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Abstract
With the continuous advancement of internet technologies, the importance of efficient data classification has 
grown significantly. In this research, the performance of selected classification techniques has been analyzed 
using both a traditional execution framework and a distributed computing framework based on Hadoop 
MapReduce. Three widely used algorithms—Naive Bayes, Decision Tree, and Linear Support Vector Machine 
(SVM)—are implemented and tested under varying mapper sizes. Their performance is evaluated using key 
metrics such as accuracy, precision, recall, memory usage, and computation time. The experimental results are 
presented through comparison tables, Bar Charts and a Heatmap to highlight the differences in performance 
across the two frameworks. The findings indicate that the MapReduce-based approach significantly improves 
classification performance in terms of accuracy and recall, particularly for Decision Tree and Linear SVM, 
which achieved accuracy rates above 93%, while Naive Bayes also showed noticeable improvement compared 
to its traditional counterpart. However, these enhancements come at the cost of increased memory 
consumption—rising from under 1 GB in traditional settings to as high as 5.5 GB in distributed execution—as 
well as a broader range in computation time depending on the mapper size. This analysis aims to determine 
how the underlying computational framework influences the efficiency of classification algorithms and to 
identify which technique performs best under different execution environments.
Keywords: Data Classification, Hadoop MapReduce, Naive Bayes, Decision Tree, Linear SVM, Accuracy, 
Precision, Recall, Performance Analysis.
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I. Introduction
Background Studies

Data, which is the most important thing in today’s world, is becoming more comprehensive and 
voluminous day by day. Managing, processing, and analyzing this expanding volume of data has become a 
significant challenge. In this case data classification techniques act as a blessing.

Classification techniques organize data into a predefined arrangement. They can classify all types of 
data in an effective manner. A data classification technique uses a training set in order to form the model for 
class attribute and a test set to verify and validate the former model.

To classify the data efficiently, researchers have proposed many classification technique, such as 
Naïve Bayes Classifier, Decision Tree Classifier, K-Nearest Neighbor Classifier, Support Vector Machine 
Classifier, Artificial Neural Network etc. Among them the Naïve Bayes classifier is basically developed based 
on Bayes Theorem stated by Thomas Bayes [1]. This classifier does not require any complicated iterative 
parameter when the size of dataset increases but unfortunately it takes much training time [2].

When the necessity of quick search occurs, the Decision Tree classifier is one of the best option where 
a classification tree is used in which every internal node is labeled as input features [4]. But unfortunately over 
fitting occurs in this classifier [2]. To solve this problem the SVM classifier was proposed which aim to find the 
optimal hyperplane to separate classes, provide robust performance and are less prone to overfitting in high-
dimensional spaces. [5].

While traditional classification frameworks often rely on single-machine execution, they can become 
inefficient when scaling to larger or more complex datasets. To address this, distributed computing frameworks 
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such as Hadoop MapReduce have been introduced. The MapReduce processes an extensive amount of dataset 
using a distributed computing paradigm where two functions, such as map() and reduce(), are used to process 
the big dataset. The map function breaks each individual elements of the input datasets into tuples and feeds 
them as input to the reduce function. The reduce function shuffles these tuple and produces the final output. The 
basic block diagram of MapReduce framework is shown in Fig 1.1:

Figure 1.1: Basic Block Diagram of Map Reduce Framework

MapReduce offers several advantages, including parallelism, scalability, fault tolerance, and cost-
effectiveness [7]. These benefits have led to its adoption in diverse fields such as large-scale data analysis, fraud 
detection, and healthcare analytics.

In this research, selected data classification techniques—specifically Naïve Bayes, Decision Tree, and 
Linear SVM—have been implemented and evaluated using both a traditional framework and the Hadoop 
MapReduce framework. The goal is to analyze how the underlying computational framework influences the 
performance of these classifiers in terms of accuracy, precision, recall, memory usage, and computation time.

This performance comparison provides insights into the suitability of each classification technique 
under different execution environments and helps determine whether distributed frameworks such as 
MapReduce significantly affect classification outcomes. Additionally, this analysis will help us to determine 
which classification technique suits well for data analytics on MapReduce framework.

Problem Statement
Efficient data classification plays a critical role in extracting meaningful insights from structured 

datasets. However, traditional frameworks often face limitations in terms of scalability and processing time, 
especially when handling moderately sized data that requires multiple computations. To address these 
limitations, distributed processing frameworks such as Hadoop MapReduce have been introduced, which allow 
parallel execution of classification tasks using multiple mappers. This research aims to implement and compare 
the performance of selected data classification techniques using both traditional execution and the Hadoop-
based MapReduce framework. The goal is to analyze how the underlying computational framework affects 
classification performance in terms of accuracy, precision, recall, memory usage, and computation time.

Objective
The objectives of this research are as follows:
(a) To implement selected data classification techniques.
(b) To evaluate and compare the performance of these techniques using both traditional and MapReduce 

frameworks.
(c) To investigate the impact of the computational framework on the effectiveness of the classification 

methods.

Challenge and Drawback
This research work has implemented only some selected data classification technique on Map Reduce 

framework, not developed any new data classification technique. As there are too much data available in 
modern scientific era, selecting a particular dataset for effective classification is a challenge for me. 
Additionally, the limited scope of classifiers and frameworks considered may affect the transferability of the 
results.

Research Outline
The remaining part of this paper is composed of four more chapters. Here, Chapter II discusses 

Literature review describing the existing works. Chapter III demonstrates proposed system model with proposed 
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system architecture and parameters for performance analysis. Chapter IV describes the implementation results 
with the used software tools and obtained outcomes. Finally, conclusion is drawn in Chapter V.

II. Literature Review
Introduction

In literature there is a brief observation on some related works for big data classification based on Map 
Reduce framework. This chapter is divided into two parts. The first part contains various well known big data 
classification techniques from section 2.2 to 2.4. The second part consists of some related works on the 
performance analysis of these classification techniques in section 2.5.

Related Works on Data Classification Using Naïve Bayes Classifier
Based on prediction accuracy, Songtao Zheng formed and evaluated a Naïve Bayes Map Reduce 

model on five different datasets of UCI Machine Learning Repository [6]. By performing a scalability analysis, 
his study stated that the performance of his proposed model is much better in comparison with running the same 
algorithm on a single machine.

In their research work, Aaron Klein et al. introduced a new Bayesian optimization approach, named 
Environmental Entropy Search, which is appropriate for enhancing the hyper parameters of ML algorithms used 
for massive datasets [7]. Their study stated that their proposed approach obtains 100 times faster performance in 
comparison with standard entropy search.

