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Abstract: 
Wind energy prediction plays a crucial role in renewable energy planning and policymaking. This study 

leveraged the Darts time-series framework to compare 10 different machine learning algorithms to investigate 

the use of solar radiation data for accurate wind energy prediction and compare with previous study results. 

Evaluation was conducted using two performance metrics: Mean Absolute Error (MAE) and Root Mean 

Squared Error (RMSE) to inform on the prediction’s accuracy.The best-performing model for wind speed 

prediction was the CatBoost model with a 12-hour lag, achieving an RMSE score of 0.877, while for wind 

direction prediction, CatBoost also achieved the best performance with an RMSE value of 93.8, but with a 2-

hour lag, both with the inclusion of covariates. In comparing the performance of the top model trained using 

Darts in this study with previous research conducted without Darts but utilizing similar models available in 

Darts, the use of Darts yielded comparable or even superior results with better computational efficiency. 

Classical models, particularly CatBoost, outperform neural network models in terms of accuracy and 

computational time, providing valuable insights for investment decision-making. Also, the inclusion of 

covariates significantly enhances the performance of wind energy prediction models. Covariates such as gust, 

global horizontal irradiance (GHI), and relative humidity demonstrate a strong influence on wind speed and 

wind direction predictions.With efficient and accurate prediction of wind speed and wind direction using the 

Darts Model framework, optimal utilization of wind resources can be achieved, ensuring a sustainable and 

reliable energy supply. 
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I. Introduction 
 Wind energy is a rapidly growing source of renewable energy, and it has the potential to contribute 

significantly to any country's energy mix [1]. Wind energy prediction plays a crucial role in various applications 

within the renewable energy sector, including renewable energy planning, grid integration, and energy storage 

which is vital for the sustainability of the sector [2]. Renewable energy planning greatly benefits from wind 

energy prediction by enabling optimal site selection for wind energy projects [3]. By analyzing wind energy data 

from multiple locations, planners can identify areas with high wind energy potential, resulting in more efficient 

and cost-effective project implementation [4].  

Machine learning (ML), a subset of artificial intelligence (AI), utilizes algorithms and statistical models 

to enable computers to learn from data, recognize patterns, and make predictions or decisions autonomously [5]. 

In the case of wind energy time series forecasting, ML algorithms can analyze historical wind data to identify 

patterns and forecast future wind speed and direction. These algorithms are trained on extensive datasets of past 

wind measurements and can generate models for predicting wind power generation over different time spans, 

e.g., hours or days [6]. Another significant advantage of ML in wind energy time series forecasting lies in its 

capacity to handle complex nonlinear relationships among variables like wind speed, direction, and power 

output, even when conventional statistical methods may falter [7].  

Accurate and reliable prediction of wind speed and direction is essential for the effective management 

and planning of wind energy projects. Some researchers have highlighted the importance of accurate forecasts 

of wind direction and speed in various sectors, including aviation, energy production, and public safety [8]. 

Accurate forecasts of these variables can help optimize decision-making and risk management in these sectors, 

which could directly translate to a higher utilization of wind energy, aiding the country‘s shift to a low-carbon 

economy [9]. 

In recent studies, the application of various models for predicting wind speed and direction, as well as 

incorporating solar radiation data, has been explored, although without the use of Darts model. Notably, 
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[10]leveraged advanced deep learning techniques for medium-term forecasting of solar irradiation and wind 

speed, finding deep learning models to outperform traditional methods, with the encoder-decoder LSTM model 

showing superior accuracy. [11] focused on short-term wind speed prediction using hybrid techniques, 

identifying the Least Squares Support Vector Machine (LSSVM) as the most accurate and computationally 

efficient among evaluated non-parametric techniques. [12]introduced a feedforward backpropagation neural 

network for predicting wind speed and direction, demonstrating its superior accuracy over other models. 

