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Abstract:  
As the popularity and ubiquity of Android devices continue to rise, so does the risk of malicious software targeting 

these platforms. Android malware poses significant threats to users’ privacy, data security, and overall device 

performance. Therefore, effective detection and mitigation of Android malware have become essential to ensure 

a safe and secure user experience. In this project, a malware detection system is proposed that extracts permission 

and intent features from APK files using the SISIK web tool to effectively identify and classify applications as 

malware or benign without the need to run the application. This is done by incorporating two different Machine 

Learning (ML) algorithms, which are Random Forest (RF), and Support Vector Machine (SVM). To obtain the 

best performance in our system, we use a feature selection method. The main contribution of this Research Paper 

is to enhance the security of Android devices detecting malicious applications before installing them in the 

devices. Our results show that the RF model, with the use of the Genetic algorithm (GA) to reduce the dataset’s 

dimensions, achieved the highest performance metrics, including accuracy, recall, F1 score, and precision of 

98%, 99%, 98%, and 98%, respectively. 
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I. Introduction 
With the development of communication technology and as we live in an interconnected world, mobile 

devices have become an important part of our daily lives. Android, being one of the most popular mobile 

Operating Systems (OSs), offers a wide range of features and applications that enhance our productivity and 

entertainment. As the popularity of Android devices continue to rise, so does the risk of malicious software target 

these platforms. Therefore, effective detection and mitigation of Android malware have become essential to 

ensure a safe and secure user experience. 

In 2018, Android devices were identified as the most targeted system, experiencing the highest 

percentage of malware infections at 47.15%. Windows/PCs encountered a threat rate of 35.82%, IoT faced 

16.17% threats, and iPhones experienced lower threat rate of 0.85%, as shown in Figure 1. Consequently, there 

is a strong need for reliable, scalable, and robust malware detection tools for Android devices because malware 

can compromise user privacy, steal sensitive information stored on the device such as passwords and bank data, 

and cause financial losses through activities like identity theft or fraudulent transactions. By detecting malware, 

users can maintain the security and integrity of their personal information and mitigate potential harm. 

 

 
Figure 1. Percentage of Malware Attack 
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The main focus of this Research Paper is to develop an effective malware detection approach that is 

designed for Android OS. The detection is based on the static features which are declared in the 

AndroidManifest.xml file. To achieve this, we start by loading the dataset, which is essential for training and 

evaluating the detection models. Next, it is important to preprocess the dataset including cleaning it and selecting 

the most relevant features or characteristics of Android applications that can be used to distinguish between 

malicious and benign applications. Building the ML models for malware detection is the most important part of 

this project. The malware detection system is tested and evaluated with both known and unknown malware 

samples to assess its effectiveness and robustness. This project attempts to achieve the following objectives: 

1. Classifying APK files as safe or malicious based on static features found in the APKs. 

2. ML models are used in order to analyze the features and predict the class of the applications. 

3. Achieving a detection accuracy rate above 95%. This was achieved through the use of ML models. Moreover, 

the feature selection algorithms participated in increasing the accuracy of the ML models. 

The remaining of the paper is structured as follows. In section II, the related background is discussed. 

Section III presents a survey of the exiting papers and studies. Section IV presents details about the proposed 

systems.  Section V explores the result we got. Finally, Section VI concludes this paper. 

 

II. Background 
This section provides an overview of malware detection and malware analysis, the architecture of 

Android OS and the structure of its applications, and the last section gives a general background related to machine 

learning (ML). 

 

Structure of Android Application 

The extension of Android application files is called Android Package Kit (APK), which stands for 

Android Package Kit. An APK is a file that is compressed in ZIP format and runs an application installed on the 

Android OS. It contains multiple files that are needed to run an app, and when unzipped, the APK file’s unique 

structure is revealed [1]. Figure 2 shows the structure of the APK file. 

 

 
Figure 2: Structure of APK File 

 

The structure is composed of: 

1. AndroidManifest.xml: This file is mandatory and contains essential information about the app, such as the 

permissions required, metadata, hardware and software features, version, package name, etc. Once an 

application is launched, the first file the android system seeks is the Manifest file [2]. The focus of this project 

is on this file as it contains most of the required static features. 