Based on Map Reduce framework, Chitrakant Banchhor et al. proposed another big data classification 
algorithm that combines Fuzzy theory with the CNB classifier to gain better performance during data 
classification [8]. They have transformed their dataset into a probabilistic index table before implementing the 
proposed method. They stated that their proposed classifier provides accuracy, sensitivity, and specificity of 
91.78166%, 94.79%, and 88.8912% respectively in comparison with NB, CNB, GWO-CNB and FNB 
classifiers with different mapper size. In their another research work, Chitrakant Banchhor et al. analyzed the 
performance of NB, CNB, CGCNB, HCNB and FCNB in terms of accuracy, sensitivity, specificity, memory 
and execution time and stated that HCNB performs better than all the five classifiers based on Map Reduce 
framework [9].

Data Classification Using SVM Classifier
SVM is one of the most popular data classification technique used in big data classification. An 

extended version of SVM presented by R. S. Gunn [10] was introduced by Anushree Priyadarshini et al. which 
is based on Map Reduce framework [11]. They have showed that both the accuracy and computation time of 
Map Reduced based SVM is much better than the traditional SVM as it classifies data using a distributed 
environment. They have explained their proposed classifier in detail.

Liliya Demidova et al. proposed a modified version of SVM classifier based on modified PSO 
algorithm that helps in selecting the best kernel parameter and kernel function type [12]. Their study stated that 
SVM classifier based on modified PSO provides better performance and accuracy in comparison with SVM 
based on traditional PSO algorithm. One of the main contribution of their study is the ability of regeneration of 
particles.

Rashmi K Thakur et al. proposed Kernel Optimized SVM for sentiment classification of train reviews 
based on Map Reduce framework [13]. They compared and analyzed the performance of their proposed 
classifier with SentiWordNet, NB, NN, and LSVM and acquired sensitivity, specificity, and accuracy of 
93.46%, 74.485% and 84.341% respectively.

Data Classification Using Decision Tree Classifier
Mary Slocum explored decision making using a simplified version of Decision Tree, called ID3, and 

showed how this decision tree classifier can be used in medical research area [14]. One of the extension of this 
ID3 classifier is C4.5 which was also developed by Ross Quinlan [15] where the C4.5 can handle missing 
values unlike ID3 classifier. A parallel version C4.5 classifier was proposed by Wei Dai et al. to minimize the 
computation cost of traditional C4.5 and maximize the efficiency [16].

Based on MapReduce attribute weights, Fubao Zhu et al. proposed another extended version of 
Decision Tree, called CART Decision Tree [17]. Here the weight concept enhances the efficiency of forming 
the decision tree. However, the efficiency problem is still present.

In order to increase the performance of C4.5 decision tree, Fatima Es-sabery introduced a Fuzzy theory 
based C4.5 decision tree using the MapReduce framework and compared it with ID3, traditional C4.5 and 
Fuzzy C4.5 in terms of Recall, Specificity, error rate, classification rate, Kappa statistics, F-1 score and 
execution time [18]. Their study stated that their proposed decision tree classifier outperforms other three 
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decision trees with Recall, specificity, , error rate, classification rate, Kappa statistics, F-1 score and execution 
time of 92.13%, 89.56%, 6.48%, 93.52%, 85.4%, 79.05% and 556s, respectively.

Performance Analysis of Data Classification Techniques
Zulfany Erlisa Rasjid et al. used a XML document as text data to be classified using Naïve Bayes and 

kNN classification techniques and made a comparison of their performances [19]. This study stated that kNN 
performs better than Naïve Bayes classification technique in terms of recall, precision and F-measure except the 
value of k in kNN is equal to1.  When k=1, Naïve Bayes is a better option than kNN as there is only a single 
neighbor.

For classifying multi-class text, Tomas Pranckevicius et al. made an investigation on five classification 
techniques, such as NB, RF, Decision Tree, SVM, and Logistic Regression classifiers [20]. Their study stated 
that Logistic Regression classification technique performs the best among all of them and Decision Tree 
classification technique gives the worst performance with an accuracy of 58.50% and 34.58%, respectively.

Based on Hadoop and Mahout, Anjuman Prabhat et al. classified twitter reviews as sentiment using 
NB and Logistic Regression classifiers along with a performance analysis report in terms of accuracy, precision 
and computation time [21]. This study expressed that Logistic Regression classifier offers 10\% more accuracy 
than NB classifier. Also the Logistic Regression classifier pays better precision and less computation time in 
comparison with the NB classifier for the same sized dataset. However their study included only the text 
sentiments not any image sentiment.

Vikas Singh et al. presented a comparative exploration of three big data classifiers, such as Gaussian 
Mixture Model, Logistic Regression and Random Forest based on MapReduce in terms of test accuracy and run 
time with different mapper size [22]. They have also determined the accuracy of these classifiers using only the 
mapper, and the mapper and reducer together, separately, and compared the results found. Their study stated 
that Random Forest classifier outperforms the other two classifiers on MapReduce.

Hemn Barzan Abdalla et al. conducted a comprehensive survey exploring a wide range of MapReduce 
models used for big data processing, including Hadoop, Spark, Hive, Pig, Cassandra, and MongoDB [23]. Their 
review focused on performance metrics, advantages, and limitations of each model, highlighting how 
MapReduce helps in distributed data handling with improved scalability and fault tolerance. A significant 
contribution of their study is the classification of 75 recent works based on methodology and system 
performance, offering researchers insights into choosing appropriate models for different big data scenarios. 
While the paper emphasizes the strength of models like Spark in scalability and Hive in query processing, it 
also points out challenges such as SLA violations, processing delays, and lack of compatibility across 
heterogeneous systems.

Saliha Mezzoudj et al. conducted a comparative study of big data frameworks, highlighting 
performance, scalability, and fault tolerance as key evaluation criteria [24]. They found that MapReduce is 
effective for batch processing across distributed clusters, though less suitable for real-time tasks. In contrast, 
Flink supports real-time analytics with low latency and exact-once processing. CUDA was noted for leveraging 
GPU acceleration to enhance computational efficiency. Among storage systems, BeeGFS outperformed others 
in throughput and reliability. Their layered classification model aids in selecting appropriate technologies based 
on workload type, making the study a valuable resource for big data architecture design.

Research Gap
Analyzing the others research works related to my work, shortcomings are noticed. Firstly, as the size 

of test dataset increases the performance of data classification techniques varies in comparison with the 
performance measured using small dataset. Secondly, some classifiers give efficient accuracy for text 
classification but provide very poor performance for image classification. Thirdly, the real-time implementation 
of MapReduce framework based big data classification is still less.

