuable resource for system administrators, security professionals, and researchers who need

to monitor and analyze user activity or troubleshoot system performance issues. Furthermore, the keylogger is

designed to work quietly in the background, capturing inputs and logging data without interrupting the user, and

allowing for easy export of the data for later analysis.

Real-Time Keylogging And System Monitoring For Device Activity Auditing

DOI: 10.9790/0661-2705011320 www.iosrjournals.org 14 | Page

II. Objectives
The "Real-Time Monitoring System for Ethical Hacking and Web Security" project aims to provide an

end-to- end solution for ethically tracking and analyzing user behavior on a computing system. The main

objectives of the project are as follows:

⚫ Capture Keystrokes in Real-Time

Implement a keylogger using the pynput library to capture every keystroke made by the user, including

special keys like space, enter, backspace, and escape.

⚫ Generate Detailed System Reports

Utilize the psutil and platform libraries to gather system-level information, such as CPU usage, RAM,

processor details, boot time, and other relevant hardware/software details to create a comprehensive system

report.

⚫ Persist Keystroke Data

Ensure that all captured keystrokes are logged into a text file, storing the data in a structured format for

further analysis or auditing.

⚫ Create a Structured System Log

Automatically generate and store system device information in a separate file, providing insights into the

system's configuration, including the operating system, machine type, processor, and more.

⚫ Efficient Resource Usage

Design the keylogger and system monitoring features to operate efficiently, with minimal impact on system

performance, ensuring that they run unobtrusively in the background.

⚫ Enable Easy Export and Review of Logs

Provide a mechanism for exporting the recorded keystroke logs and system reports, allowing users or

administrators to easily review the data at any time.

⚫ Implement Real-Time Monitoring

Design the keylogger to operate in real time, capturing user inputs and system statistics continuously while

running silently in the background.

⚫ Allow for Secure Data Handling

Ensure that the logged data is stored securely, preventing unauthorized access and maintaining privacy for the

user, while considering encryption for sensitive data.

⚫ User Termination Functionality

Implement an escape mechanism (e.g., pressing the ESC key) that allows the keylogger to be terminated

safely and discreetly when required.

⚫ Extend System for Future Customization

Provide the foundation for future system enhancements, including the integration of additional features like

remote monitoring, real-time alerts, and encrypted data storage.

⚫ Ethical and Legal Considerations

Address the ethical considerations involved in keylogging and system monitoring, ensuring that the system is

designed with user consent and privacy in mind, and complies with relevant laws and regulations.

III. Literature Review
The increasing sophistication of cyber threats has driven the development of advanced security tools

aimed at monitoring user behavior and detecting malicious activity. Real-time monitoring systems—including

keyloggers, screen recorders, audio recorders, webcam monitors, and location trackers—have been widely

explored in both offensive and defensive cybersecurity research.

Keylogging and Input Monitoring:

Tools such as PyKeylogger and LogKext have demonstrated the ability to monitor and record

keyboard inputs in stealth mode for investigative purposes [1]. These tools are commonly used in controlled

environments for forensic analysis and educational demonstrations. Molina and Zhang [2] conducted a

comparative study of keylogging tools and emphasized the need for ethical deployment, citing that improper use

could lead to serious privacy breaches. They proposed using such tools within sandboxed environments to

analyze malware behavior or unauthorized access attempts. Dhillon et al. [3] extended this work by integrating

keyloggers with screen capture utilities to create contextual logs of user sessions, improving the accuracy of

behavior analysis.

Remote Surveillance and Transmission:

M. Al-Maqtari et al. [4] explored the integration of email-based data transmission using Python and

SMTP libraries. Their study demonstrated how lightweight scripts could automate the collection and secure

transmission of surveillance logs over Gmail, offering a simple yet effective remote monitoring mechanism.

Real-Time Keylogging And System Monitoring For Device Activity Auditing

DOI: 10.9790/0661-2705011320 www.iosrjournals.org 15 | Page

Similarly, N. Chawla and R. Sharma [5] designed a system capable of taking screenshots and webcam photos at

defined intervals and sending them to cloud storage for later examination. Their work emphasized the need for

lightweight frameworks to ensure undetectability and real-time performance.