2. Res folder: This folder includes various sub directories, such as drawable, graphics layout, sound setting, 

languages, and more. 

3. classes.dex: This file contains the compiled bytecode of the app’s Java or Kotlin classes. It is a compressed 

version of the Dalvik EXecutable (DEX) format, which is the format understood by the Android Run-Time 

(ART or Dalvik). 

4. lib/ directory: This directory contains native libraries required by the app, if any. 
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5. META-INF: This directory contains information about the APK’s contents and digital signatures mainly for 

security and integrity purposes. 

6. Resources.arsc: This file stores compiled resources used by the app, like strings, layouts, images, and other 

assets [3]. 

7. Assets: This directory can optionally contain additional application assets, such as raw data files or custom 

fonts. 

 

Malware Analysis Approaches 

Static, dynamic, and hybrid analysis are the most used techniques in Android malware detection. Static 

analysis involves examining the code and resources of an Android application without executing the program 

directly. It is applied by analyzing the AndroidManifest.xml file, smali files (which contain the application’s 

bytecode), and a set of static features, such as permissions, API calls, and Dalvik opcode. These artifacts can be 

obtained by decompiling the APK files. This approach offers several advantages, including shorter analysis time 

and lower computational requirements compared to dynamic analysis methods. By leveraging static features, it 

becomes possible to quickly assess the application’s security and detect known malware signatures or common 

patterns. However, it may be less effective in detecting sophisticated malware that relies on dynamic behavior 

[4]. 

Dynamic analysis involves executing the applications and observing their behavior in real time. involves 

executing applications directly on a real device or within a sandbox environment. This method focuses on 

monitoring the behavior of the application during run-time. By running the application, analysts can observe its 

interactions with the device, network, and user data. They capture logs and analyze the network traffic generated 

by the application. While dynamic analysis offers a more comprehensive understanding of an application’s 

behavior, it can be more time-consuming and computationally demanding compared to static analysis. 

Nevertheless, it is highly effective in detecting sophisticated malware that employs evasion techniques or exhibits 

malicious behavior only at run-time [4]. 

In hybrid analysis, to enhance the overall analysis, the malware is initially examined using static analysis 

techniques, followed by a dynamic analysis approach. This two-step process involves analyzing the malware’s 

code and structure without execution (static analysis) and then executing the malware and observing its behavior 

in a controlled environment (dynamic analysis). By combining static and dynamic analysis, a more 

comprehensive and thorough analysis of the malware is achieved [5]. 

 

III. Survey On The Existing Methodologies And Frameworks 
With the rise of Android devices, malware targeting this platform has become a significant concern, 

leading to various research efforts in detection methods. Numerous studies have explored different ML models 

for Android malware detection, including decision trees (DT), support vector machines (SVM), and deep learning 

(DL). This section provides a discussion about the recent works related to the detection approaches that were 

identified and explored in the previous chapter. 

 

Static Analysis 

Malware Analysis for Effective Android Malware Detection 

In this research paper, the author proposed a method for malware analysis and detection. This method 

involved examining static attributes including manifest permissions, API call signatures, intent filters, command 

signatures, and binaries. As shown in Figure 3, this detection approach includes 6 phases. The author used a 

COLCOM dataset in addition to his dataset which was collected by him. This was done in the first step. The 

second step, the author collected only the most relevant data from the application that is being analyzed. These 

features include manifest permissions, API call signatures, intent-filters, command signatures, and binaries. 

 

 
Figure 3: Detection Phases of Effective Android Malware Detection 



Android Malware Detection Using Machine Learning 

DOI: 10.9790/0661-2703014659                              www.iosrjournals.org                                               49 | Page 

The preprocessing phases include removing null values and duplication and making a balance between 

the samples. The training and validation of the dataset is the next step in the process. Training and validation data 

are separated from the original dataset. To verify that the data used for validation and training are completely 

different, the Author has  utilized cross-validation using a 5-fold fold ratio. Naive Bayes, Key Nearest Neighbors 

(KNN), and Multi-Layer Perceptron are utilized as ML models that were used in this work for training and 

validation along with a method called Principal Component Analysis (PCA), which was used in the feature 

extraction step to reduce the number of attributes required to accurately characterize each app. The conducted 

experiment showed that MultiLayer Perceptron has the highest level of accuracy but requires a long time for 

training compared to other ML models used in this experiment. Moreover, the author concluded the two attributes 

that most effectively distinguish malware from benign applications are the feature to read phone attitude and the 

Internet. The limitation of this paper is that the best accuracy is obtained with the model that took a long time in 

the training phase [6]. 