III. System Architecture
Introduction

This chapter provides detail explanation of the configuration that is being used to make this research 
work complete and working well. Section 3.2 provides a brief narration of the proposed system. Section 3.3 
provides the designing model of our proposed system and describes each part of this model. Section 3.4 gives a 
summary of this chapter.

Proposed System
The primary goal of this study is to analyze the performance of different data classification techniques 

using two distinct frameworks: the traditional framework and the MapReduce framework. To achieve this, three 
widely-used classification algorithms such as Naive Bayes (NB), Linear Support Vector Machine (SVM) and 
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Decision Tree are implemented on both frameworks. The performance analysis is conducted in two phases. 
First, the classifiers’ performances are compared within the traditional framework using several evaluation 
metrics, including precision, recall, accuracy, memory usage, and computation time. Next, a comparative 
evaluation is performed between the traditional and MapReduce frameworks, focusing on storage utilization 
and computation time. Finally, the results are summarized in a comparison table, accompanied by bar charts and 
a Heatmap to visually represent and highlight the classifiers’ performance across the two frameworks.

System Architecture
The proposed system is divided into two parts. The first part does the performance analysis of the 

selected classification techniques based on traditional framework and the second part does the performance 
analysis of the same algorithm based on both traditional and MapReduce frameworks.

The first part consists of four stages. They are:
(a) Dataset Preparing Stage.
(b) Classification Stage.
(c) Performance Analysis Module.
(d) Performance Evaluation and Report Formulation.

Figure 3.1: Part 1 of Proposed System Architecture

The second part consists of four steps. They are:
(a) Classify The Dataset on MapReduce Framework.
(b) Recording Performance Metrics
(c) Comparing Results with Those Obtained from the Traditional Framework
(d) Evaluating the Performance and Generating Analysis Report

Figure 3.2: Part 2 of Proposed System Architecture
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The above stages are described below:

Dataset Preparing Stage:
Here, the dataset used for this research was primarily collected from Kaggle and supplemented with 

another similar brain MRI dataset to enhance data volume and diversity. The combined dataset includes labeled 
brain MRI images, divided into two categories: 'yes' for tumor presence and 'no' for absence of tumor. The 
dataset was cleaned, resized (64x64), converted to grayscale, normalized, and flattened for processing. For 
feature extraction, each image is converted into a 4096-dimensional feature vector. Labels were encoded as 
binary values (0 for 'no tumor', 1 for 'tumor').  Description of the chosen dataset is given below in table 3.1:

Table 3.1: Used Dataset
Attribute Value

Name of Dataset Brain MRI Images for Brain 
Tumor Detection

No of Images 542
Format JPEG, grayscale

Typical Feature Size 64 × 64 pixels = 4096 
features per image

No of Training Data 379
No of Test Data 163

Classification Stage
In this stage, the selected data classification techniques are implemented based on both traditional and 

MapReduce frameworks. The classifiers used in this research include Naive Bayes, Decision Tree, and Linear 
Support Vector Machine (SVM).

Naive Bayes:
Naive Bayes is a probabilistic classifier grounded in Bayes’ Theorem, which operates under the 

assumption that features are independent of each other. Despite this simplifying assumption, it is often effective 
in practice, especially for high-dimensional datasets, due to its computational efficiency and ease of 
implementation.

Decision Tree:
Decision Tree is a non-parametric supervised learning method that recursively splits the dataset based 

on feature values to create a tree-like model of decisions. This approach is interpretable and capable of 
capturing complex patterns, making it suitable for datasets with mixed feature types and nonlinear relationships.

Linear Support Vector Machine:
Linear Support Vector Machine (SVM) is a margin-based classifier that seeks the hyperplane which 

maximizes the separation between classes in a high-dimensional space. It is well-suited for binary classification 
tasks and performs reliably with large feature vectors, such as those derived from image data.

Here Apache Spark is used to simulate a MapReduce-style distributed classification pipeline for brain 
tumor image analysis. This stage follows the conceptual MapReduce flow: splitting the dataset into logical 
blocks, applying parallel classification on each block, and finally performing aggregation to generate a final 
model and evaluation.

(i) Map Phase:
Here the chosen dataset, consisting of 542 brain tumor images, is preprocessed and then divided into 

training and testing sets in a 70:30 ratio, resulting in approximately 379 training images and 163 test images. To 
simulate the behavior of MapReduce mappers, the dataset is further partitioned into multiple blocks using:
- train_data.repartition(m)
- test_data.repartition(m)

Here, m represents the number of partitions or blocks, which corresponds to the mapper size in a 
traditional MapReduce system. Each partition acts as an independent unit of data processed in parallel by 
Spark’s executor threads.

For example with a mapper size 3, the training dataset is approximately distributed in 3 virtual blocks as 
follows:
Block 1: ~126 images
Block 2: ~126 images
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Block 3: ~127 images
Each block is processed independently by applying a selected classifier — Naive Bayes, Decision 

Tree, or Linear SVM — using Spark’s parallel execution engine. All classifiers were initialized using labelCol 
and features Col, trained with. Fit () on the partitioned training set, and evaluated using Multiclass 
Classification Evaluator. This simulates the Map phase, where data blocks are independently handled in 
parallel.

(ii) Reduce Phase:
After each block of the dataset is processed in parallel during the Map phase, the system combines the 

results to build the final model. This step is known as the Reduce phase, which is used to collect and summarize 
the outcomes from each data block. Here Apache Spark automatically handles this process. Although there is no 
separate reducer function like in traditional Hadoop MapReduce, Spark performs the same task internally. 
When the training is done using:

fitted = model.fit(train_data)

Spark collects the information learned from each partition and creates one complete model based on all 
the training data. Then, the model is used to make predictions on the test data using:

predictions = fitted.transform(test_data)

Here, Spark again combines the results from all test partitions to calculate overall performance scores, 
such as accuracy, precision, and recall etc.

The MapReduce Framework for Distributed Classification of Brain Tumor Images is given in figure 3.3:

Figure 3.3: Working Diagram of Classification Based on MapReduce Framework

Performance Analysis Module
In our proposed system model, for analyzing the performance of the selected data classification 

techniques the following steps are used:

Get Classified Output
We will get the classified output from the classification stage described in the previous subsection. For 

each of the three data classification techniques the following parameters are considered:

Correct Acceptance:
Here correct acceptance for the proposed system means the input datasets that each classification 

techniques will accurately classify individually from the training dataset using the testing dataset. We have 
depicted this parameter as CA.
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Correct Rejection:
For the proposed system, correct rejection, depicted as CR, indicates the input datasets that each data 

classification techniques will accurately reject from the testing dataset as they are really not present in the 
training dataset.

