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Abstract:  
Video-based behavior recognition is essential in fields such as public safety, intelligent surveillance, and 

human-computer interaction. Traditional 3D Convolutional Neural Network (3D CNN) effectively capture local 

spatiotemporal features but struggle with modeling long-range dependencies. Conversely, Transformers excel at 

learning global contextual information but face challenges with high computational costs. To address these 

limitations, we propose a hybrid framework combining 3D CNN and Transformer architectures. The 3D CNN 

module extracts low-level spatiotemporal features, while the Transformer module captures long-range temporal 

dependencies, with a fusion mechanism integrating both representations. Evaluated on benchmark datasets, the 

proposed model outperforms traditional 3D CNN and standalone Transformers, achieving higher recognition 

accuracy with manageable complexity. Ablation studies further validate the complementary strengths of the two 

modules. This hybrid framework offers an effective and scalable solution for video-based behavior recognition.. 

Key Word: Video-based Behavior Recognition; 3D CNN; Transformer; Hybrid Model; Spatiotemporal 

Features. 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 22-04-2025                                                                           Date of Acceptance: 02-05-2025 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. Introduction 
 Video-based behavior recognition has emerged as a critical research area due to its extensive 

applications in public safety, intelligent surveillance, human-computer interaction, and healthcare monitoring. 

Accurately understanding human behavior from video sequences is inherently challenging, as it requires 

simultaneously modeling complex spatial structures and temporal dynamics, while being robust to 

environmental variations, occlusions, and diverse motion patterns[1]. 

Traditional deep learning approaches, especially those utilizing 3D CNN, have demonstrated 

remarkable success in extracting spatiotemporal features by extending 2D convolutional operations into the 

temporal domain. 3D CNN are capable of capturing local motion patterns and short-term temporal dependencies 

effectively, contributing significantly to the advancement of video-based recognition systems[2]. However, their 

inherent limitations in modeling long-range temporal dependencies restrict their ability to fully comprehend 

behaviors that evolve over extended sequences or that require a broader contextual understanding. This 

shortcoming often leads to degraded performance in complex real-world scenarios[3]. 

In contrast, Transformer architectures, originally developed for natural language processing, have 

recently shown impressive results across various computer vision tasks[4]. Their self-attention mechanism allows 

for the modeling of global dependencies and long-term interactions among features, enabling a more holistic 

understanding of temporal and spatial information. Despite these advantages, Transformer-based models 

typically involve high computational complexity and require large-scale annotated datasets for effective 

training, making them less practical for resource-constrained applications[5]. 

Motivated by the complementary strengths of 3D CNN and Transformer, this paper proposes a novel 

framework that integrates 3D CNN with Transformer modules for video-based behavior recognition. In the 

proposed framework, 3D CNN serve as the backbone for efficient extraction of local spatiotemporal features, 

while Transformer components are employed to capture global temporal relationships across video frames [6]. A 

carefully designed feature fusion strategy ensures seamless integration of local and global information, resulting 

in a more accurate and robust behavior recognition model without imposing excessive computational overhead. 

Through extensive experiments on publicly available benchmark datasets, the proposed framework 

demonstrates superior performance compared to existing methods, achieving a favorable balance between 

recognition accuracy and computational efficiency. This work highlights the importance of combining local 

feature extraction and global temporal modeling, offering a practical and scalable solution for behavior 

recognition tasks in real-world video analysis systems. 
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II. Related Work 
3D CNN in Behavior Recognition 

The application of 3D CNN has significantly advanced the field of video-based behavior recognition. 

Unlike traditional 2D CNN that only process spatial information from individual frames, 3D CNN extend 

convolutional operations into the temporal dimension, enabling the simultaneous modeling of spatial and 

temporal features[7]. By incorporating time as an additional axis, 3D CNN can effectively capture motion cues, 

short-term dynamics, and contextual variations inherent in video sequences. 

