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Abstract 
With artificial intelligence (AI) continually revolutionizing software development lifecycle (SDLC), the need for 

secure, transparent, and accountable systems could not be graver. The majority of traditional security models-

which, if, are retrofitted in their later stages of development-will not come up with the dynamism characterized 

by threats in putting any of the agile and perennial security assurances to the test. The Trust-by-Design 

framework proposed in this study seeks to embed AI-based security checks to be a part of the software quality 

workflow such that it prioritizes early-stage investigations, in time and continuing assurance, and transitional 

explainability. Intelligent integration of novelettes in machine learning, static code analysis, and anomaly 

detection enables this heightened level of security to ensure that it is always obseant in the CI/CD 

pipelines...and thus remaining default secure and trustworthy across all lines. Issues of model drifts, developer 

friendliness, and governance are addressed via Explainable AI (XAI) and Compliance-Verification modules. 

The approved deployment in case studies undertaken for fintech and health domains revealed substantial 

consistency in the detection of security vulnerabilities upon the introduction of quality code through the 

developer. By inverting trust from a thing to a basic design principle-someone who is familiar with the system is 

part of the trust-as well as doing away with trust as an after-the-fact addition-the collaborative research aim to 

seed forward a sustainable platform for secure software engineering, particularly within supporting AI contexts. 
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I. Introduction 
1.1 Background on the Increasing Need for Secure Software 

In an era of digital transformation, software systems are the backbone of almost every aspect of 

contemporary human life-from finance to health and from critical infrastructure to national security. With the 

scaling of the complexity and growth of these systems, the attacks exposed on them increased. Cybersecurity 

related threats are no more isolated incidents they have assumed the role of constant, ever-changing opposing 

forces requiring proactive and adaptive defence mechanisms. With the advent of all-consuming AI, Cloud-

Native development, and CI/CD pipelines become an even mix of opportunity and vulnerability in the software 

development environment (Myllynen et al., 2024; Goniwada, 2021). Therefore, secure software development is 

not merely a matter of operational necessity anymore; it is a matter of strategic importance for organizations, 

which are thus able to sustain highly sensitive data, ensure the realiability of service, and maintain consumer 

confidence. 

 

1.2 The Shortcomings of Integrating Traditional Security into the SDLC  

Security in the Software Development Life Cycle (SDLC) is deemed high-risk, and therefore, 

traditional means of its enforcement are thought to be inadequate. Traditionally security assessments were 

performed as terminal phases with development, either during final testing or post-deployment; as a result, 

threats hardly ever got detected, while the costs of remediation climbed exorbitantly along the way. Late-stage 

interventions rely rather heavily on manual reviews, rule-based scanning tools, or ad-hoc penetration testing that 

hardly keep up with the innovative and fast-paced iteration cycles of the modern agile and DevOps 

methodologies (Khade and Sambhe 2024; Srinivas et al. 2024). Additionally, having security testing isolated 

fosters gaps of understanding and communication between developers, operations, and security, which hinders 

the feedback loops necessary for mitigating vulnerabilities efficiently. Consequently, software vulnerabilities are 

mostly undetected until exploited in production environments with grave consequences for users and 

organizations. 
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1.3 Introduction to Trust-by-Design Principles 

To eliminate these shortcomings, the Trust-by-Design paradigm has been introduced as an avant-garde 

perspective embedding trust and security mechanisms straightaway into the design and development phases of 

software engineering. The Trust-by-Design tenet propounds security as an early design principle interwoven 

early, iteratively, and contextually throughout the software development life cycle (Ferraris et al., 2018; Duez et 

al., 2006). This principle thus emphasizes continuous risk assessment, context specific decision making and 

transparent processes supported by explainable AI (XAI). In those settings where AI models automatically 

analyze, test, and deploy code, Trust-by-Design provides a guarantee that such tools are efficient, interpretable, 

auditable, and in accordance with the organizational policy (Nickel, 2015; Fu et al., 2024). These built in 

mechanisms within CI/CD workflows provide the real-time capability to detect code anomalies, policy 

violations, and security threats at the time prior to the deployment itself. 

 

1.4 Research Problem Statement 

Even though implementation of the AI-based tools has led to automation and efficiency augmentation 

of software development pipelines, it has aligned the deployment of the tools primarily on the aspects of 

performance and scalability, leaving a little room for transparency and security. The gap leaves a huge 

challenge: How do organizations ensure that these AI-powered tools, embedded into the workflows of 

development, actually strengthen and not compromise the trustworthiness and security of their software? The 

existing frameworks thus do not provide a single unified, pragmatic approach to the incorporation of such 

checks within SDLC workflows in a continuous, explainable, and trust-by-design manner. Furthermore, there is 

still a lack of empirical studies that indicate the potential changes brought by such incorporation on software 

quality and organizational trust metrics over time. 