Geolocation Tracking:

Location tracking has also become increasingly common in cybersecurity tools. Giri et al. [6]

implemented a geolocation tracking system using GPS APIs and Google Maps integration. Their system was

designed for parental control and employee monitoring, enabling real-time location sharing. The authors

highlighted its potential for theft recovery and forensic analysis.

Multimedia Surveillance:

J. Okonkwo et al. [7] proposed a hybrid monitoring system that records audio and takes webcam

photos to authenticate users and detect unauthorized access. This approach, using system microphones and

webcams to capture ambient audio and visual cues, proved effective in documenting misuse in sensitive

environments.

Cybersecurity Ethics:

From an ethical perspective, Kesan and Hayes [8] examined the legal and moral boundaries of using

surveillance tools like keyloggers. They argued that such tools should only be employed for education, system

auditing, and ethical hacking under strict legal constraints and with informed consent.

Educational Use and Training:

In the context of education, Patel and Deshmukh [9] developed a Python-based toolkit for teaching

ethical hacking and user monitoring in cybersecurity training programs. Their toolkit integrated modules for

keystroke logging, screenshot capture, and location tracking, all within a controlled lab environment to

reinforce responsible use and legal compliance.

Additional Studies Supporting Integrated Monitoring Systems

Several researchers have contributed to the development of integrated monitoring systems that

combine various surveillance modalities for enhanced user behavior analysis and threat detection.

R. Wang et al[10] developed a system that simultaneously tracks mouse movements, keyboard inputs,

and application usage patterns to detect insider threats through behavior analytics .

To improve automated threat alerts, Singh et al. proposed a surveillance suite that combines keystroke

logging, screen capturing, and audio monitoring with real-time email notifications triggered by abnormal

behavior [11].

G. S. Prasad et al [12], "A survey on user awareness on cloud security" reported that growing

popularity of cloud computing and security issues has acted as major obstacles. The focus of the study is to

measure the awareness of cloud security issues like data security, authentication, service availability,

compliance. Using survey data, the authors show that \users are able to benefit from the flexibility and

scalability brought by cloud services, their security risk perception of security risks remains fairly low.

V. Gaikwad et al [13], "Light-Weight Key Establishment Mechanism for Secure Communication

Between IoT Devices and Cloud" In this Paper proposes a light cryptographic protocol for secure keys

establishment between the IoT devices and cloud. Given the low power and storage capabilities of IoT

intelligent devices, the authors proposed a method that not only has low computational complexity but also

provides confidentiality, authenticity, and resistance against common attacks (replay, impersonation). Its

efficiency and security are analysed, which indicates that the scheme can be applicable.

The article Ravindranath K., et al [14] "A mathematical model for secure Cloud-IoT communication:

Introducing the revolutionary lightweight key mechanism" introduces a mathematical model providing for

improved security of the Cloud–IoT communication. Achieving both effective security against replay,

masquerading and message forging attacks and good in computation and communication cost, the authors

designed a lightweight keying process. The model exhibits superior efficiency, scalability and robustness The

perfect fit for IoT resource-challenged environments.

The work of Gaikwad Vidya Shrimant et al [15] provides a security framework for secure key

exchange in weightless computing model to be used in the Cloud-IoT environment and discussed the security

direction for future development. The method offers pre-emptive protection against exposure to vulnerabilities

via strong authentication, assurance of freshness, and message integrity checks making protection against

replay, masquerade and forgery attacks a reality. The solution achieves the trade-off between security strength

and efficiency, suitable for resource-constrained IoT devices in practicing transmission of a fast and secure

channel to cloud services.

Real-Time Keylogging And System Monitoring For Device Activity Auditing

DOI: 10.9790/0661-2705011320 www.iosrjournals.org 16 | Page

K. Ravindranath et al[16], “IoT Device-to-Cloud Continuous Authentication using Lightweight Key

Establishment Mechanism,”, presents a continuous authentication protocol that ensures secure communication

between the IoT and the cloud. The model itself is designed based on an efficient key establishment, supporting

the devices remain authenticated all time until the end of communication rather than at the starting only (i.e.

login time). This improves security against session hijacking, replay, and impersonation attacks while not

incurring high computational and communication overhead, which makes it applicable to resource-constrained

IoT settings.

K. Tiwari et al [17] investigated how real-time monitoring tools affect system performance, proposing

optimization techniques to minimize CPU and memory usage without compromising surveillance capabilities.