Early seminal works, such as C3D, demonstrated the feasibility of applying 3D convolutions to extract 

generic spatiotemporal features from videos. C3D showed that 3D convolutions could outperform handcrafted 

feature-based methods by learning task-relevant motion patterns directly from raw video frames. Following this, 

more advanced architectures like I3D (Inflated 3D ConvNet) further improved performance by inflating 2D 

filters into 3D, allowing the utilization of pre-trained 2D network while effectively modeling temporal 

information. 

In behavior recognition tasks, 3D CNN have proven to be particularly effective in scenarios involving 

short and moderate-length actions, such as violent behavior detection, gesture recognition, and activity 

classification[8]. Their ability to capture localized temporal dependencies makes them well-suited for 

recognizing actions characterized by distinctive motion patterns over a few frames. 

However, despite their strengths, 3D CNN exhibit certain limitations. The receptive field of standard 

3D convolutions is often constrained, making it challenging to model long-range temporal dependencies 

essential for understanding complex or subtle behaviors that evolve over extended periods. Additionally, 3D 

CNN are computationally intensive, requiring substantial memory and processing power, which can hinder their 

deployment in real-time or resource-limited environments. 

To address these challenges, researchers have explored various strategies, such as incorporating 

temporal pooling, multi-scale temporal modeling, and two-stream network that separate spatial and temporal 

processing. Nevertheless, the inherent locality of convolution operations continues to limit the global temporal 

reasoning capacity of 3D CNN. These limitations motivate the exploration of hybrid approaches, such as 

integrating Transformer modules, to enhance long-range temporal modeling while maintaining the powerful 

local feature extraction capabilities of 3D CNN. 

 

Transformer in Video Understanding 

Transformer, originally proposed for natural language processing tasks, have recently demonstrated 

remarkable success in computer vision, particularly for video understanding[9]. Unlike convolutional 

architectures that rely on local receptive fields, Transformer leverage self-attention mechanisms to model global 

dependencies across spatial and temporal dimensions. This capability is particularly advantageous for video-

based tasks, where capturing both short-term dynamics and long-range temporal structures is critical. 

Early works such as the TimeSformer and Video Swin Transformer adapted the Transformer 

architecture to video inputs by introducing mechanisms to efficiently handle the increased computational 

complexity of spatiotemporal data. TimeSformer, for instance, decomposed attention into spatial and temporal 

components, enabling scalable learning on video frames. These models showed that Transformer could 

outperform conventional CNN-based methods on large-scale video action recognition benchmarks, establishing 

a new paradigm in video understanding research[10]. 

The key strength of Transformer in video analysis lies in their ability to capture intricate and non-local 

temporal relationships that are difficult for 3D CNN to model. By attending to all frames simultaneously, 

Transformer can learn high-level semantic representations that span across an entire video clip, making them 

particularly effective for recognizing complex actions, subtle motion patterns, and behaviors involving long-

term dependencies. 

However, the application of pure Transformer architectures in video tasks also faces significant 

challenges. The quadratic complexity of self-attention with respect to the number of tokens leads to high 

computational and memory demands, making Transformer less practical for real-time applications or 

deployment on edge devices. To address this, lightweight variants such as the Video Swin Transformer and 

Tiny-ViT have been proposed, which introduce hierarchical structures, windowed attention, and efficient 

tokenization strategies to reduce computational costs while preserving the model's global reasoning 

capabilities[9]. 

Transformer have brought transformative changes to video understanding by providing powerful 

mechanisms for capturing global spatiotemporal contexts[11]. Nevertheless, their computational overhead 

necessitates careful architectural design, particularly when aiming for real-time performance or deployment in 

resource-constrained scenarios[12]. These considerations motivate the development of hybrid models that 

combine the local feature extraction strengths of CNN with the global reasoning abilities of Transformer, aiming 

to achieve a favorable balance between efficiency and recognition performance. 
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3D CNN and Transformer Hybrid Model 

In recent years, hybrid models that combine 3D CNN with Transformer architectures have attracted 

increasing attention in the field of video understanding. These models aim to integrate the local feature 

extraction strengths of 3D CNN with the global spatiotemporal modeling capabilities of Transformer, seeking to 

overcome the limitations inherent in using either architecture alone. 