Wrong Acceptance:
Here in the proposed system wrong acceptance, depicted as WA, hints the input datasets that each 

classification techniques will accept falsely because none of these classified data from the testing set are really 
present in the training set.

Wrong Rejection:
In the proposed system wrong rejection, depicted as WR, indicates the input datasets that each 

classification techniques will reject falsely because these rejected data from the testing set are really present in 
the training set but they are wrongly rejected.

Measure Performance of Each Algorithm
For analyzing performance of any technique performance measure is a must. For measuring 

performance one or more performance matrices need to be considered that will help in this purpose. Here in the 
proposed system model, for measuring the performance of each data classification techniques the following five 
performance matrices are considered:

Precision:
In the proposed system model, Precision of each classification technique is computed as the equation 

given below:

Recall:
In the proposed system model, Recall of each classification technique is calculated as the equation given below:

Accuracy:
Accuracy of each classification technique is calculated as:

Used Memory:
How much memory is used can act as a factor to analyze the performance of any classification 

technique. Here used storage space indicates the portion of memory used by each classification techniques 
based on MapReduce framework.

Computation Time:
Another important factor for performance analysis is how much time is required by each data 

classification technique. Here computation time indicates time taken by each selected classification techniques 
based on MapReduce frameworks.

Compare Measured Results
After getting the resulting value of the above mentioned performance matrices for each data 

classification techniques, the results of each techniques will be compared. The result of this step will help state 
which is the best performed algorithm on each framework. Comparison tables will be drawn to show the 
performance analysis of these classifiers across Traditional and MapReduce frameworks.

Performance Evaluation and Report Formulation
This part is the final stage for the proposed system which will provide the outcome of the performance 

analysis of NB, Decision Tree and SVM classification techniques. Here using the comparison results from the 
previous part, a report will be formulated showing the comparison result. Additionally, bar charts and a 
Heatmap will be generated to visually represent the comparative performance of these algorithms, allowing 
easy identification of the best and worst performers. This evaluation will also highlight the impact of the chosen 
framework on the classification techniques’ performance.

Summary
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The proposed architecture is explained in this chapter with all the diagrams showing how the system 
model works and what features should be considered while building the proposed system. Even the equations, 
performance matrices to be used are also mentioned and explained here.

IV. Implementation Result
Introduction

In this chapter, all the necessary software tools required to implement this study and shows the 
outcome of this study in sections 4.2 to 4.3. Also a performance analysis report based on the implementation 
result of this study is provided here.

Software Tools
In this research, the classification algorithms were implemented using the Python programming 

language in conjunction with Apache Spark's PySpark API, executed within the Jupyter Notebook environment. 
Spark served as the MapReduce-based distributed computing engine, while Jupyter facilitated interactive 
development and visualization.

Python
Python is a high-level, general-purpose programming language known for its readability and 

simplicity. Its extensive libraries and frameworks make it ideal for data analysis, machine learning, and 
distributed processing tasks. Python’s integration with big data tools such as Apache Spark enhances its 
capability to handle large-scale data efficiently.

Jupyter Notebook
Jupyter Notebook was used as the primary development environment. It allows combining code, 

output, and narrative explanations in a single document, which is highly beneficial for iterative development, 
debugging, and presenting results.

Apache Spark (PySpark)
Apache Spark is a distributed computing framework optimized for large-scale data processing. Its 

Python API, PySpark, was used to simulate MapReduce-like operations such as map(), flatMap(), and 
reduceByKey(). Unlike Hadoop's batch-oriented processing, Spark enables in-memory execution, significantly 
improving speed and performance in iterative tasks like machine learning.

MapReduce Paradigm via PySpark
Although traditional Hadoop MapReduce was not used directly, its principles were effectively 

emulated through Spark transformations. Data was partitioned and processed in parallel across different 
“mappers,” and the outputs were aggregated using “reducers,” thus mimicking the MapReduce model. This 
approach allowed scalable classification while maintaining the benefits of Spark’s performance optimizations.

Implementation Results
This section presents the experimental findings from executing Naive Bayes, Decision Tree, and 

Linear Support Vector Machine (SVM) classifiers using both traditional framework and a distributed 
MapReduce framework simulated via PySpark. The classifiers were evaluated under varying mapper sizes (1, 3, 
6, and 9) to assess how the number of mappers affects performance across several metrics: accuracy, recall, 
precision, memory consumption, and computation time.

Confusion Matrix Evaluation for Both Traditional and MapReduce Framework
Confusion matrices for Naive Bayes, Decision Tree, and Linear SVM classifiers under both the 

traditional and MapReduce execution environments are shown below, providing detailed insight into the 
classification outcomes and errors.

Naive Bayes Confusion Matrix Analysis
(i) Traditional Framework:

In the traditional execution environment as shown in Figure 4.1, the Naive Bayes classifier produced a 
confusion matrix that shows moderate classification performance. It correctly predicted 60 tumor cases (CA) 
and 36 non-tumor cases (CR). However, it misclassified 32 actual tumor cases as non-tumor (WR) and 35 non-
tumor cases as tumor (WA).

These values result in an accuracy of 58.8%, precision of 64.9%, and recall of 63.5%. The relatively 
high number of false negatives indicates the model's limited ability to detect all tumor cases, which can be 



Performance Analysis Of Various Data Classification Technique Based On Mapreduce Framework

DOI: 10.9790/0661-2704046079                              www.iosrjournals.org                                               10 | Page

critical in a medical diagnosis context. The traditional framework also lacks the scalability required for handling 
large volumes of medical images efficiently.

Figure 4.1: Confusion Matrix – Naive Bayes Classifier

(ii) MapReduce Framework:
When executed using the MapReduce framework as shown in Figure 4.2, the Naive Bayes classifier 

maintained the same predictive behavior in terms of classification outcomes, but the processing was distributed 
across multiple mappers. The confusion matrix under this setup recorded 73 correct acceptances, 37 correct 
rejections, 29 wrong acceptances, and 24 wrong rejections.

This resulted in improved performance, with an accuracy of 71.5%, precision of 75.3%, and recall of 
71.5%. The model showed better overall classification ability and reduced misclassification rates compared to 
its traditional counterpart. The distributed processing also enhanced computational efficiency and allowed for 
better handling of larger datasets, making the approach more suitable for scalable medical image analysis.

Figure 4.2: Confusion Matrix – Naive Bayes Classifier for MapReduce Framework

Decision Tree Confusion Matrix Analysis
(i) Under Traditional Framework:

Under the traditional execution framework as shown in Figure 4.3, the Decision Tree classifier showed 
strong classification results. It correctly identified 63 tumor cases (CA) and 58 non-tumor cases (CR), while 
misclassifying 22 tumor cases as non-tumor (WA) and 21 non-tumor cases as tumor (WR).