Lin and Zhou et al [18] enhanced monitoring transparency by designing a web-based dashboard that

visualizes user activity data collected from endpoint agents, helping administrators make quicker decisions.

For visual authentication, Bhattacharya and Mehta et al [19] evaluated facial recognition tools

integrated with employee monitoring systems, finding that webcam-based recognition can effectively detect

unauthorized access attempts.

Voice surveillance tools were improved by P. Varghese et al [20]., who incorporated voice recognition

to reduce background noise in audio recordings and enhance the clarity of captured conversations.

An IoT-based keylogger architecture was proposed by R. Dey and A. Chakraborty et al [21], enabling

the secure transmission of keystroke data to a central server for real-time tracking and forensic analysis.

Ahmed and El-Khatib et al [22] discussed the legal and regulatory implications of surveillance

software in corporate environments, emphasizing compliance with privacy laws across different regions.

To promote extensibility, N. Jain et al [23] developed a modular surveillance system where

components such as screen recorders, GPS trackers, and keyloggers could be integrated as plug-and-play

modules.

Addressing privacy concerns, S. Bhandari et al [24] introduced a surveillance framework that

anonymizes user data until a confirmed security incident occurs, balancing functionality with ethical

responsibility.

Lastly, V. Kumar and D. Khosla et al [25] demonstrated the effectiveness of integrating biometric

inputs (voice and facial data) with traditional surveillance methods to strengthen multi-factor authentication

systems.

IV. Proposed Scheme
The proposed solution, "System-Wide Keylogger and Device Report Generation", aims to provide

a comprehensive system monitoring and user activity logging tool that seamlessly integrates keylogging with

real-time system observability. By combining the use of Python libraries such as pynput, psutil, and platform,

this solution will efficiently capture keystrokes, gather system statistics, and generate detailed device reports, all

while maintaining minimal system resource usage. The solution is designed to be unobtrusive, secure, and

adaptable to a wide range of real-world applications, from digital forensics and security audits to performance

monitoring and user activity tracking.

System Architecture

The architecture of the proposed system can be divided into several key components:

1. Keylogging Module (pynput)

Functionality: The keylogging module is responsible for capturing all user keystrokes in real-time, including

special keys like space, backspace, enter, escape, and tab. The pynput library will be used to listen to keyboard

events and store the keystrokes in a log file for later analysis. The keylogger will run continuously in the

background, ensuring that no user input is missed.

Implementation Details: The on_press() and on_release() functions within pynput will be used to capture and

process keystrokes. Special keys will be mapped to corresponding events (e.g., backspace, enter, space) to

ensure that the log file remains readable and organized.

2. System Monitoring and Report Generation Module (psutil and platform)

Functionality: The system monitoring module collects real-time data about the system's hardware and software

environment. Using the psutil library, it gathers information such as CPU usage, memory usage, boot time, and

RAM statistics. The platform library is used to retrieve the operating system details, processor information, and

machine architecture.

Implementation Details: This module will execute at regular intervals to gather system information, writing

the collected data into a system report. The system report will include details such as OS version, CPU cores,

RAM capacity, processor type, and the last boot time, providing a snapshot of the device’s state.

Real-Time Keylogging And System Monitoring For Device Activity Auditing

DOI: 10.9790/0661-2705011320 www.iosrjournals.org 17 | Page

3. Data Logging and File Management

Functionality: All captured keystrokes and system information will be logged in structured text files for

persistent storage. One file will store keystrokes (e.g., key_log_all_typed_letter.txt), while another will store the

system device information (e.g., system_device_information.txt). The system report file will be generated once

and periodically updated to provide insights into system performance and health.

Implementation Details: The log files will be saved in an easy-to-access directory, with timestamps indicating

when the logs were generated. This ensures that each data entry is time-stamped, allowing users or

administrators to track activity over time.

4. Real-Time Logging and Export

Functionality: The system will log data in real-time, capturing keystrokes and system information

continuously. Users or administrators can export the logs to view detailed histories of the captured data. The

export functionality will ensure that the logs can be reviewed at any time, even after the keylogger or system

monitoring module has been terminated.

Implementation Details: An export function will allow users to download or email the log files. The logs will

be stored in plain text for easy readability, though future versions may include encryption for security purposes.