Notable early attempts include adaptations such as SlowFast+Transformer, where the SlowFast 

network provides multi-pathway temporal feature extraction, and Transformer modules are incorporated to 

capture long-range dependencies across frames. Similarly, architectures like TimeSformer+CNN hybrids have 

explored combining convolutional layers for local pattern extraction with Transformer-based self-attention 

mechanisms for enhanced temporal reasoning. These approaches demonstrated that integrating convolutional 

inductive biases with the flexibility of attention mechanisms can significantly boost performance in complex 

action recognition and behavior understanding tasks. 

Despite these advancements, many existing hybrid models face challenges related to architectural 

complexity, high computational cost, and inefficient feature fusion between CNN and Transformer components. 

Some designs treat CNN and Transformer modules as separate stages, leading to suboptimal information 

integration, while others introduce heavy overheads that hinder real-time application. 

In contrast, the framework proposed in this paper presents a more unified and lightweight fusion 

strategy. Our method integrates a 3D CNN backbone with a Transformer module in a streamlined manner, 

allowing for effective spatial-temporal feature interaction without introducing excessive computational burden. 

Specifically, we leverage the local representation capabilities of 3D convolutions for early-stage feature 

extraction, followed by Transformer blocks to refine and globally contextualize the temporal dynamics. This 

tight coupling between 3D CNN and Transformer components enables the model to achieve strong behavior 

recognition performance while maintaining computational efficiency, making it more practical for real-world 

deployment scenarios compared to previous hybrid architectures. 

 

III. Proposed Method 
Overall Architecture 

The proposed framework for video-based behavior recognition is designed to effectively capture both 

local and global features from the input video sequences by combining a 3D Convolutional Neural Network 

with Transformer modules. The overall architecture is shown in figure 1. 

Initially, the video input is processed through a 3D CNN module. This module consists of eight 3D 

convolutional layers, each utilizing convolutional kernels of size 3x3x3. The number of kernels in each layer 

gradually increases as follows: 32, 64, 128, 128, 256, 256, 512, and 512, respectively. This design allows the 

network to progressively learn more complex features at different levels of abstraction. The 3D convolutional 

layers are responsible for extracting spatio-temporal features from the video frames, capturing both the spatial 

and temporal dependencies that are critical for behavior recognition. 

Within the 3D CNN module, six 3D pooling layers are applied to reduce the spatial dimensions of the 

feature maps while preserving essential information. The first pooling layer has a kernel size of 1x2x2, and all 

subsequent pooling layers use a kernel size of 2x2x2. The pooling operations help lower the computational 

burden by reducing the size of the feature maps, which is essential for efficient processing in the later stages of 

the network. 

 

 

Figure 1. The Overall Framework of The Hybrid Model 
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Once the video input passes through the 3D CNN layers, two Transformer modules are stacked to 

complete the feature extraction process. Transformers are well-known for their ability to model long-range 

dependencies and global contextual information. By incorporating these modules after the CNN layers, the 

model can better capture the broader context of behaviors and recognize actions that involve interactions over 

time and space across multiple video frames. 

Finally, based on the specific requirements of the classification task, appropriate fully connected layers 

and Multi-Layer Perceptron (MLP) Head modules are added to form the final layers of the network. These 

layers help to transform the learned features into the desired output for behavior recognition, such as detecting 

violent actions. 

The combination of the 3D CNN and Transformer modules in this framework brings together the best 

of both architectures. The 3D CNN excels at extracting local spatio-temporal patterns, essential for recognizing 

actions within individual video frames. In contrast, the Transformer modules are adept at capturing long-range 

dependencies and contextual information across frames. This synergy allows the hybrid model to handle the 

complexity of video-based behavior recognition, improving its accuracy in detecting violent behaviors despite 

challenges such as background noise, occlusions, and varying video resolutions. By leveraging both the local 

feature extraction capabilities of the CNN and the global feature representation of the Transformer, the model 

achieves a robust and efficient solution for video-based behavior recognition. 