 

1.5 The objectives of the study  

The major objectives of the study are to propose and examine an all-encompassing Trust-by-Design framework 

in which AI-powered security checks are embedded within the software quality workflows. The goals of this 

study are: 

1. Define and operationalize Trust-by-Design as a concept within an AI-driven software development 

environment.  

2. Design an architecture that provides real-time and explainable security verification throughout the 

SDLC.  

3. Integrate machine learning techniques for anomaly detection, code analysis, and policy enforcement 

into CI/CD pipelines. 

4. Validate the effectiveness of this framework on empirical case studies in high-security domains, 

including fintech and healthcare.  

5. Provide policy recommendations and best practices for secure and trustworthy use of AI in software 

engineering. 

 

II. Literature Review 
2.1 Theoretical Foundations of Trust-by-Design 

Trust-by-Design is an intersection between ethics, human-computer interaction, and secures systems 

engineering. It posits that trust should not be assessed as an emergent property of a development after it is 

implemented; rather, trust should be an inherent quality that's deliberately designed into systems from the very 

beginning. This principle has developed since the introduction of trust in automation systems: Duez et al. (2006) 

then followed by Nickel (2015), who further theorized underlying philosophical concepts on how values of 

transparency, security, and autonomy can be integrated into the physical world of technological artifacts. Any 

systems that decide in support of human welfare must incorporate trustworthiness due to increasing levels of 

intelligence and autonomy in this day and age. 

The underlying assumptions that characterize this principle in today's software development intend that 

serious measures should be taken toward maintaining the integrity of systems in terms of constant verification, 

investigation into decision-making processes, and conformity with ethically and legally binding standards. 

Ferraris et al. (2018) elaborated further by advancing their perspective into the Internet of Things (IoT) domain, 

espousing the idea that trust should be defined as an adjustable metric within connected environments. Such 

considerations form the philosophical and operational foundations for the designing of AI-based security checks 

into current software processes. 

 

2.2 AI in DevSecOps and Software Security 

Within just a short span of five years, the role of AI in DevSecOps has been reinvented completely. In 

fact, these days, it has come to a position beyond imagining where modern CI/CD pipelines must rely 
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increasingly on intelligent automation for tasks such as vulnerability scanning, code quality analysis, predicting 

behavior, and even threat modeling (Myllynen et al, 2024; Joseph & Paulose, 2024). Some of the benefits 

include faster feedback loops, better detection accuracy, and scalability across large codebases. This has not 

come without concerns of how explainability, bias, and overfitting of the models used in it can undermine the 

trust that actually these technologies are being put up to realize (Fu et al., 2024; Klemmer et al., 2024). Now 

here is a table summarizing the state of the art with respect to these recent AI advancements in security and their 

usage in case of a DevSecOps pipeline:  

 

Table 1: AI Techniques and Their Applications in DevSecOps. 
AI Technique Application in DevSecOps Key References 

Anomaly Detection Detect abnormal behaviors in CI/CD 

events 

Amgothu & Kankanala (2024) 

NLP-based Code Review Analyze pull requests and detect 
insecure code patterns 

Khade & Sambhe (2024) 

Predictive Vulnerability Scanning Forecast future vulnerabilities in 

dependencies 

Rangaraju et al. (2023); Fu et al. (2024) 

Explainable AI (XAI) Increase transparency in model-based 

security decisions 

Klemmer et al. (2024); Nickel (2015) 

Source: Author’s analysis based on cited works 

 

Increasing software environment complexities have rendered static rule-based methods insufficient. 

Here, AI-enabled means not only identify risks but also provide remediation paths in real time, thereby enabling 

a dynamic response to new threats. 

 

2.3 Security Integration Challenges in the Agile and CI/CD Environment. 

One outcome often discussed in the literature is the incompatibility between traditional security 

approaches and agile development processes. The legacy security tools were designed for waterfall-like 

workflows with long feedback cycles that had no place in agile methods involving code changes in a matter of 

days, if not hours (Srinivas et al., 2024). To add to this, security professionals tend to be far removed from 

development teams, perpetuating communication gaps and slow response times to threats.  

According to Kanwal and Siddiqui (2025), in the case of healthcare and critical systems, a lack of 

preemptive security integration may be literally life-threatening. AI-driven mechanisms ought to integrate 

context awareness, domain specificity, and interpretability particularly in high-risk domains like fintech and 

IoT. Researchers like Vadde and Munagandla (2022) are advocating for self-healing systems that incorporate AI 

models capable of autonomously detecting, reporting, and rectifying issues. Figure 1 provides a comparison of 

traditional security integration with modern AI-enhanced Trust-by-Design in CI/CD pipelines. 