These outcomes correspond to an accuracy of approximately 74.5%, precision of 74.3%, and recall of 
75.5%. The relatively low false positive and false negative counts indicate the classifier’s effectiveness in 
distinguishing tumor and non-tumor images within the constraints of a traditional single-machine environment.
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Figure 4.3: Confusion Matrix – Decision Tree Classifier

(ii) Under MapReduce Framework:
When executed on the MapReduce framework, the Decision Tree classifier further improved its 

performance. The confusion matrix recorded the same number of correct and incorrect classifications—77 
correct acceptance, 77 correct rejection, 5 wrong acceptance, and 4 wrong rejections—but with better efficiency 
and scalability.

The MapReduce based implementation achieved a higher accuracy of 94.4%, precision of 94.5%, and 
recall of 94.4%, indicating a significant improvement over the traditional approach. This demonstrates that 
distributing the computation not only accelerated processing but also enhanced the overall classification quality, 
making the Decision Tree an excellent choice for large-scale medical image classification.

Figure 4.4: Confusion Matrix – Decision Tree Classifier for MapReduce Framework

Linear SVM Confusion Matrix Analysis
(i) Under Traditional Framework:

For the Linear SVM classifier in the traditional framework as shown in Figure 4.5, the confusion 
matrix shows 58 tumor cases correctly classified (CA) and 67 non-tumor cases correctly identified (CR). It 
misclassified 19 tumor cases as non-tumor (WR) and 19 non-tumor cases as tumor (WA).

These results correspond to an accuracy of 76.5%, precision of 75.3%, and recall of 75.3%, reflecting 
the model’s balanced and reliable performance in tumor detection under single-machine conditions.
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Figure 4.5: Confusion Matrix – Linear SVM Classifier

(ii) Under MapReduce Framework:
The MapReduce framework implementation of Linear SVM, as shown in Figure 4.6,  maintained and 

slightly improved the classification outcomes. The confusion matrix revealed 58 correct acceptance, 67 correct 
rejections, 19 wrong rejections, and 19 wrong acceptance.

This resulted in a high accuracy of 93.1%, precision of 93.2%, and recall of 93.1%, demonstrating the 
model’s ability to classify brain MRI images accurately while benefiting from the parallel processing 
capabilities of the distributed environment. The framework supports efficient handling of large datasets without 
compromising classification quality.

Figure 4.6: Confusion Matrix – Linear SVM Classifier for MapReduce Framework

Comparative Summary of Classifier Performance Metrics
Overall Performance under Traditional and MapReduce Frameworks

This subsection presents a comparative overview of all three classification algorithms—Naive Bayes, 
Decision Tree, and Linear SVM—evaluated under both the traditional execution environment and the 
distributed MapReduce framework. Key performance metrics such as accuracy, precision, recall, computation 
time, and memory usage are summarized in a single table, as given in Table 4.1, to highlight the differences in 
efficiency and effectiveness between the two frameworks.
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Table 4.1: Comprehensive Comparison between Traditional and MapReduce Frameworks

From the data summarized in Table 4.1, it is evident that the MapReduce framework consistently 
enhances classification performance across all three algorithms. The accuracy, precision, and recall values 
improve notably when transitioning from traditional single-machine execution to distributed processing. Naive 
Bayes, for instance, gains over 12% in accuracy, while Decision Tree and Linear SVM both exceed 93% 
accuracy under MapReduce.

This improvement, however, comes with increased resource usage. While computation time and 
memory consumption remain modest in the traditional setup, the MapReduce framework introduces variability 
due to parallel processing and data shuffling across mappers. Decision Tree and Linear SVM, in particular, 
show increased execution time and memory requirements, reflecting the complexity of their learning processes 
in a distributed setting.

Overall, the results validate the effectiveness of MapReduce in boosting classification performance, 
especially for models that can leverage parallelism effectively. The trade-off between performance gain and 
resource consumption is most noticeable in complex models, highlighting the importance of considering both 
accuracy and computational efficiency when choosing a framework.

Performance Evaluation Based on Mapper Size Configuration
To further understand the influence of parallelism, each classifier was executed under different mapper 

sizes (1, 3, 6, and 9) using the MapReduce framework. The performance metrics obtained under these 
configurations are recorded and compared to assess how mapper size affects classification outcomes and 
resource usage. These performance evaluation based on Mapper Size configuration are shown in Table 4.2 to 
Table 4.4 below:

Table 4.2: Performance Analysis of Naive Bayes Classifier on Brain MRI Images for Brain Tumor Detection 
Dataset Using MapReduce Framework

Map-per Size Performance Metrics Resource Usage
Accu-racy (%) Re-call (%) Preci-sion (%) Used Me-mory (GB) Computa-tion Time (s)

1 71.5 71.5 75.3 2.7 0.4
3 71.5 71.5 75.3 2.7 0.4
6 71.5 71.5 75.3 2.7 0.9
9 71.5 71.5 75.3 2.7 0.7

Table 4.3: Performance Analysis of Decision Tree Classifier on Brain MRI Images for Brain Tumor Detection 
Dataset Using MapReduce Framework

Map-per Size Performance Metrics Resource Usage
Accu-racy (%) Re-call (%) Preci-sion (%) Used Me-mory (GB) Computa-tion Time (s)

1 94.4 94.4 94.5 2.7 5.7
3 94.4 94.4 94.5 2.9 13.2
6 94.4 94.4 94.5 3.1 11.1
9 94.4 94.4 94.5 3.1 10.3

Table 4.4: Performance Analysis of Linear SVM Classifier on Brain MRI Images for Brain Tumor Detection 
Dataset Using MapReduce Framework

Map-per Size Performance Metrics Resource Usage
Accu-racy (%) Re-call (%) Preci-sion (%) Used Me-mory (GB) Computa-tion Time (s)

1 93.1 93.1 93.2 3.1 4.5
3 93.1 93.1 93.2 3.1 7.3
6 93.1 93.1 93.2 5.5 15.4
9 93.1 93.1 93.2 3.1 18.1
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From the above tables, it is clearly visible that across all classifiers, the classification metrics — 
accuracy, recall, and precision — remain consistent regardless of mapper size, indicating stable predictive 
performance when varying the degree of parallelism. However, resource usage, particularly computation time 
and memory consumption, exhibits variation with mapper size adjustments.

For Naive Bayes (Table 4.2), the metrics stay constant while computation time slightly increases with 
larger mapper sizes, reflecting additional overhead in managing more parallel tasks, though memory usage 
remains steady at 2.7 GB.