 

3D CNN-Based Spatiotemporal Feature Extraction 

The 3D CNN module is designed to effectively extract spatio-temporal features from video sequences, 

crucial for behavior recognition tasks. The module consists of eight 3D convolutional layers, each using 3x3x3 

convolutional kernels. These kernels are particularly suited for processing video data as they capture local 

spatial patterns within individual frames as well as temporal dependencies across consecutive frames. The 

number of kernels in the layers increases progressively: 32, 64, 128, 128, 256, 256, 512, and 512. This 

incremental growth enables the network to learn increasingly complex features as the data passes through the 

layers, starting from simple patterns like edges and textures to more abstract representations like motion and 

interactions. The module also includes six 3D pooling layers, with the first pooling layer using a kernel size of 

1x2x2, and the remaining layers using a 2x2x2 kernel. The pooling layers reduce the spatial and temporal 

dimensions of the feature maps, preserving the most informative features while lowering the computational 

load. The convolution operation can be mathematically expressed as: 

𝐹𝑜𝑢𝑡(𝑖,𝑗,𝑘) = ∑ ∑ ∑ 𝐹𝑖𝑛(𝑖 + 𝑚, 𝑗 + 𝑛, 𝑘 + 𝑝)

𝑃

𝑝=1

∙ 𝑊(𝑚, 𝑛, 𝑝)

𝑁

𝑛=1

𝑀

𝑚=1

 

where 𝐹𝑜𝑢𝑡(𝑖,𝑗,𝑘)represents the input feature map at position (i,j,k) and 𝑊(𝑚, 𝑛, 𝑝) is the 3D kernel. 

This 3D convolution operation allows the network to learn both spatial and temporal features, essential for 

recognizing behavior patterns over time. The 3D CNN module's design enables the model to capture local 

spatio-temporal patterns effectively, making it well-suited for recognizing complex behaviors that involve 

motion and interactions across multiple frames. 

 

Transformer-Based Temporal Modeling 

After the 3D CNN module extracts the spatio-temporal features from the video input, these features are 

passed into Transformer modules for enhanced temporal modeling. Transformers are well-known for their 

ability to capture long-range dependencies and global contextual information, making them ideal for processing 

sequential data such as video frames. The input to the Transformer module is the feature map produced by the 

3D CNN, which is reshaped into a sequence format. Specifically, each spatial-temporal feature map is flattened 

into a one-dimensional vector, and each of these vectors corresponds to a token in the sequence. These tokens 

represent different regions of the video and contain information about the spatial and temporal features learned 

by the CNN. To help the Transformer understand the position of each token within the sequence, position 

encodings are added to the input tokens. These position encodings provide information about the relative or 

absolute position of the tokens within the sequence, allowing the Transformer to differentiate between tokens at 

different times or spatial locations. The position encoding is typically added to the input feature map, and it can 

be learned or fixed. 

The attention mechanism within the Transformer then processes the sequence of tokens by computing 

self-attention, which enables the model to weigh the importance of each token in relation to others in the 

sequence. This attention mechanism is crucial for capturing long-range dependencies across frames, allowing 

the model to understand how different frames in the video interact with one another over time. The self-attention 

operation can be mathematically expressed as: 
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𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 

Where 𝑄  represents the query matrix, 𝐾  is the key matrix, 𝑉  is the value matrix, 𝑑𝑘 is the 

dimensionality of the query and key vectors. 

This formula calculates the attention scores by taking the dot product of the query and key matrices, 

scaled by the square root of the key dimensionality √𝑑𝑘 followed by a softmax operation to obtain the 

attention weights. The weighted sum of the value matrix 𝑉 is then computed to produce the output of the 

attention mechanism. 
The self-attention process computes the attention score for each token pair, which reflects their relative 

importance, and generates a weighted sum of the tokens for each output. This enables the model to focus on key 

temporal patterns and interactions across the video frames, improving its ability to recognize complex behaviors 

that span multiple frames or involve interactions between different entities. By incorporating the Transformer, 

the model effectively combines local spatio-temporal features learned by the 3D CNN with global temporal 

context, providing a powerful framework for video-based behavior recognition. 