 
Figure 1: Traditional Vs. Trust-by-Design Security Integration in CI/CD Pipeline 

Source: Author-generated model inspired by Myllynen et al. (2024) 
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This figure illustrates that traditional security models get employed only at specific points-usually after 

the testing phase or at the point of deployment. Meanwhile, in Trust-by-Design which is incorporated within its 

full development life cycle, the AI-empowered checks are done continuously throughout all development 

phases. 

 

2.4 Explainable AI and Trust Metrics in Software Pipelines 

The explainability becomes critical within embedding AI in systems that need auditability and ethical 

alignment. As per Klemmer et al., (2024), developers are those who more trust the security alerts and code 

recommendations, when they understand the how themselves logic behind them. Tools that include Explainable 

Artificial Intelligence (XAI) attend more adoption by reducing false positives. Nickel (2015) further defends 

that; trustworthiness measure can make it beyond technical metrics such as detection accuracy, into human-

centered ones: developer confidence, policy compliance, and interpretability. Table 2 demos the different 

relevant trust metrics in deriving AI-based software systems evaluation.  

 

Table 2: Trust Metrics for AI-Secured Software Pipelines. 
Trust Metric Description Source 

Detection Accuracy Ratio of correct detections to total vulnerabilities Myllynen et al. (2024) 

Policy Compliance Rate Degree of adherence to security standards Mohamed et al. (2024) 

Developer Acceptance Rate of user-acknowledged alerts Klemmer et al. (2024) 

Explainability Score Clarity of model reasoning (based on SHAP, LIME, 

etc.) 

Nickel (2015); Fu et al. (2024) 

Source: Author’s synthesis from cited studies 

 

The Trust-by-Design approach must strive to do more than merely "detect and block" security threats. 

Rather, the intent is to provide users with additional contextual information and evidence in support of the 

detected threats. An infeed ecosystem with this feedback mechanism helps build certainty over time. 

 

2.5 Recent Trends in Trustworthy AI for Software Quality 

The world of trustworthy AI is constantly changing. Advanced federated learning approaches, such as 

secure multiparty computation and decentralized trust models for software quality workflow, have been 

mentioned frequently in the literature (Goniwada 2021; Cervini et al. 2023; Mohamed et al. 2024), whereas 

blockchain's role in guaranteeing immutable logging and verifiable audit trails is now more appreciated by the 

community (Mack 2020). Figure 2 presents the year-wise trend analysis of publications concerning AI-based 

software security research areas during the last five years.   

 
Figure 2: Trend Research of AI-Driven Software Security (2019–2024) 

Source: Author analysis based on aggregated Scopus and IEEE Xplore search results 
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The trend analysis proves exponential growth for areas concerned with explainable AI and trust models, 

reinforcing the pertinent aspects and time for undertaking this research. 

 

III. Methodology 
This section encompasses a systematic approach to assess the feasibility and effectiveness of 

embedding AI-oriented security checks into CI/CD pipelines via the Trust-by-Design approach. It discusses the 

research framework, tools and technologies used the dataset creation methodology, model integration processes, 

and metrics to evaluate the outcomes. The main objective of this section is to attempt an empirical assessment of 

how these Trust-by-Design principles can improve software quality and security resilience during quick 

deployment cycles. 

 

3.1 Research Design and Framework 

The research follows a design-science paradigm, integrating simulation-based experimentation with a 

comparison of secure versus non-secure pipelines. At its heart, is the prototype CI/CD pipeline enhanced with 

explainable AI components. This has been created to mimic real-world software development scenarios that 

consist of rapid code commits, builds, and deployments. The contrast title is the regular CI/CD pipeline, devoid 

of an AI security-checking system. 

The overall architecture of the experimental framework is seen in Figure 3. It consists of standard 

DevOps stages, i.e., source code management, Git; build automation, Jenkins; containerization, Dockers, and 

deployment, Kubernetes, with AI security modules fitted at multiple stages. The pipeline was instantiated in a 

controlled sandbox environment through cloud-based virtual machines.  

 

 
Figure 3: Experimental Trust-by-Design CI/CD Pipeline Architecture. 

Source: Author-generated system architecture adapted from Myllynen et al. (2024) 

 

This architecture is intended for the automated detection of vulnerabilities with pretrained machine 

learning classifiers and for using interpretable feedback loops to guide developer’s future actions in real time. 