 

A Framework for Detection of Android Malware using Static Features 

In this paper, the authors proposed an effective framework that combines static features and utilizes ML 

classifiers. Firstly, they collected the samples and then removed the duplicate apps and performed labelling. After 

that, static features are extracted using two tools, which are AXMLPrinter and Baksmali Disassembler. Three 

types of static features were extracted: API calls, permissions, and intents. API calls were extracted from 

classes.dex, while permissions and intents were extracted from AndroidManifest.xml. Every app is presented in 

the form of a binary vector, 0s and 1s. 

The last step is the classification process in which these features are trained using four ML classifiers 

which are SVM, Random Forest (RF), KNN and DT and then compare the results. They divided the dataset into 

a ratio of 80% and 20%. 80% of the data is used for training and the rest 20% is used for testing purposes. In the 

training phase, they applied a 5-fold cross validation technique in which the complete data is split into five equal 

parts. At each run, four parts are used for training purposes and the rest is utilized for testing purposes. This was 

repeated five times.  The authors tested the models with the use of permission, intent, API calls, and a combination 

of all previous static features.  The results from the test indicate that the combination of features outperforms 

individual features, As appears in Figure 4. Additionally, it was found that RF and KNN classifiers achieved the 

best accuracy rate [7]. 

 

 
Figure 4: Accuracy Result of [7] 

 

Dynamic Analysis 

Mldroid Framework for Android Malware Detection using Machine Learning Techniques 

In this paper, the authors proposed a framework that detects malware from Android applications by 

performing dynamic analysis. As shown in figure 5, they started by collecting .apk files from different trusted 

sources, such as Google’s play store. A total of 55,000 malware samples are collected from three different data 

sets. The model is trained by using the dynamic behavior of real-world applications that were collected from 

different promised repositories and the experiment was performed on more than 500,000 Android applications. 

After collecting samples of .apk files from various repositories, they extracted permission and API calls from 

each of the .apk files. The authors extracted features from the tested application while running them in an 

emulator. Each application is represented as an 1844-dimensional Boolean vector, where ‘1’ implies that the 

application requires the specified features and ‘0’ implies that features are not required. 
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Figure 5: Mldroid Framework Methodology 

 

In features, selection and ranking, the authors used multiple algorithms and compared their performance. 

They used chi-Squared, information-gain, oneR feature selection, PCA, and logistic regression. They explored 

four types of ML models that are not widely used, which are the farthest first clustering, nonlinear ensemble 

decision tree forest approach, Multilayer Perceptron and the last one is DL algorithm. In this work, distinct 

performance matrix, which are F-measure, accuracy, intra-cluster and inter-cluster distance, were utilized for 

measuring the performance of malware detection approaches. The con of the approach is that the model performed 

better when only trained with a few numbers of malware families.  They achieved a detection rate of 98.8% to 

detect malware from real world applications [8]. 

 

Hybrid Analysis 

Two Anatomists Are Better Than One Dual-Level Android Malware Detection 

In this paper, the authors introduced an automated hybrid analysis tool that extracted groups of static and 

dynamic features to analyze the behavior of an application in the Android platform. This approach includes two 

main subsets, one for static analysis and one for dynamic analysis, as appear in figure 6. Static features were 

extracted with the use of reverse engineering techniques. In this step the author utilized APKtool to get relevant 

information from AndroidManifest.xml” and “classed.dex”. 

In Dynamic feature extraction, they used a tool to extract dynamic feature during runtime. A total of six 

feature categories are investigated, including permissions, intents, API calls, network traffic, inter-app 

communication, and Java classes. Among these categories, only permissions, intents, and API calls apply to static 

analysis. The authors found out that the API calls category showed greater influence and tends to enhance the 

performance of the hybrid methods. Additionally, the Java classes category also achieved notably high average 

importance scores. The experiment for this work was done over three different datasets in order to show that this 

hybrid analysis of Android applications can greatly improve the detection capabilities of a detection model [9]. 