 

Fusion Strategy 

To effectively integrate the features extracted by the 3D CNN module with the output from the 

Transformer, a fusion strategy is employed that combines both local spatio-temporal information and global 

temporal context. The key challenge in this fusion is to ensure that the distinct characteristics of both models are 

preserved while enabling the model to learn complementary representations from both types of features. In this 

work, we adopt a weighted fusion approach, where the features from the 3D CNN and the Transformer are 

combined through a learned weight mechanism. This strategy allows the model to dynamically assign 

importance to each type of feature based on the context of the video data. Specifically, the output from the 3D 

CNN is first flattened and passed through a series of fully connected layers to match the dimensionality of the 

Transformer output. Then, a weighted sum of the two feature vectors is computed, where the weights are 

learned during training. This can be expressed mathematically as: 

𝐹𝑓𝑢𝑠𝑒𝑑 = 𝛼 ∙ 𝐹𝐶𝑁𝑁 + （1 − 𝛼）𝐹𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 

Where 𝐹𝐶𝑁𝑁 and 𝐹𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟  represent the feature vectors from the 3D CNN and the Transformer, 

respectively, and 𝛼 is a learned scalar weight that controls the contribution of each feature set. This approach 

enables the model to adjust the importance of each feature type based on the behavior being recognized, 

allowing the system to focus more on local spatio-temporal patterns when needed and more on global temporal 

dependencies in other situations. Additionally, residual connections are introduced to facilitate gradient flow and 

ensure the model retains important low-level features from the 3D CNN. The final fused feature representation 

is then passed through fully connected layers and an MLP Head to output the final detection results. By 

employing this fusion strategy, the model combines the strengths of both architectures—CNN’s ability to 

capture local motion patterns and Transformer’s power to model long-range temporal dependencies—resulting 

in improved accuracy and robustness in video-based behavior recognition tasks. 

 

IV. Experiments And Results 
Datasets 

For the evaluation of our proposed framework, we utilize several publicly available datasets commonly 

used in video-based behavior recognition tasks. These datasets provide a diverse set of video sequences that 

involve various actions and behaviors, allowing us to assess the performance of the model across different 

scenarios. One of the primary datasets used is the Hockey Fight dataset, which consists of videos depicting 

fights in hockey games. This dataset contains annotated frames showing violent actions, making it an ideal 

choice for evaluating the model’s ability to recognize aggressive behavior. The videos in this dataset vary in 

length, ranging from a few seconds to several minutes, and contain different numbers of players, adding 

complexity to the recognition task. The original resolution of the videos is typically 1920x1080 pixels, but for 

consistent processing, all frames are resized and cropped to a resolution of 224x224 pixels.  

Another key dataset used is the RWF-2000 dataset, which is a large-scale dataset for recognizing real-

world fighting behaviors. It contains 2,000 video clips, each labeled with one of several action categories, such 

as fighting, hugging, and others. The videos in this dataset also vary in resolution, typically 1920x1080 pixels, 

and, similar to the Hockey Fight dataset, all frames are resized and cropped to 224x224 pixels to maintain 

consistency across the input data. These datasets are chosen due to their wide use in behavior recognition 

research and the clear annotations they provide for ground-truth comparison. The diverse nature of these 

datasets ensures that our model is rigorously tested, not only on specific types of violent behaviors but also on 

general behavior recognition tasks, offering a comprehensive evaluation of its performance. 
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Experimental Environment 