 

3.2 Tools and Technologies, and Selected Models  

In this case, an open-source tool has been used to simulate industry setting within Jenkins orchestrating 

the parsing of a pipe level, Docker, and Kubernetes working together for deployment, while an AI integration 

from a BERT-based model trained on a security-oriented code corpus helped in classifying risky functions and 

code smells (Khade & Sambhe, 2024). Additionally, SHAP (SHapley Additive exPlanations) has been used to 

provide human-interpretable explanations for model predictions, ensuring transparency in line with Trust-by-

Design principles. The critical technologies and their functions in the experimental setup have been presented in 

Table 3. 
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Table 3: Technology Stack for Trust-by-Design Pipeline Implementation 
Component Tool/Technology Function Reference 

CI/CD Orchestration Jenkins Automates the build and deployment 
workflow 

Vadde & Munagandla (2022) 

Containerization Docker Encapsulates application environments Myllynen et al. (2024) 

Deployment Kubernetes Manages scalable container deployment Mohamed et al. (2024) 

AI Model BERT Fine-Tuned 

Model 

Classifies code patterns with security 

labels 

Khade & Sambhe (2024) 

Explainability SHAP Visualizes feature importance in 
predictions 

Fu et al. (2024) 

Source: Experimental platform design by authors 

 

It is the combination of tools that has been chosen according to its scaling, automation support, and 

compatibility with AI integrations. The model was trained and tested with security data from open repositories 

like OWASP's vulnerable applications, code bases documented in CVEs, and security-tagged GitHub 

repositories. 

 

3.3 Data Collection and Preparation 

The dataset used consisted of annotated code snippets containing known vulnerabilities including 

buffer overflow, SQL injection, and improper access control. A hybrid approach was followed for labeling, that 

is combining both static analysis tools and manual expert annotation. In total 10,000 such code samples have 

been collected and split into training (70%), validation (15%), and testing (15%) data sets. 

Standard classification metrics were used to evaluate performance against AI, precision, recall, F1, and 

explainability coverage. For post-analysis, an additional qualitative developer feedback was collected through 

surveys to address trust levels and interpretability of alerts. 

 

3.4 Evaluation Metrics and Experimental Protocol 

The impact of the Trust-by-Design framework was tested by comparing its enhanced pipeline to the 

baseline pipeline without AI enhancement. The critical measures examined were vulnerability detection rate, 

false positive rate, deployment time impact, and developer trust feedback score. Each measure was evaluated 

over 30 runs of the pipeline for statistical robustness. The average performance detected by the AI model, 

compared with those traditional static analyzers, is shown in Figure 4. 

 

 
Figure 4: Vulnerability Detection AI vs. Traditional 

Source: Model evaluation results from experimental tested 
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Overall, with regard to all evaluation metrics, AI-based detection methods outperform traditional static analysis, 

yielding more correct results and higher recall rates. 

Additional practical evidence is provided in table 4, indicating the most important pipeline metrics with and 

without AI integration. 

 

Table 4: Pipeline Performance Metrics Using AI and Without AI 
Metric Without AI With Trust-by-Design AI Improvement (%) 

Vulnerability Detection Rate 62% 91% +46.8% 

False Positive Rate 18% 7% -61.1% 

Deployment Delay (Avg) 4.8 mins 5.3 mins +10.4% 

Developer Trust Score (1–5) 2.8 4.4 +57.1% 

Source: Aggregated results from 30 pipeline executions 

Although the deployment time was slightly increased due to AI inclusion, the trade-off is justified by very good 

improvements in detection rates and trust metrics. Hence, these findings support the operational validity of 

Trust-by-Design. 

 

IV. Results and Discussion 
The implementation of the AI-powered Trust-by-Design mechanism in a secure software workflow 

resulted in various advantages for security detection, developer experience, and performance. This section 

describes the empirical results from the conducted procedures, analyzes the effect of the integrated system on 

real-time CI/CD workflows, and reflects on the broader implications of AI-supported explainability in developer 

environments. 

 

4.1 Detection Performance in AI-Augmented Pipelines 

To assess the effectiveness of AI-enhanced security checks, some CI/CD pipeline experiments were 

performed on a labeled dataset of software vulnerabilities. High-risk vulnerabilities were identified by the AI 

models used during the build and test stages. When compared to a baseline using traditional static analysis tools, 

the AI solution demonstrated a quantifiable increment in detection efficacy. 

Across 10 CI/CD pipeline runs, the AI's precision and recall numbers remained high and consistent. It 

achieved a mean precision of 0.88 and a mean recall of 0.91, denoting a strong level of correct predictions while 

properly identifying most pertinent threats. This further substantiates previous literature claims that machine-

learning models trained on patterns of vulnerabilities can yield superior results in performance when compared 

to static scanners (Sharma et al., 2023). The graphical representation of overall precision and recall across 

different runs is shown in Figure 5. 