 

 
Figure 6: Automated Hybrid Analysis Approach 
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Comparison of previous literature review 

This section provides a discussion about the recent related works to the detection approaches that were 

identified and explored in the previous chapter. Table 1 provides a summary of related studies’ surveys regarding 

the detection analysis approaches, used ML models, Advantages, and Limitations found in each paper. 

 

Table 1: Summery of Related Works 
Paper Pub. 

Year 

Analysis 

Approach 

ML Model Contribution Limitations 

Malware Analysis 

for Effective 

Android Malware 
Detection 

 

 

 
2023 

 

 

Static 
Analysis 

Naive Bayes, KNN, and 

Multi-Layer Perceptron 

 

Presenting the top 10 

features that have a 

significant impact on 
the model’s decision. 

1- The dataset is 

old, containing 

information that is 
over five years old.                                        

2- The best accuracy 

is obtained with the 
model that took a 

long time in the 

training phase. 

A Framework for 

Detection of 

Android Malware 
using Static Features 

 

 

 
 

2020 

 

 

Static 
Analysis 

SVM, KNN, RF, and DT. The authors conducted          

a comparative analysis 

to evaluate the 
performance of using 

individual features 

compared to the use of 
a combination of 

features. 

The times taken to 

train and test the 

models are not 
mentioned at all. 

 

Mldroid Framework 

for Android 
Malware Detection 

using Machine 

Learning Techniques 

2021 
Dynamic 

Analysis 

DL algorithm, farthest 

first clustering, 

Multilayer Perceptron 
and nonlinear ensemble 

decision tree forest 

The use of rarely used 

ML models. 

The model 

performed better 
when only trained 

with a few numbers 

of malware families. 
 

Two Anatomists Are 

Better Than One 
Dual-Level Android 

Malware Detection 

2020 
Hybird 

Analysis 
Many ML models. 

 

Applying the models 

on three datasets and 
comparing their result. 

 

He uses of outdated 
dataset 

 

Summery 

In a study conducted by Gorment et al. [10] on malware detection for different platforms, it was found 

that 53.3% of the studies focused on static analysis. In contrast, dynamic analysis accounted for 28.9% and hybrid 

analysis for 17.8%, as illustrated in the Figure 7. This also highlights the significant effectiveness and 

attractiveness of static analysis for malware detection across various platforms. For that reason, we will use static 

analysis for malware detection in this project. 

 

 
Figure 7: Usage of Analysis Approaches Based on [10] 

 

Even though the recently proposed works by researchers have great accuracy, but some did not take onto 

consideration the time taken to build and the ML models. For example, BALCIOG ̆LU [6], the accuracy achieved 

was close to 99%, but the time taken was very long. In research paper,   a new Android malware detection 

approach will be proposed using static features with a balance between the accuracy of the model and the time 

taken to train and test the ML models. 
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IV. Proposed System 
The objective of this section section, we focus on the phases for building the proposed system including 

preprocessing the dataset, training and testing ML models, APK file analyzing, and classifying new samples. 

Figure 8 shows a flow diagram of malicious and benign APKs classification using ML models. 

 

 
Figure 8: Overall System Architecture 

 

Data loading and preprocessing 

First, started by loading and exploring the dataset. We used the Panda Python library to load the datasets 

and store them in a data frame object. Then, to check how many rows and columns there are in each dataset, we 

used the shape function. As we mention in the previous section, the number of features in the dataset is 532 and 

number of samples is 847. Figure 9 shown the distribution of each class, where ”0” represents the Malicious 

samples and ”1” represents Benign. Figure 10 shows the distribution of features based on group on the dataset. 

 

 
Figure 9: Distribution of each class. 

 

 
Figure 10: Distribution of features. 
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Data preprocessing refers to the steps and techniques applied to transform raw data to a suitable format 

to be used for training and testing ML models. It involves transforming and cleaning the data to ensure its quality, 

consistency, and suitability for further analysis. For performing data preprocessing in this research project we 

have used Python programming language due to its extensive libraries and tools that could be used for this 

purpose. The steps applied for data preprocessing include data cleaning, which involves handling missing data 

and removing duplicate rows because they can affect the result of classification and lead to unreliable output. 