The experiments were conducted on a system equipped with an NVIDIA RTX 3060 GPU, which 

features 24 GB of VRAM. This powerful GPU was chosen for its ability to efficiently handle the computational 

demands of training and inference in deep learning models. Its parallel processing capabilities significantly 

accelerated the computations, making it an ideal choice for the intensive tasks involved in video-based behavior 

recognition. PyTorch 2.0.1 was utilized as the primary deep learning framework, selected for its dynamic 

computation graph and robust support for GPU acceleration, which facilitated faster model development and 

experimentation. The environment was configured to ensure that all experiments were performed in a controlled 

setting with standardized computational resources, thus ensuring the reproducibility of results. To maintain 

consistency and fairness during both training and evaluation, all datasets were split into training and testing sets 

with an approximate ratio of 8:2. For preprocessing, all video frames were resized to a uniform resolution of 

224×224 pixels. Additionally, standard data augmentation techniques, such as random cropping and horizontal 

flipping, were employed to enhance the model's generalization ability and prevent overfitting. The configuration 

of the experimental environment is summarized in Table 1. 

 

Table 1. Experimental Environment Configuration 
Parameter Configuration 

GPU NVIDIA RTX 3060, 24 GB VRAM 

CPU 6 Core, Intel i5-12600 

RAM 16GB 

Memory 512GB 

CUDA 12.4 

cuDNN 8.3.3 

Python 3.10.12 

PyTorch 2.0.1 

Input Frame Size 224*224 

Number of Epochs 200 

Batch Size 32 

Learning Rate 0.001 

Optimizer Adamw 

Loss Function Cross-Entropy Loss 

Normalization Mean [0.485, 0.456, 0.406] 

Normalization  Std [0.229, 0.224, 0.225] 

 

Results and Analysis 

Evaluation of Loss and Accuracy 

Throughout the training process, the model is optimized using the Adam optimizer with an initial 

learning rate of 1e-4. To ensure efficient convergence, a Learning Rate Scheduler is employed to adjust the 

learning rate dynamically. Specifically, the learning rate is reduced by a factor of 0.1 when the Validation Loss 

plateaus for 5 consecutive epochs. This gradual decrease in the learning rate encourages the model to settle into 

a better local minimum, thereby improving the overall performance of the model. The training is performed on a 

high-performance GPU, which accelerates the computations, and mixed precision training is used to optimize 

memory usage and speed up training. 

To monitor the progress of model convergence and its ability to generalize, both the Training Loss and 

Validation Loss are tracked continuously throughout the training process. This systematic approach helps ensure 

that the 3D CNN + Transformer model achieves optimal performance while avoiding overfitting. The results of 

the evaluation on the Hockey Fight and RWF-2000 datasets are presented by analyzing the loss curves and 

accuracy metrics, as shown in figures 2 and 3. On the Hockey Fight dataset, the 3D CNN + Transformer model 

achieves an impressive accuracy of 96.7%, highlighting the effectiveness of combining the spatial feature 

extraction power of the 3D CNN with the long-range dependency modeling capabilities of the Transformer. On 

the more complex and diverse RWF-2000 dataset, the model maintains a consistent performance trend, 

outperforming other models with an accuracy of 93.56%. This demonstrates the model's strong generalization 

ability across different types of behavior recognition tasks. The steady loss reduction and high accuracy on both 

datasets emphasize the robustness and adaptability of the 3D CNN + Transformer hybrid architecture. 
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Figure 2. Loss and Accuracy Curve on Hockey Fight Dataset 

 

 
Figure 3. Loss and Accuracy Curve on RWF-2000 Dataset 

 

Performance Comparison with Other Models 

In this experiment, we evaluate the performance of three network architectures—LSTM, 3D CNN, and 

the hybrid 3D CNN+Transformer—on the Hockey Fight and RWF-2000 datasets. The objective is to assess the 

effectiveness of each model in learning and generalizing for violence detection tasks. 

 

 
Figure 4. Loss Curve Comparison on Hockey Fight Dataset 

 

As shown in figure 4, on the Hockey Fight dataset, the 3D CNN+Transformer model achieves the 

highest accuracy of 96.7%, highlighting the advantages of combining the spatial feature extraction power of 3D 

CNN with the long-range dependency modeling capability of Transformers. The LSTM model attains an 

accuracy of 93.9%, demonstrating that sequential modeling can capture temporal dependencies effectively, but 
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it lacks the robust spatial feature extraction capabilities of CNN. Meanwhile, the standalone 3D CNN model 

achieves 91%, which, although leveraging spatiotemporal features, shows limitations in capturing long-range 

dependencies when compared to the hybrid model. 