 

 
Figure 5: AI Model Precision and Recall across 10 CI/CD Pipeline Runs 

Source: Internal CI/CD tested logs (experiment dataset, 2025) 

 

Continued quantitative evaluations have compared detection rates for multiple classes of vulnerabilities. 

Detection success rates for different classes of vulnerability, including traditional approaches and those 

enhanced by AI, are summarized in Table 5. 
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Table 5: Detection Accuracy across Vulnerability Types 
Vulnerability Type Static Analysis Accuracy (%) AI-Enhanced Accuracy (%) 

SQL Injection 61.4 89.7 

Cross-Site Scripting 58.2 86.5 

Insecure Deserialization 49.7 82.1 

Broken Authentication 63.9 88.3 

Source: Evaluation dataset from vulnerability benchmarks (CVE, 2025) 

 

These findings indicate a significant enhancement in the accuracy and scope of vulnerability detection 

when implementing Trust-by-Design AI modules in most steps of the software lifecycle. In most cases, the 

principal breakthrough is in identifying complicated contextual issues like deserialization, which usually prevent 

many false constructs from being picked up by traditional static tools (Li et al., 2024). 

 

4.2 Outcomes on Trust and Explainability 

Further technical benefits reported were the impacts of Trust-by-Design on developer trust and the 

usage of such features by developers. A survey post-integration among 100 developers was conducted around 

their perceived usefulness of those explainable AI outputs and confidence in the recommendations made therein. 

The results showed that for all respondents after interpretability layers added using SHAP and LIME, trust 

above 40% was induced by AI outputs. 

Many of those who were already skeptical about "black box" security tools voiced their opinions before 

integration, and trust improved dramatically in the system once human understandable visual explanations were 

added to AI outputs-here indicating the specific code features that went into risk estimates. Figure 6 shows 

comparative trust scores before and after explainability integration. 

 
Figure 6: Developer Trust Levels Pre- and Post-Explainable AI 

Source: Developer feedback survey results (N=100, 2025) 

 

Distich modernizes the faith of a human today, as it had done during the earlier research showing the 

increased importance of transparency and the user-centric interfaces in the adoption of security automation (Raji 

et al., 2022). The qualitative comments also emphasized that visualizations of risk factors will help in better 

understanding as well as coding discipline. 

In support of this, Table 6 presents samples of feedback from developers grouped thematically and drawn from 

anonymous post deployment interviews. 
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Table 6: Thematic Feedback on Explainable AI Integration 
Feedback Theme Example Response 

Understandable Explanations “Now I can see exactly why a code block is risky.” 

Enhanced Review Confidence “I trust the flagged issues more because I see the logic.” 

Less Time Debugging “Fixing issues is faster with clear AI explanations.” 

Source: Developer interview transcripts (coded manually, 2025) 

The main goal of the integration of interpretability into the AI models is to build trust within an organization 

yet; it takes further control of the software development culture through stronger accountability by learning 

continuously safe software practices.  

 

4.3 General System Effect and Discussion 

While the performance advantages were obvious, there was some worry that the integration of AI 

security checks would have an adverse effect on throughput in the pipeline. Evidence from experiments 

indicated their delays at CI/CD build time to be around 7% average increase per build. Thus, these were said to 

be within the threshold of acceptability from all DevSecOps teams in light of the sacrifices made for security. 

By and large, these studies also learned that false-positive ratios are smaller in number than with 

conventional tools; this would minimize the so-called alert fatigue of developers. That quite often happens in 

continuous environments, where there may be multiple builds in a single day, and hence the kind of notification 

overload (Ghafari et al., 2023) that may occur becomes a real issue. 

The technical dimension that is detection improved, and the human dimension that trust improved 

emphasize the meaningfulness of embedding AI not just as a security enhancement but as a systemic design 

principle. Trust-by-Design then becomes significantly important inside secure software engineering-to make 

intelligent systems interpretable, reliable, and responsive to human oversight. 

 

V. Challenges and Limitations 
Overall, implementation and evaluation of Trust-by-Design principles in secure software workflows 

bring serious challenges and limitations. These challenges cut across the technical, organizational, and ethical 

domains, affecting the performance and scalability of AI-enhanced security systems in software development 

environments. This part deals with the major limitations seen within experimentation and deployment and 

contextualizes their effects with respect to the larger aspiration of embedding explainable, trustworthy AI in 

CI/CD pipelines. 

 

5.1 Model Drift and Vulnerability Evolution 

Model drift is one of the main problems for an AI-driven security system, because with the passage of 

time, the accuracy of the underlying machine learning model declines because of software vulnerability changes 

or changes in development practices. New attacks emerge so rapidly that the newest threats generally do not 

share the same characteristics as the historical samples of training data. Consequently, the static models, unless 

retrained very frequently, may fail to capture new vulnerabilities, thus rendering the system ineffective. 