Moreover, this step involves dealing with inconsistencies in the dataset. We will address any inconsistencies or 

errors in the data. 

 

Removing Null values  

     The null() function will be used to check if our dataset contains any missing values. Figure 11 shows 

when we checked the number of samples with null values. We got 847, which corresponded to the total number 

of samples in the dataset. Then we realized that two columns contain null values for all samples. The second line 

in the figure shows when we deleted these columns. After that, we again checked the number of features and 

found that there were now 529 features and one column for the label. 

 

 
Figure 11: Removing null values. 

 

Shuffling the Datasets  

   For shuffling the dataset, we use the sample() function with the parameter frac=1 to ensure that the entire 

dataset is sampled. Data shuffling or randomization is used because the samples in the datasets are often collected 

in a specific order which may introduce some bias. By shuffling the data, we ensure that the order of the data 

points does not influence the model’s training and testing process. 

 

Feature Selection  

         Feature selection is a technique that involves reducing the number of features in a dataset by selecting the 

most important and effective ones. It aims to identify and choose the features that have the most significant impact 

on the target variable or the overall performance of a model. This can be done based on statistical measures or 

correlation analysis. For this research paper, a Genetic Algorithm (GA) is applied to reduce the number of 

features. After applying each technique, the accuracy of the models is measured to compare their performance. 

GA is an algorithm that simulates the natural process of evolution. It involves a crossover process where multiple 

generations are combined and iterated until the best generations are obtained. The algorithm aims to optimize a 

solution by mimicking the principles of natural selection and genetic inheritance. It functions by employing 

bioinspired operators such as crossover, mutation, and selection. Table 2 shows the final number of selected 

features by GA feature selection methods in the dataset, which enhances the accuracy of the ML models and 

speeds the detection process. 

 

Table 2: No. of selected features 
No. of all features 529 

No. of features after applying GA 280 

 

 

Splitting the Dataset  

       For training and testing our ML models, we have to split the data set into features 

and labels, for that, we removed the result columns, which include the labels, and stored them in a variable, named 

”y” and the remaining columns which are the features are stored in a variable ”X”, where we store the selected 

features by GA, as shown in Figure 12 Then we divided our dataset into two sets: training and testing sets using 

the train test split() function with four parameters. The first and second parameters are the features and labels 

which we declared above and the third parameter is test size=0.2, which means 20% of the data will be used for 

testing, while the remaining 80% will be used for training. The fourth parameter is random state=42, which sets 
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the random seed to 42 to obtain the same train test split every time. Figure 13 show the number of samples for 

training and testing after splitting. 

 

 
Figure 12: Splitting the dataset 

 

 
Figure 13: Number of training and testing samples 

 

Machine Learning Classifiers  

        The system applies ML models for classification, including SVM and RF. These models are commonly 

employed in the field of malware detection due to their effectiveness in handling complex and high-dimensional 

feature spaces. These ML models will be trained using labeled data extracted from APK files. The training process 

involves adjusting the models’ parameters to minimize prediction errors and optimize their performance. Once 

trained, the models will be capable of classifying new APK files as either malware or benign based on the learned 

features. All the used ML models are extracted from scikit-learn library. Then, we fit the models to the training 

data. Fitting the model involves training it on the training set to learn the relationships between the features and 

the label. 

• RF: It is a classification algorithm that combines multiple uncorrelated decision tree classifiers. Each tree 

independently predicts the class for input values, and the final prediction is made by voting or averaging the 

predictions of all the trees. This supervised learning algorithm uses the bagging method to train multiple 

decision trees and combines their outputs to achieve more accurate and stable predictions that the data point 

falls into that category [11]. Figure 14 shows the code for using RF model. 

 

 
Figure 14: Code for using RF 
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• SVM: It utilizes a hyperplane in n-dimensional space to separate data into two distinct regions, corresponding 

to different classes. The objective is to maximize the margin between these regions. The margin is determined 

by the distance between instances of the two classes, with particular emphasis on the closest instances, known 

as support vectors. This approach allows us to effectively classify new samples based on their position relative 

to the learned hyperplane [12]. Figure 15 shows the code for using SVM model. 