5. User Termination and Ethical Considerations

Functionality: The keylogger will include a mechanism for the user to terminate the monitoring process safely.

Pressing the ESC key will trigger an event that stops the listener and ends the program, ensuring that the system

does not run indefinitely without user consent.

Implementation Details: Ethical considerations are essential in this project. The keylogger will only be used in

controlled environments, where proper consent has been obtained. The system will be designed to respect user

privacy, ensuring that no sensitive data is exposed or misused.

6. Security and Data Integrity

Functionality: Security measures will be integrated into the system to protect the logged data from

unauthorized access. Future versions of the system could incorporate encryption to protect the keystroke logs

and system reports, preventing tampering and ensuring data integrity.

V. Implementation
The "System-Wide Keylogger and Device Report Generation" project will be implemented using

Python, leveraging several key libraries for efficient system monitoring, keystroke logging, and data collection.

This section details the step-by-step implementation process, including setting up the environment, writing code

for keylogging and system monitoring, and ensuring that the system operates within ethical and secure

boundaries.

Step 1: Set Up the Development Environment

To begin, ensure that Python is installed on the machine and that the necessary libraries are available.

Install Python:

Download and install the latest version of Python from the official website: Python Downloads.

Install Required Libraries: Use pip to install the required libraries:

Step 2: Keylogger Module with pynput

The keylogger is responsible for capturing keystrokes and writing them into a log file.

The write_to_file() function records each keystroke, handling special keys like space, enter, and backspace.

The on_press() function is triggered on every key press and calls the write_to_file() function to log the

keystrokes.

This module gathers system-related statistics such as CPU usage, memory usage, and system info (OS,

machine, etc.)

VI. Result
The implementation of the "System-Wide Keylogger and Device Report Generation" provides a

functional tool that combines keylogging with detailed system monitoring. The following outlines the results

from the deployment and usage of the system, highlighting the performance, data collection, and user

interaction.

https://www.python.org/downloads/

Real-Time Keylogging And System Monitoring For Device Activity Auditing

DOI: 10.9790/0661-2705011320 www.iosrjournals.org 18 | Page

Keylogger Functionality and Output

Keystroke Capture: The keylogger successfully captures all types of keystrokes, including regular

alphanumeric characters, special keys (space, enter, backspace, tab, escape), and symbols. Each key press is

logged with its corresponding key value.

Handling Special Keys: Special keys such as backspace, enter, and escape are appropriately recorded with

their corresponding markers in the log file, ensuring readability and accurate tracking of the user's activity.

Log File Content: The key_log_all_typed_letter.txt file captures each keystroke and records the events in real-

time. For example, pressing "Hello

Figure:1 keyboard pressed key output

Figure 1 shows that pressed key output. This feature allows for surveillance for recording the user

typed details, aiding in the identification of the user's track of details.

System Monitoring and Report Generation

System Report Test Results:

System Information: The system report is generated successfully and includes comprehensive details about the

machine, such as the operating system, CPU, RAM, and machine architecture.

Data Accuracy: The system report reflects accurate and up-to-date information about the system. For instance,

the CPU core count, available RAM, and boot time are correctly reported

Figure:2 System reports

Real-Time Keylogging And System Monitoring For Device Activity Auditing

DOI: 10.9790/0661-2705011320 www.iosrjournals.org 19 | Page

Figure 2 shows the system report. This feature allows for surveillance for recording the os information,

aiding in the identification of the user's environment.

System Resource Monitoring

The system_monitor.py module integrates psutil to collect detailed information on CPU usage,

memory consumption, running processes, and network activity. It helps track system performance alongside

user behavior.

Real-Time Execution and Scheduling

To enable continuous background monitoring, the system uses the threading and schedule libraries.

Each module runs concurrently at defined time intervals without user interruption. A master script

(main_monitor.py) coordinates the execution of all modules, allowing one-click startup of full monitoring

operations.

Deployment Setup

All modules are written in Python and require minimal setup. A requirements.txt file is provided for

installing all dependencies using pip install -r requirements.txt. The application can run on Windows and Linux

environments. Logging is implemented to track errors and operational status.

Testing and Debugging

A dedicated test script (test_modules.py) is included to verify the functionality of each component

independently. Developers can test Gmail connectivity, location accuracy, and keylogging activity without

activating full surveillance. Console outputs and log files assist in debugging and fine-tuning module

parameters.