The experiment to test this alleged condition involved checking model accuracy for three distinct period 

datasets collected from 2023, 2024, and 2025. Table 7 shows the AI system's performance degrading once 

exposed to newer data sets, indicating a need for mechanisms of continuous learning. 

 

Table 7: Accuracy Degradation Due to Temporal Model Drift 
Training Dataset Year Test Dataset Year Precision (%) Recall (%) 

2023 2023 89.3 91.5 

2023 2024 78.9 82.1 

2023 2025 69.7 74.4 

Source: Internal ML evaluation logs, Trust-by-Design experimental runs (2025) 

 

Vulnerability patterns have, therefore, been validated to be dynamic; AI is rendered practically useless by 

depending only on historical datasets lacking incremental updates. This puts a requirement for secure, privacy-

preserving continual learning pipelines to assure detection efficacy (Yang et al., 2024). 
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5.2 Computational Overhead for CI/CD Environments 

The other burning constraint relates to the computational expense of running the AI modules with 

respect to interpretability and explanation. While the average performance trade-offs were reasonable, as stated 

above, sustained testing under extremely high concurrency workloads did see delays reflecting in the timeline of 

the pipeline. That is mainly due to the presence of computational-heavy overheads for explainability engines 

like SHAP, which scale poorly along with increasing codebase sizes. Integration of explainability modules adds 

average time per build on account of project-size increment, as illustrated in Figure 7. 

 

 
Figure 7: Average Additional Build Time by Project Size 

Source: Construct benchmark results for performance (Trust-by-Design CI/CD tests, 2025) 

 

While small applications present minor delays, enterprise-level applications face build delays of more 

than 60 seconds, causing concerns about scalability. This goes hand in hand with previous research which found 

that interpretable AI components incur latency costs that must be weighed up against usability (Arrieta et al., 

2020). 

A profiling analysis of CPU and memory consumption during model explanation was further carried out to add 

more information. The summary of the results with respect to different explanation frameworks summation is 

shown in Table 8 below. 

 

Table 8: Computational Cost of Explainability Frameworks 
Framework Average CPU Usage (%) Peak Memory Usage (MB) Time per Prediction (ms) 

LIME 31.2 510 120 

SHAP 47.5 890 260 

Integrated Gradients 29.7 470 95 

Source: Runtime analysis on testbed (2025), conducted using PyInstrument and Memory Profiler 

These high costs typically include concrete insights provided with the help of SHAP. In critical performance 

environments, this can be reduced through selection of lightweight alternatives or batch explanation strategies. 

 

5.3 Human Oversight and Misinterpretation of AI Explanations 

To support the developer in decision-making, explainable AI (XAI) also dilutes the chance of misinterpretation. 

Some developers have misinterpreted the importance scores of saliency maps and SHAP outputs. This is not just 

a technical issue, though; it has cognitive and interpretative aspects in which the developers engage with 

machine-generated explanations. 

To further study this, usability studies is in progress, tracking errors in understanding AI outputs before and after 

a training package, and where possible compare information with similar data from earlier studies. As shown in 

Figure 8, the drop in misinterpretation after training highlights the importance of onboarding and educational 

tooling. 
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Figure 8: Misinterpretation of AI Explanations before and After Training 

Source: Developer training workshop data, Explainable AI onboarding (2025) 

 

The study clearly suggests that XAI, by increasing trust and actionability, yet runs upon human 

comprehension as an essential factor for its effective operation. A developer may proudly obtain a relatively 

plain-sounding explanation from an XAI system; still, this oversimplified interpretation shall easily go into 

reinforcing promoter's unconscious acceptance of the existing insecure practices if proper structured training 

interventions are not put to place. 

 

5.4 Limitations in Policy and Standardization  

In the end, the lack of regulation renders the acceptance process of the application of Trust-by-Design 

AI in the industry hard to fathom. Several guidelines on secure SDLC and ethical AI have been formed in the 

absence; they are far apart and separate (e.g., NIST SP 800-53, ISO/IEC 27034). No single standard is copied by 

them, jointly providing an excellent framework for evaluating trust and explicability in CI/CD settings. A lack 

of standard benchmarks poses immense challenges, keeping back the interoperability and a comparative 

evaluation among vendors and toolsets (Brundage et al., 2022).  

For an organization considering adopting such systems, they would have to choose from a multiple 

scattered set of best practices. The journey to fill this gap would, by far, necessitate future research and some 

consortium-based initiatives dealing with squashing a definition on the trustworthiness of secure software 

design. 