 

 
Figure 15: Code for using SVM 

 

Evaluation 

Evaluation metrics are calculated using four parameters: True Positive (TP), False Negative (FN), False 

Positive (FP), and True Negative (TN). These evaluation metrics provide a comprehensive assessment of the 

performance of our proposed system by taking into account both correct predictions (TP and TN) and incorrect 

predictions (FP and FN). Accuracy measures the overall correctness of the system’s predictions. It is calculated 

as shown in the below equation. 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision represents the percentage of correctly classified malware samples out of all samples predicted 

as malware. It is calculated as shown in the below equation. 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall measures the ability of the malware detection system to correctly identify malware samples. It 

represents the percentage of actual malware samples that are correctly classified as malware. It is calculated as 

shown in below equation. 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Saving and Loading ML Models  

            Because the RF model has the highest accuracy value, we planned to use it for classifying new samples. 

To save and load our model, we use the serialization and deserialization techniques provided by the Pickle and 

Joblib libraries. After we trained and tested the model, we used the dump() function which saves the model in a 

pickle file with a .pkl extension. Joblib.dump() function serializes the model object and writes it to the specified 

file. For loading and using the ML model we used joblib.load() function with passing the pkl file. We can then 

make predictions on new samples. This is done in order to save time by avoiding the need to retrain the model 

every time you want to make predictions on new samples. 

 

Features Extractions 

Two types of features are needed for this project from APK files which are shown in Table 3. 

 

Table 3: Types of features 

Permissions features 

Android applications request various permissions to access certain sensitive resources or data in 

order to perform their functional requirements and complete specific actions on a mobile device. 

Users have to allow the use of the requested permissions by applications [13]. Malicious apps often 
request excessive or unnecessary permissions, which indicates suspicious behavior. 

Intents 

Intents are a fundamental component of Android’s inter-application communication system [14]. 

When one activity within an application needs to communicate with another activity, it generates 
an intent. An intent serves as a message or request that encapsulates the important information that 
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the sending activity wants to communicate to the receiving activity [15]. By analyzing intent 

features, we can explore the communication patterns and potentially malicious activities of an 
application. 

 

By combining permission features with intent features, we can leverage the information from both 

aspects to enhance the accuracy of your malware detection model. These features are extracted from the APK 

files using the SISIK web tool. It is a free online tool that provides a wide range of functionalities and methods 

to help in feature extraction and analysis. it extracts the manifast.xml from the APK file. Then we extract 

permission and intent from manifast.xml. We used Selenium which is an open-source framework for allowing 

Python to interact with web elements such as SISIK. 

 

APK Classification 

After extracting the relevant features from the APK file using the SISIK tool, we used 

them as input to the ML models. The predict proba() functions is used the final result of the system. It provides 

the probability of the input APK file belonging to each class. By using the predict proba() function, we can obtain 

additional information beyond just  the class labels. For example, if the predicted probabilities for a given APK 

file are [0.8, 0.2], it indicates that the model is 80% sure that the file is malware) and 20% confident that it is safe. 

 

GUI 

Figure 16 shows the home interface of the system. The only thing that a user does is uploading an APK 

file and press the DETECT Button. 

 

 
Figure 16: Home Interface of the system. 

 

After that, the system will send the APK file to SISIK to decompile and extracting the needed features, 

which forces a new web window to open automatically showing the analysis result page in SISIK, as shown in 

Figure 17 Then, this window will close, and the final result well be shown to the user. 

 

 
Figure 17: Analysis result page in SISIK 

 

When the APK file has high probability of being malware, the system will show a warning with the 

percentage, as shown in Figure 18. On the other hand, when the APK file looks safe, Figure 19 will be shown. 

 

 
Figure 18: Malicious APK File 
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Figure 19: Safe APK File 

 

V. Result And Findings 
In this section, we explore the result we got during the implementation of research paper. We Compare 

the result obtained using bot ML models. 