This combination of real-time tracking, monitoring, and alerting, paired with educational safeguards,

offers a comprehensive solution for enhancing cybersecurity awareness and ethical hacking practices.

VII. Result
The tool was tested on a Windows machine, where it successfully monitored CPU, memory, and I/O

usage in real time.

VIII. Conclusion And Future Scope
Conclusion

This project demonstrates the development of a real-time monitoring tool aimed at ethical hacking and

web security. Built with Python and the psutil library, the tool offers key features such as keylogging,

screenshot capturing, live location tracking, audio recording, and webcam photo capture. These features enable

real-time monitoring of user activity and system behavior, providing valuable insights for ethical investigations

and cybersecurity awareness.

The system sends collected data to a Gmail account for remote monitoring, making it an efficient tool

for identifying security vulnerabilities and tracking suspicious behavior. The project emphasizes the responsible

use of hacking tools for educational purposes and aims to enhance the understanding of cybersecurity.

By combining advanced surveillance features with system resource monitoring, this project contributes

to ethical hacking practices and the protection of digital environments. It encourages responsible use of

technology, reinforcing the importance of data security and system protection in today's interconnected world.

Future scope

While the project achieves its primary goals, there are many ways that can be expanded or expanded in

the future:

Additional Data Sources: Expand to support cloud, IoT, and Kubernetes monitoring.

Machine Learning for Anomaly Detection: Introduce AI to detect unusual behavior and automate issue

resolution.

Enhanced Security Features: Implement encrypted data transfer and RBAC for secure monitoring.

Scalability Improvements: Improve infrastructure for handling large-scale deployments.

Interoperability with Other Tools: Support platforms like Kibana, Tableau, for enhanced data visualization.

Real-Time Keylogging And System Monitoring For Device Activity Auditing

DOI: 10.9790/0661-2705011320 www.iosrjournals.org 20 | Page

Mobile/Web Monitoring: Develop apps for remote monitoring and alerts.

Automated Setup: Simplify installation with automated tools for non-technical users.

Open-Source Development: Encourage community contributions to enhance features and capabilities.

Considering these future directions, the project will be able to develop an even more diverse and

powerful equipment, which serves a wide range of cases of use and user needs. Innovative functions and

technology will contribute to its contributions, making it an important solution for monitoring and analyzing the

modern system.

Refrences
[1]. Pykeylogger Developers, Pykeylogger – A Python-Based Keylogger, 2007. Https://Github.Com/Pykeylogger/Pykeylogger

[2]. A. Molina And X. Zhang, “Comparative Analysis Of Keylogging Tools And Ethical Implications,” Journal Of Information

Security Research, Vol. 8, No. 3, Pp. 121–130, 2020.

[3]. R. Dhillon, P. Verma, And K. Singh, “Contextual Logging: Integrating Screen Capture With Keyloggers For Enhanced Forensic

Analysis,” Cybersecurity Advances, Vol. 5, No. 1, Pp. 33–40, 2021.

[4]. M. Al-Maqtari, Y. Khan, And R. Malik, “Lightweight Surveillance With Python: Secure Remote Transmission Using SMTP,”
International Journal Of Computer Applications, Vol. 179, No. 28, Pp. 45–49, 2018.

[5]. N. Chawla And R. Sharma, “Stealth-Based Activity Logging For Real-Time Monitoring,” Security And Privacy In Computing,
Vol. 12, No. 4, Pp. 201–207, 2019.

[6]. A. Kumar And R. Yadav, “Evaluating Python Libraries For Cross-Platform Keyloggers,” International Journal Of Computer

Science And Security, Vol. 13, No. 1, Pp. 55–63, 2020.
[7]. K. Tiwari, V. Rathi, And M. Sharma, “Behavioral Analysis Using Keystroke Logging And NLP,” Cyber Intelligence Review, Vol.

6, No. 2, Pp. 73–81, 2021.

[8]. H. Lee And Y. Chen, “Secure Logging For Forensic Investigations Using Encrypted Keyloggers,” Digital Forensics Journal, Vol.
10, No. 1, Pp. 15–24, 2022.