 

VI. Policy Implications and Recommendations 
It is not simply about Trust-By-Design principles for software security engineering; it is essentially an 

interaction between technical, regulatory, and organizational policies. It then discusses policy-related 

considerations and strategic recommendations that are needed to mainstream the idea of an explainable AI-

driven security assurance in software development lifecycles. 

 

6.1 Regulatory Gaps and the Need for Governance Frameworks 

There is a considerable policy gap at the crossroad of software security and AI governance, as a 

practical matter, although some standards cover either one or the other only (e.g. procurement) yet nowhere in 

between. Existing regulations hardly ever enforce the application of interpretable or verifiable machine learning 

in security pipelines, thereby enabling the software team that does AI-based security checks to continue without 

clear legal angles to responsibly operation, bias mitigation, or audit. A comparative analysis has been presented 

in Table 9, which plots the strengths and weaknesses of key global policy frameworks with respect to 

explainable security-oriented AI systems. 

 

 

 

 

 

 



Trust-by-Design: Embedding AI-Powered Security Checks into Software Quality Workflows 

DOI: 10.9790/0661-2703016781                             www.iosrjournals.org                                                78 | Page 

Table 9: Comparative Overview of Global AI and Security Policy Frameworks 
Framework Focus Area XAI Support Secure SDLC 

Integration 

Mandatory 

Compliance 

EU AI Act General AI regulation Partial No Yes (risk-based) 

NIST SSDF Software Security No Yes No 

ISO/IEC 42001 (2023) AI Management Systems Yes Partial Voluntary 

OECD AI Principles Ethics and Governance Yes No No 

Singapore Model AI Gov. Sectorial AI Ethics Partial No Voluntary 

Source: Author synthesis based on regulatory documents and official guidelines (2025) 

 

The table shows the fragmented policy arena on AI security, with no single overview attempting to 

bring together these issues with trust, explainability, and software integration. This calls for an urgent call for 

harmonization across these frameworks ideally through international coalition—where developers and auditors 

would be directed down into embedding AI-powered security solutions on an automated basis.  

 

6.2 Organizational Recommendations for Policy Implementation 

Several best practices in the organizational evolution are recognized as necessary for Trust-by-Design 

to be awakened on the ground. These include constructing AI model governance boards, mandating continuous 

training for explainability to developers, and enforcing traceability across the paths that AI-driven decisions take 

within the CI/CD environment. However, such policies must be conceived and enforced in a top-down manner 

after receiving institutional support to prevent superficial compliance measures. 

Furthermore, explainability needs to be regarded from more than just a purely technical viewpoint- as a 

pervasive policy artifact. For example, explainable AI model outputs can be gateways for evidence used in 

software security audits, hence meeting both internal compliance checks and external regulatory reviews 

(Weller et al., 2019). Organizational policies mandating explanation storage and versioning among code 

allocations stand to bring fortification on both legal and engineering quality fronts.  

For a horizontal comparison of different industries’ attaining the stage in their maturity in Trust-by-Design, a 

field survey was conducted to rate companies on a 1-to-5 scale on policy adherence, traceability, and model 

oversight. The mean values are shown in Figure 9. 

 

 
Figure 9: Organizational Maturity in Trust-by-Design AI Governance 

Source: Trust-by-Design Policy Readiness Survey (2025), n=120 organizations globally 

 

The figure reveals that the financial and healthcare sectors conduct governance at a comparatively 

advanced level, mainly in response to regulatory pressures, while the technological and governmental sectors 

continue to lag in ensuring structural oversight and tracking mechanisms. This means that, despite being able in 

technology, an organization is apt to fail in instituting responsible AI security practices without regulatory 

nudges or internal mandates. 
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6.3 Strategic Policy Recommendations 

To set the tone for wide dissemination:  

1. First, standardizing the tracks of explainability metrics convening industry-specific software audit 

needs 

2. Second, incentivizing the rise of an open-source contribute to trustworthy AI toolkits 

3. Third, mandating that AI vendors publicly report any security incidents in a similar manner as they 

might have had to when the GDPR and HIPAA breaches.  

Immediate embedding of these requirements within purchase contracts and certification frameworks would 

ensure long-term alignment between technical developments and governance. Besides, they need to have the 

governments and standards bodies functioning along these lines, developing guidance, templates, and 

verification schemes for Trust-by-Design deployments in CI/CD. In essence, these strategies would maintain 

attractiveness of newly introduced trusted software, all the while improving trustworthiness of future 

computerized AI development environments. 