 

ML Models Evaluation 

In this section, we present, compare, and discuss the overall result of the evaluation metric; accuracy, 

recall and precision, for both ML models. Moreover, we compare the time taken to train and test by both ML 

models. Figure 20 shows the comparison between the accuracy, recall, and precision of RF and SVM models. RF 

performs better than SVM, this is because RF is considered ensemble learning that combines multiple DT models 

to make a prediction and due to its robustness over overfitting. 

 

 
Figure 20: Comparison between of RF and SVM models. 

 

After conducting this comparison, we decided to choose the RF model, as it has shown better 

performance than SVM. Hence,  RF model is saved as pickle file and to used it to detect new samples. Figure 21 

shows the time taken by both ML models to train and test. As it appears RF models has the longest time to train, 

this is because the training process of the RF model involves building and combining these multiple decision 

trees, which can be computationally intensive and result in a longer training time. However, during the test, the 

model can make predictions by simply averaging the outputs of the individual decision trees, which require a 

shorter time. 

 

 
Figure 21: Time taken to train and test by both ML 
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Testing the Overall Performance of the System 

After the comparison performed in the previous subsection, we conclude that the RF model has shown 

better performance than SVM. Our system is considered to be easy to use since the end user does not do any 

configuration and should only upload the APK file. The user should not have to worry about the underlying 

processes or switch between different tools. The system automatically sends the APK to the SISIK web tool, 

extracts the relevant data from the APK file, and then Selenium will take over to return the extracted information 

to the system. The ML models will use this information to detect the APK file. In this section, we will test real 

and new APK files. 

For testing samples, we have collected APK files that were published by developers for test purposes on 

some websites. We have tested 2 samples: 1 benign and 1 malware. We send each sample to the SISIK web tool 

to be decompiled and analyzed. After that, it returned with a set of features that the APK file requested. We used 

them as input to the pickled ML model, which is RF model. Table 4 provides a comparison of the results we 

obtained for the real APK file we have tested with the correct type of the file, either malware or safe. The results 

indicate the chances of an application being classified as malware or safe. The average time taken to predict a 

new sample is 15 seconds. This involves sending the APK file to the SISIK tool to be decompiled and then 

analyzed. Then the extracted features are sent back to the system to the pickle file to make a prediction and present 

the result to the user. 

 

Table 4: System Result 
APK file Actual Type Result obtained for the system 

File.apk Malware There are 60 % chances that this app is malware! 

SurlyProject.apk Safe There are 99.14 % chances that this app is safe! 

 

VI. Conclusion 
With the increasing popularity and widespread use of Android devices, the risk of malicious software 

targeting these platforms is also on the rise. Android malware presents substantial dangers to user privacy, data 

security, and the overall performance of the devices. In this paper, we proposed an efficient system for identifying 

malicious applications based on the features extracted using static malware analysis. Efficient and accurate 

Android malware detection not only protects individual users’ privacy and data security but also preserves the 

integrity of enterprise networks and sensitive information. By leveraging detection approaches, promoting user 

awareness, and implementing security best practices, we can mitigate the risks posed by Android malware and 

ensure a secure mobile experience for users. 

In this research paper, we leveraged ML models along with permission and intent features extracted from 

the APK file to check the probability of being malicious or benign, which could help to either install that APK 

file or not. Our finding shows that RF outperforms SVM in accurately classifying APK files. The RF model 

achieved an accuracy rate of 98%, indicating its effectiveness in accurately classifying APK files. Our research 

paper  contributes to the enhancement of malware detection methods for APK files. The high accuracy and 

performance of the RF model and the emphasis on testing real-world data highlight the potential effectiveness 

and practical applicability of our system. 

In the future, we are planning to incorporate the use of explainable ML models in the Android malware 

detection field which provides interpretability in the decision-making process and enables users to understand 

why a specific prediction or classification is made by ML models. explainable ML models address the block box 

issues introduced by some ML models where the users do not know why specific prediction is taken by the ML 

models. However, it is important to take into consideration making a balance between interpretability and the 

performance of the models. 

We believe that there are still more features to be explored and analyzed from Android applications for 

malware detection. we will explore the use of other Android features that could be extracted from Android 

applications without installing them, such as the inclusion of specific strings in the code comments. Some 

developers and programmers leave comments that may contain hints related to their malicious intent. 
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