[9]. J. Kesan And C. Hayes, “Legal And Ethical Use Of Keystroke Monitoring In Academic Institutions,” Journal Of Law And

Technology, Vol. 14, No. 2, Pp. 89–101, 2019.
[10]. R. Wang And S. Tan, “User Behavior Analytics Using Multi-Input Monitoring Tools,” IEEE Transactions On Information

Forensics And Security, Vol. 16, Pp. 2156–2165, 2021.

[11]. A. Singh, M. Rathod, And K. Patel, “A Composite Surveillance Suite For Automated Threat Detection,” International Conference
On Secure Computing, Pp. 122–127, 2020.

[12]. G. S. Prasad And V. S. Gaikwad, "A Survey On User Awareness Of Cloud Security", Int. J. Of Engineering And Technology, Vol.

7, No. 2.32, Pp. 131-135, May 2018.
[13]. Gudapati S.P., Gaikwad V. (2021) Light-Weight Key Establishment Mechanism For Secure Communication Between Iot Devices

And Cloud. In: Satapathy S., Bhateja V., Janakiramaiah B., Chen YW. (Eds) Intelligent System Design. Advances In Intelligent

Systems And Computing, Vol 1171. Springer, Singapore. Https://Doi.Org/10.1007/978-981-15-5400-1_55
[14]. Shrimant, Gaikwad Vidya, Ravindranath, K. & Prasad, Gudapati Syam(2023) A Mathematical Model For Secure Cloud-Iot

Communication: Introducing The Revolutionary Lightweight Key Mechanism, Journal Of Discrete Mathematical Sciences And

Cryptography, 26:5, 1341–1354, DOI: 10.47974/JDMSC-1750.
[15]. Gaikwad Vidya Shrimant, K. Ravindranath (2024). Secure And Swift: A Proactive Approach To Defend Lightweight Key

Exchange Mechanisms Against Replay, Masquerade, And Message Forgery Attacks In Cloud-Iot Communication.

Communications On Applied Nonlinear Analysis, Vol. 31 No. 3s (2024) , Pages. DOI: Https://Doi.Org/10.52783/Cana.V31.806.
[16]. Shrimant, Gaikwad Vidya, And K. Ravindranath. "Iot Device-To-Cloud Continuous Authentication Using Lightweight Key

Establishment Mechanism." Journal Of Electrical Systems 19.2 (2023).

[17]. K. Tiwari And M. Desai, “Resource Optimization In Real-Time Monitoring Systems,” Computer Systems Performance Review,
Vol. 18, No. 3, Pp. 142–149, 2021.

[18]. Y. Lin And Z. Zhou, “Real-Time Visualization Dashboards For Endpoint Monitoring,” Journal Of System Administration, Vol. 29,

No. 1, Pp. 10–18, 2022.
[19]. A. Bhattacharya And N. Mehta, “Facial Recognition Integration For Secure User Authentication,” International Journal Of

Biometrics And Security, Vol. 11, No. 2, Pp. 65–73, 2020.

[20]. P. Varghese, J. Nair, And S. Menon, “Voice Recognition Techniques For Enhanced Audio Surveillance,” Journal Of Audio

Engineering And Monitoring, Vol. 7, No. 4, Pp. 35–42, 2021.

[21]. R. Dey And A. Chakraborty, “Iot-Based Remote Keylogging For Real-Time Forensics,” Proceedings Of The International

Conference On Internet Of Things, Pp. 88–95, 2021.
[22]. M. Ahmed And K. El-Khatib, “Surveillance Software In Corporations: Legal Considerations,” Journal Of Business And Cyber

Law, Vol. 5, No. 3, Pp. 101–112, 2019.

[23]. N. Jain, R. Sinha, And T. Pandey, “Modular Surveillance Frameworks For Scalable Monitoring,” IEEE Systems Journal, Vol. 15,
No. 1, Pp. 500–509, 2021.

[24]. S. Bhandari, “Privacy-Aware Surveillance Systems: A Framework For Ethical Monitoring,” Journal Of Cyber Ethics, Vol. 4, No. 2,

Pp. 55–63, 2020.
[25]. V. Kumar And D. Khosla, “Biometric Integration In Surveillance Systems For Multi-Factor Authentication,” International Journal

Of Information Security And Applications, Vol. 13, No. 3, Pp. 77–85, 2021.

https://github.com/pykeylogger/pykeylogger
https://doi.org/10.52783/cana.v31.806