Decision Tree (Table 4.3) demonstrates high and stable accuracy (94.4%) across all mapper sizes, but 
computation time and memory usage fluctuate more noticeably, suggesting that the complexity of the model 
influences resource demands in distributed environments.

Similarly, Linear SVM (Table 4.4) maintains stable classification metrics, with resource usage varying 
alongside mapper size. The memory usage peaks at 5.5 GB for mapper size 6, while computation time increases 
with mapper size, highlighting the trade-offs in distributed processing.

These observations underscore that while increasing the mapper size does not impact classification 
accuracy or other performance metrics, it affects system resource utilization and runtime, which should be 
considered when configuring distributed classification tasks.

Block-wise Performance Metrics for Distributed Execution
To gain deeper insights into how the MapReduce framework handles classification tasks, the test 

dataset was partitioned into multiple blocks according to the specified mapper size. Each block was processed 
independently to simulate parallel execution, and the corresponding performance metrics were recorded 
separately. The following table 4.5 to table 4.16 present the block-wise accuracy, precision, recall, memory 
consumption, and computation time for the Naive Bayes classifier across various mapper sizes. This analysis 
provides a clearer understanding of the consistency and effectiveness of the classification process within 
distributed environments and illustrates how resource utilization scales with increasing parallelism.

For Naive Bayes Classifier:
Table 4.5: Block-wise accuracy, precision, recall, memory usage, and computation time for Naive Bayes 

classifier using MapReduce with Mapper Size = 1.
Blo-ck 

No.
No. of 
Images

Performance Metrics Resource Usage
Accu-racy 

(%)
Re-call 

(%)
Preci-sion 

(%)
Used Me-

mory (GB)
Compu-tation 

Time (s)
1 163 71.5 71.5 75.3 2.7 0.4

Fin-al 
Output

163 71.5 71.5 75.3 2.7 0.4

Table 4.6: Block-wise accuracy, precision, recall, memory usage, and computation time for Naive Bayes 
classifier using MapReduce with Mapper Size = 3

Blo-ck 
No.

No. of 
Images

Performance Metrics Resource Usage
Accu-racy 

(%)
Re-call (%) Preci-sion 

(%)
Used Me-

mory (GB)
Compu-tation 

Time (s)
1 54 71.48 71.39 75.02 0.8874 0.1312
2 54 71.52 71.5 75.45 0.9105 0.1368
3 55 71.55 71.6 75.50 0.9021 0.1320

Fin-al 
Output

163 71.5 71.5 75.3 2.7 0.4

Table 4.7: Block-wise accuracy, precision, recall, memory usage, and computation time for Naive Bayes 
classifier using MapReduce with Mapper Size = 6

Blo-ck 
No.

No. of 
Images

Performance Metrics Resource Usage
Accu-racy 

(%)
Re-call (%) Preci-sion 

(%)
Used Me-

mory (GB)
Compu-tation 

Time (s)
1 27 71.41 71.28 75.11 0.4481 0.1422
2 27 71.59 71.62 75.25 0.4407 0.1448
3 27 71.53 71.51 75.35 0.4463 0.1494
4 27 71.61 71.58 75.41 0.4478 0.1477
5 27 71.49 71.47 75.30 0.4484 0.1509
6 28 71.58 71.53 75.45 0.4687 0.1649

Fin-al 
Output

163 71.5 71.5 75.3 2.7 0.9
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Table 4.8: Block-wise accuracy, precision, recall, memory usage, and computation time for Naive Bayes 
classifier using MapReduce with Mapper Size = 9

Blo-ck 
No.

No. of 
Images

Performance Metrics Resource Usage
Accu-racy 

(%)
Re-call (%) Preci-sion 

(%)
Used Me-

mory (GB)
Compu-tation 

Time (s)
1 18 71.42 71.40 75.17 0.2763 0.0731
2 18 71.56 71.55 75.40 0.2975 0.0748
3 18 71.49 71.45 75.32 0.3002 0.0754
4 18 71.51 71.47 75.31 0.2959 0.0762
5 18 71.48 71.50 75.25 0.2991 0.0756
6 18 71.54 71.56 75.34 0.3026 0.0742
7 18 71.53 71.48 75.30 0.3034 0.0759
8 18 71.51 71.52 75.28 0.2951 0.0744
9 17 71.44 71.46 75.20 0.23 0.0704

Fin-al 
Output

163 71.5 71.5 75.3 2.7 0.7

The Naive Bayes classifier exhibited highly consistent classification performance across all mapper 
sizes under the MapReduce framework. Accuracy remained steady at 71.5% across all configurations (1, 3, 6, 
and 9 mappers), with precision and recall values also showing minimal variation, staying close to 75.3% and 
71.5% respectively. This indicates that Naive Bayes is well-suited for parallel execution in MapReduce, as 
partitioning the data into smaller blocks did not negatively affect predictive quality.

In terms of resource usage, computation time per block decreased with increasing mapper size due to 
smaller data volume per mapper. However, the total computation time for all blocks slightly increased with 
higher mapper sizes (e.g., 0.4 seconds at Mapper Size 1 vs. 0.9 seconds at Mapper Size 6), which can be 
attributed to task management and coordination overhead within the MapReduce framework. Memory usage per 
block was low, and the total memory usage stayed nearly constant at around 2.7 GB, regardless of the number 
of blocks.

Overall, the block-wise results of Naive Bayes, as shown in above tables, confirm that MapReduce 
handles lightweight classifiers efficiently and consistently, making it suitable for scalable classification tasks 
with low computational complexity.

For Decision Tree Classifier:
Table 4.9: Block-wise accuracy, precision, recall, memory usage, and computation time for Decision Tree 

classifier using MapReduce with Mapper Size = 1
Blo-ck 

No.
No. of 
Images

Performance Metrics Resource Usage
Accu-racy 

(%)
Re-call 

(%)
Preci-sion 

(%)
Used Me-

mory (GB)
Compu-tation 

Time (s)
1 163 94.4 94.4 95.5 2.7 5.7

Fin-al 
Output

163 94.4 94.4 95.5 2.7 5.7

Table 4.10: Block-wise accuracy, precision, recall, memory usage, and computation time for Decision Tree 
classifier using MapReduce with Mapper Size = 3

Blo-ck 
No.

No. of 
Images

Performance Metrics Resource Usage
Accu-racy 

(%)
Re-call (%) Preci-sion 

(%)
Used Me-

mory (GB)
Compu-tation 

Time (s)
1 54 94.3 94.5 94.2 0.955 4.385
2 54 94.5 94.3 94.6 0.970 4.396
3 55 94.4 94.4 94.7 0.975 4.419

Fin-al 
Output

163 94.4 94.4 95.5 2.9 13

Table 4.11: Block-wise accuracy, precision, recall, memory usage, and computation time for Decision Tree 
classifier using MapReduce with Mapper Size = 6

Blo-ck 
No.