For the RWF-2000 dataset, shown in figure 5, the performance trend remains consistent. The 3D 

CNN+Transformer model again outperforms the others, achieving an accuracy of 93.56%, which underscores its 

strong generalization ability. The 3D CNN model achieves 92.07%, benefiting from spatiotemporal feature 

extraction, but still lags behind the hybrid model due to its limited ability to capture global features. The LSTM 

model, while effective in sequential learning, achieves 89.03%, reflecting its relative difficulty in handling the 

complex spatial patterns present in crowd violence scenarios. 

 

 
Figure 5. Accuracy Curve Comparison on RWF-2000 Dataset 

 

The loss curves for all models further demonstrate that the 3D CNN+Transformer architecture 

converges more smoothly and stabilizes earlier than the other two models, suggesting enhanced learning 

efficiency and reduced overfitting. In contrast, the LSTM model exhibits more fluctuations in both loss and 

accuracy, potentially due to its reliance on sequential feature extraction without explicit spatial representations. 

The 3D CNN model, although more stable, shows a slightly slower convergence rate compared to the hybrid 

model, emphasizing the importance of integrating global feature extraction from Transformers to achieve faster 

and more efficient convergence. 

 

ROC-AUC Comparison 

The AUC (Area Under the Curve) of the ROC (Receiver Operating Characteristic) curve provides a 

quantitative measure of a classifier's ability to distinguish between violent and non-violent actions. On the 

Hockey Fight dataset, shown in figure 6, the 3D CNN+Transformer model achieves an AUC of 0.9652, 

significantly outperforming traditional handcrafted feature-based methods, such as ViF+OViF, which achieves 

an AUC of 0.9281. This substantial improvement highlights the superior ability of the hybrid model to capture 

complex spatiotemporal patterns, thus enhancing classification performance. 

 

 
Figure 6. ROC-AUC Curve 
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For the RWF-2000 dataset, the 3D CNN+Transformer model attains an AUC of 0.9481. While slightly 

lower than that on the Hockey Fight dataset, this performance is still impressive considering the inherent 

challenges of the RWF-2000 dataset, including complex backgrounds, a larger number of individuals, and lower 

video resolution. The modest decrease in AUC is expected due to these factors; nevertheless, the model 

maintains strong detection performance, demonstrating its robust generalization ability across various violent 

scenarios. This reinforces the effectiveness of the 3D CNN+Transformer architecture in tackling diverse and 

complex behavior recognition tasks. 

 

V. Conclusion 

In this study, we presented a novel hybrid model that combines 3D CNN and Transformers for video-

based behavior recognition, specifically targeting violent behavior detection. The proposed architecture 

successfully integrates the spatial feature extraction power of 3D CNN with the long-range dependency 

modeling capabilities of Transformers, offering a comprehensive solution for recognizing complex behaviors in 

video sequences. 

The experimental results on the Hockey Fight and RWF-2000 datasets show that the 3D 

CNN+Transformer model outperforms traditional models, such as standalone 3D CNN and LSTM network, in 

terms of both accuracy and AUC scores. This demonstrates the superiority of the hybrid model in handling the 

challenges of spatiotemporal data and its ability to generalize effectively across different scenarios. The model’s 

robustness to varying conditions, such as background complexity and video resolution, further supports its 

practical applicability in real-world settings. 

Future work can explore further optimizations of the model, such as incorporating additional attention 

mechanisms or integrating multi-modal data for enhanced performance. Additionally, the model can be adapted 

for other complex behavior recognition tasks, including monitoring in public spaces, surveillance, and safety 

systems. 

In conclusion, the proposed 3D CNN+Transformer hybrid model provides a promising approach for 

video-based behavior recognition, achieving high performance on diverse datasets and demonstrating strong 

potential for practical deployment in behavior detection applications. 
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