 

VII. Final Thoughts 
The discussion on incorporating Trust-by-Design within AI-based software security should now move 

away from mere academic discourse and turn toward the need to have an integrated approach on cybersecurity 

due to the evolving scenario of cyber-crime. The vulnerabilities will keep enlarging with the increase in 

software system and platform complexity or distribution. But by embedding explainability, interpretability, and 

securing directly into the software development lifecycle (SDLC), it will do away with the prevalent condition 

whereby security is likely to be breached, and also make sure that the security measures are responsible and 

accountable.  

 

7.1 The Necessity of Trust-by-Design 

Amid an era where digital systems are intricately woven into each and every aspect of business and 

societal infrastructure, bracing for the fortification of the integrity of those systems takes precedence. Most 

conventional security methodologies tend to be reactive in their operation, visiting a slew of security holes post-

deployment in an attempt to embrace some damage-control measure. Conversely, Trust-by-Design governs the 

security in a crystal manner by embedding checkpoints throughout the SDLC, right from code generation to 

deployment, thus plugging in the necessary nap-sleep before threats occur. Thus, such an early-on response 

implies security and not an afterthought, supplementing the software architecture. As Weller et al. (2019) put it, 

the cornerstone of such an evolution is the explainability of an A1 model to make securities more transparent, 

accountable, and above all, trustworthy.  

The Trust-by-Design principles entail the incorporation of AI-driven security tools which can learn and 

adapt to the new threats on the go, making the whole process of software development more secure and efficient 

in production. As argued by Godiwala (2021), AI-powered systems are very good in managing the dynamic 

nature of the modern cybersecurity threats, where traditional approaches lag behind in terms of speed and 

extendibility. By providing transparency and explainability in these AI systems, developers can be assured that 

their systems are resistant to known threats as well as future vulnerabilities. 

 

7.2 Challenges and Opportunities in Enacting Trust-by-Design 

Though the gains of Trust-by-Design are staggering, there are too many technicalities involved in its 

implementation. One such strong consideration is the expected cultural shift within the organizations. 

Developers must not only acquire the requisite skills for creating secure software but also appreciate and 

prioritize ethical dimensions of AI systems: they are to know how an AI model will make decisions and ensure 

in every instance that those decisions blend with the organization's and the regulatory standards. As Raheman 

(2024) rightly pointed out, the lack of structured frameworks and guidelines for explainability or transparency in 

security systems poses a major impediment to integrating Trust-by-Design principles within the SDLC.  

Similarly, the evolving regulatory environment creates both obstacles and prospects. While regulatory 

frameworks-like the EU AI Act and NIST SSDF-are aimed at providing some manner of security guidance for a 

scalable software development environment, they are a tad slow at zeroing in on the requirements of AI security 

integration. What is still urgently needed is a unified regulatory approach, internationally standardized, to 

facilitate the broad acceptability of Trust-by-Design principles across all spheres. Companies in acceptance of 

these ideas will gain competitive advantage by accrediting their genuine commitment to safe, honest, ethical 

operations in AI Praxis as foretold by Srivastava and Singh (2024).  
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7.3 Future Directions in Research and Policy 

In the future, research may proceed toward developing intelligent tools to automate the explainability 

and traceability of AI-powered security measures, clean up much of the developers' and security teams' 

operations, and liberate them for bigger-picture responsibilities. As AI technology rapidly advances, new 

horizons of trustworthiness and security will appear. Researching means of enhancing the interpretability, 

accountability, and audit of the AI models would very much contribute toward the integrity of the Trust-by-

Design principles. 

When it comes to policy making, governments and standardization agencies must enhance and extend 

regulatory support to cover the minutiae of AI security. These cover guidelines for the ethical deployment of AI 

and explainable AI integration within security systems. Incentives from such policy frameworks will be very 

crucial for the developers-and eventually, the adoptions-of Trust-by-Design systems on a broad scale so that AI-

plus-security could responsibly and transparently are entertained across industries (Joseph & Paulose, 2020). 

 

7.4 Conclusion  

The framework of Trust-by-Design as outlined offers a strong case for embedding transparency, 

explainability, and security within AI-driven software development. The craft of safeguarding the systems as per 

this wave of digitalization must also shift and grow accordingly. Adding AI-fortified security measures in the 

early SDLC streams will help in creating resilient systems that provide security to innovation, in an ethically 

articulate context. Yet another partnership will see how to get Trust-by-Design accepted widely among 

developer, researcher, and policymakers alike. In summation, the largely obscured future of secure, AI-driven 

software production lies within the degree of trust that can be generated in whatever the system does and in 

whoever designs it. Through sustained research, policy formulation, and continuing commitment at the 

organizational levels, Trust-by-Design could one day come to fruition, completely changing how cybersecurity 

works in a gradually automated world. 
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