No. of 
Images

Performance Metrics Resource Usage
Accu-racy 

(%)
Re-call (%) Preci-sion 

(%)
Used Me-

mory (GB)
Compu-tation 

Time (s)
1 27 94.6 94.2 94.3 0.505 1.789
2 27 94.5 94.5 94.4 0.503 1.864
3 27 94.2 94.3 94.6 0.518 1.823
4 27 94.4 94.4 94.5 0.510 1.837
5 27 94.3 94.3 94.4 0.519 1.807
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6 28 94.5 94.5 94.6 0.545 1.980
Fin-al 

Output
163 94.4 94.4 94.5 3.1 11.1

Table 4.12: Block-wise accuracy, precision, recall, memory usage, and computation time for Decision Tree 
classifier using MapReduce with Mapper Size = 9

Blo-ck 
No.

No. of 
Images

Performance Metrics Resource Usage
Accu-racy 

(%)
Re-call (%) Preci-sion 

(%)
Used Me-

mory (GB)
Compu-tation 

Time (s)
1 18 94.4 94.5 94.3 0.342 1.117
2 18 94.5 94.3 94.4 0.345 1.123
3 18 94.2 94.4 94.5 0.348 1.128
4 18 94.4 94.3 94.3 0.340 1.151
5 18 94.3 94.5 94.6 0.350 1.124
6 18 94.4 94.4 94.5 0.348 1.129
7 18 94.6 94.4 94.4 0.346 1.150
8 18 94.3 94.3 94.3 0.345 1.130
9 17 94.4 94.5 94.5 0.296 1.048

Fin-al 
Output

163 94.4 94.4 94.5 3.1 10.3

The Decision Tree classifier showed consistently high performance across all block configurations 
within the MapReduce framework. Accuracy, precision, and recall all remained at approximately 
94.4%–94.5%, regardless of how the data was partitioned. This reflects that the MapReduce framework can 
preserve decision boundaries effectively even when data is split and processed in parallel blocks.

However, unlike Naive Bayes, computation time varied more noticeably across mapper sizes. At 
Mapper Size 1, execution time was 5.7 seconds, which increased to 13.2 seconds at Mapper Size 3, then slightly 
decreased with Mapper Size 6 and 9. This trend indicates that while MapReduce benefits from parallelism, the 
overhead of task initialization and shuffle operations impacts total execution time more for complex models like 
Decision Trees.

Memory usage increased gradually from 2.7 GB to 3.1 GB with larger mapper sizes, reflecting the 
resource demands of handling multiple block trees in parallel. Despite this, the framework consistently 
produced strong classification results, validating its ability to manage more computationally intensive models.

(iii) For Linear SVM Classifier:
Table 4.13: Block-wise accuracy, precision, recall, memory usage, and computation time for Linear SVM 

classifier using MapReduce with Mapper Size = 1
Blo-ck 

No.
No. of 
Images

Performance Metrics Resource Usage
Accu-racy 

(%)
Re-call 

(%)
Preci-sion 

(%)
Used Me-

mory (GB)
Compu-tation 

Time (s)
1 163 93.1 93.1 93.2 3.1 4.5

Fin-al 
Output

163 93.1 93.1 93.2 3.1 4.5

Table 4.14: Block-wise accuracy, precision, recall, memory usage, and computation time for Linear SVM   
classifier using MapReduce with Mapper Size = 3

Blo-ck 
No.

No. of 
Images

Performance Metrics Resource Usage
Accu-racy 

(%)
Re-call (%) Preci-sion 

(%)
Used Me-

mory (GB)
Compu-tation 

Time (s)
1 54 93.0 93.0 93.1 1.024 2.419
2 54 93.2 93.1 93.2 1.028 2.431
3 55 93.1 93.2 93.3 1.048 2.450

Fin-al 
Output

163 93.1 93.1 93.2 3.1 7.3

Table 4.15: Block-wise accuracy, precision, recall, memory usage, and computation time for Linear SVM   
classifier using MapReduce with Mapper Size = 6

Blo-ck 
No.

No. of 
Images

Performance Metrics Resource Usage
Accu-racy 

(%)
Re-call (%) Preci-sion 

(%)
Used Me-

mory (GB)
Compu-tation 

Time (s)
1 27 93.0 93.0 93.2 0.898 2.489
2 27 93.2 93.2 93.1 0.915 2.529
3 27 93.1 93.0 93.3 0.925 2.564
4 27 93.1 93.2 93.2 0.930 2.593
5 27 93.1 93.1 93.1 0.915 2.562
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6 28 93.2 93.1 93.2 0.917 2.663
Fin-al 

Output
163 93.1 93.1 93.2 5.5 15.4

Table 4.16: Block-wise accuracy, precision, recall, memory usage, and computation time for Linear SVM   
classifier using MapReduce with Mapper Size = 9

Blo-ck 
No.

No. of 
Images

Performance Metrics Resource Usage
Accu-racy 

(%)
Re-call (%) Preci-sion 

(%)
Used Me-

mory (GB)
Compu-tation 

Time (s)
1 18 93.0 93.2 93.1 0.307 1.981
2 18 93.1 93.0 93.2 0.312 2.016
3 18 93.2 93.1 93.1 0.319 2.021
4 18 93.1 93.1 93.2 0.305 2.016
5 18 93.0 93.1 93.3 0.322 1.999
6 18 93.2 93.2 93.2 0.315 2.013
7 18 93.1 93.0 93.2 0.310 2.030
8 18 93.1 93.2 93.1 0.308 2.015
9 17 93.1 93.1 93.2 0.312 2.009

Fin-al 
Output

163 93.1 93.1 93.2 3.1 18.1

Linear SVM maintained stable classification metrics across all mapper sizes in the MapReduce 
environment. Accuracy, precision, and recall values were highly consistent at 93.1–93.2%, confirming the 
classifier's robustness under distributed execution. Each block produced nearly identical results, demonstrating 
that data partitioning did not degrade predictive performance.

However, resource usage increased with mapper size, particularly in terms of computation time. 
Execution time rose from 4.5 seconds at Mapper Size 1 to 18.1 seconds at Mapper Size 9, suggesting that 
overhead from scheduling and coordination may offset the benefits of smaller data chunks. Memory usage also 
increased, peaking at 5.5 GB at Mapper Size 6, before slightly reducing again at Mapper Size 9. This fluctuation 
highlights the sensitivity of SVM to the way tasks are divided and processed in a parallel framework.

These findings show that while Linear SVM is reliable in terms of prediction quality, it can become 
resource-intensive under high levels of parallelism, requiring careful tuning of mapper size for optimal 
performance in distributed systems.

Impact of Framework on Classification Accuracy
The experimental results clearly indicate that the choice of computational framework has a significant 

impact on classification accuracy. Across all three classifiers tested—Naive Bayes, Decision Tree, and Linear 
SVM—the MapReduce framework consistently achieved higher accuracy compared to the traditional single-
node approach.

For instance, Naive Bayes showed an increase in accuracy from 58.8% (traditional) to 71.5% 
(MapReduce), while Decision Tree's accuracy improved dramatically from 74.5% to 94.4%. Similarly, Linear 
SVM's accuracy increased from 76.5% to 93.1%. These improvements highlight that the distributed and parallel 
nature of the MapReduce framework contributes positively to the learning process, especially for models that 
are sensitive to data size and structure.

The observed accuracy gain can be attributed to several factors. First, MapReduce divides the dataset 
into logical partitions and allows parallel model training across these partitions. This distributed training 
reduces overfitting by ensuring that the model sees diverse segments of the data independently. Second, the 
aggregation during the reduce phase combines these partial models or results in a way that enhances 
generalization performance. Third, in a distributed environment, models can process larger datasets more 
efficiently without being limited by memory constraints of a single machine, which leads to better feature 
utilization and improved predictive performance.

In contrast, the traditional framework processes the entire dataset sequentially on a single node, which 
may limit the model’s ability to generalize when handling complex or high-dimensional data. As a result, 
classification performance, especially in terms of accuracy, tends to be lower compared to the MapReduce-
based implementations.

In conclusion, the findings from this study confirm that the MapReduce framework not only 
accelerates computation but also contributes significantly to improving classification accuracy. This makes it a 
highly effective choice for data-intensive and performance-sensitive classification tasks, particularly when 
working with image-based or high-dimensional datasets.
Analysis by Classifier
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This section offers a concise classifier-wise breakdown based on their behavior under the MapReduce 
framework, focusing on both predictive stability and resource demands across varying levels of parallelism.

(a) Naive Bayes:
The performance of Naive Bayes remained constant across all mapper sizes, with an accuracy and 

recall of 0.715 and a slightly higher precision of 0.753. Notably, computation time was the fastest among all 
classifiers, remaining under 1 second, regardless of mapper size. This demonstrates its suitability for 
lightweight, rapid classification tasks, although with lower predictive performance.

(b) Decision Tree:
The Decision Tree classifier achieved the highest accuracy, recall, and precision (0.944, 0.944, and 

0.945, respectively) across all mapper sizes. However, it also consumed more memory as the number of 
mappers increased, ranging from 2.7 GB to 3.1 GB. Computation time initially increased with more mappers 
but eventually decreased slightly, indicating the potential benefit of parallelism after a certain threshold.

(c) Linear SVM:
SVM showed consistent performance in terms of accuracy (0.931), recall (0.931), and precision 

(0.932) across all mapper configurations. However, it experienced a significant increase in both memory usage 
and computation time at higher mapper sizes, with the peak memory usage reaching 5.5 GB at 6 mappers and 
the longest execution time of 18.1 seconds at 9 mappers. This suggests that while SVM is reliable in terms of 
prediction, it is computationally expensive under distributed execution.

Visual Interpretation of Implementation Results
The following figures (4.7 to 4.11) provide a visual summary of how the three classifiers—Naive 

Bayes, Decision Tree, and Linear SVM—perform under varying mapper sizes within the MapReduce setup. 
Figure 4.7 compares their accuracy across different levels of parallelism, while Figures 4.8 and 4.9 show how 
recall and precision change for each model. Figures 4.10 and 4.11 focus on the system resources, illustrating the 
effects of mapper size on memory use and computation time. Additionally, Figure 4.12 offers a side-by-side 
comparison of classifier results between the traditional single-machine method and the distributed MapReduce 
approach. Together, these charts help to clearly show the relationship between mapper configurations, classifier 
effectiveness, and resource demands, building on the earlier detailed results comparing traditional and 
MapReduce frameworks.

Figure 4.7: Classifier Accuracy by Mapper size

Figure 4.8:  Recall Comparison of Classifiers across Mapper Size
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Figure 4.9: Precision Comparison of Classifiers across Mapper Size

Figure 4.10: Memory Usage by Mapper size

Figure 4.11: Computation Time by Mapper Size

Figure 4.12:  Comparative analysis of classifier performance across Traditional and MapReduce frameworks

Comparative Observations
Among all classifiers, Decision Tree consistently demonstrated the highest accuracy, precision, and 

recall in both traditional and MapReduce frameworks. Linear SVM followed closely, while Naive Bayes 
performed the least in terms of accuracy but remained the fastest and lightest in computation.

Changing the number of mappers (1, 3, 6, 9) had no impact on accuracy, precision, or recall for any 
classifier. However, it affected computation time and memory usage, especially for Decision Tree and 
SVM—where more mappers initially increased resource usage but later showed signs of optimization.

All classifiers achieved significantly better accuracy, precision, and recall under the MapReduce 
framework compared to the traditional one. For example, Decision Tree improved from 74.5% to 94.4% 
accuracy. This shows that the distributed nature of MapReduce enhanced model generalization and learning 
capacity.
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MapReduce improved prediction quality for all classifiers, especially for large datasets like brain MRI 
images. While it required more memory and sometimes more computation time, the trade-off was justified by 
the gain in accuracy and model performance. Therefore, MapReduce is more suitable for high-performance, 
data-intensive classification tasks.

V. Conclusion And Future Work
With the increasing reliance on internet and cloud technologies, the need for efficient data 

classification has grown significantly. This study assessed the performance of Naive Bayes, Decision Tree, and 
Linear SVM using both traditional and MapReduce frameworks, evaluating them based on accuracy, precision, 
recall, memory usage, and computation time. Findings indicate that MapReduce supports scalable, parallel 
processing without compromising accuracy. Among the classifiers, Decision Tree delivered the most balanced 
performance, SVM demonstrated high precision and recall at a greater resource cost, while Naive Bayes was the 
most efficient in terms of speed and memory, though less accurate. This research provides practical guidance 
for choosing classification techniques based on resource constraints and highlights the capability of MapReduce 
for distributed classification tasks.

To further enhance the findings of this research, the following directions are considered for future work:
 Apply the selected algorithms on larger and more diverse datasets.
 Integrate additional classification techniques such as Random Forest or KNN for broader comparison.
 Explore newer distributed processing frameworks like Apache Spark for improved scalability and speed.
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