Meanwhile, [13] compared various artificial learning-based algorithms for short-time wind speed forecasting, 

highlighting the ConvLSTM model's efficiency and accuracy. These studies contribute valuable insights into the 

predictive capabilities of different models, underscoring the importance of incorporating various data inputs and 

evaluating against a range of computational and accuracy metrics, yet also point out a gap in the literature 

regarding long-term forecasting and the consideration of additional influential factors such as temperature and 

humidity. With the efficiency of Darts model in easy comparison of different models and the use of covariates 

for time series analysis, introduction of lags and more, most of the limitations found in previous studies is aimed 

to be addressed in this study. 

The Darts model is a new versatile Python library designed for time series forecasting and anomaly 

detection. It encompasses a wide range of models, from classic statistical models like ARIMA to advanced deep 

learning models. One of its key features is its ability to allow models to be used in a consistent manner with 

simple ‗fit and predict‘ functions. Darts supports multivariate time series and can handle multiple series training 

with machine learning-based models. It also offers probabilistic forecasting capabilities, allowing for confidence 

interval estimation, and includes tools for anomaly detection, data processing, and performance metrics 

evaluation. The library additionally provides a range of evaluation and comparison tools, including performance 

metrics such as mean absolute error (MAE), mean squared error (MSE), and root mean squared error (RMSE). 

It supports both univariate and multivariate time series and models, and some of the models offer probabilistic 

forecasting and the ability to explain models using Shap values This makes it a comprehensive tool for time 

series analysis [14]. 

This study is driven by the need to improve the accuracy and efficiency of wind direction and speed 

forecasts and to see how Darts model framework can enhance this. It is expected that the comparison of various 

algorithms for predicting wind direction and speed using solar radiation measurement data will deliver valuable 

insights for improving wind direction and speed forecasts, optimizing decision-making, and risk management, 

as well as contributing to scientific knowledge on machine learning applications in meteorology and inform 

future studies. This study is also expected to fill the gap in knowledge, based on lack of studies on the use of 

Darts framework and few studies that have been conducted on the use of machine learning algorithms to predict 

wind direction and speed feasibly and accurately using solar measurement data. The study hypotheses include: 

 Machine learning algorithms can accurately predict wind direction and speed using solar radiation 

measurement data and at least one machine learning algorithm will perform significantly better than the 

others. 

 

Scope and limitations of the study 

 Data availability: In this study, the availability of the solar radiation measurement data used is limited to a 

year period of per second data collected in Bauchi by World Bank in a solar development project meant to 

collect two years of ground measurement data for the planned utility scale photovoltaic (PV) power plant at 

the described location. The project commenced in 2021 and so far, the data repository only contains data 

from September 2021 – September 2022 [15]. 

 Sample size: The sample size of the data used in this study may be a limitation, since the data is collected 

over a short period of time and from only one State. A larger sample size would likely result in more 

accurate and reliable predictions but may also require more resources and time to collect and analyse. Using 

this data as a baseline, however, can still give a clue on the potential of collecting more data to improve the 

quality of the Darts models in future work. 

 Generalizability: Other locations or time periods may not be directly generalizable based on the results of 

this study. The accuracy of machine learning algorithms in predicting wind direction and speed in other 

states or countries with different climatic conditions may vary from their performance in the selected 

Nigerian state. However, one can apply the process to create a new model for any state in the presence of 

data. 

 External factors: Machine learning algorithm predictions could potentially be impacted by external factors 

mentioned in a study conducted.  Wind direction and speed may be altered by both topographic features like 

mountains and human activities like building or changing land usage, which affects prediction accuracy, 

and are not accounted for in the solar radiation measurement data. 
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The remaining part of this study is structured into three main sections. Section 2 explores the materials 

and methodologies employed in this research. Section 3 presents the results and discussions of findings from the 

data and the models. Finally, Section 4 encapsulates the conclusions and recommendations from this study. 

 

 

 

II. Material And Methods 
The study adopts a comparative analysis approach to evaluate and compare the various machine 

learning algorithms from the Darts framework. The statistical analyses in this study utilized the Pandas library 

for computations and analysis. Descriptive statistics, such as mean, standard deviation, minimum, maximum, 

and percentiles, were calculated to understand data distribution and variability. Data visualization was 

performed using matplotlib and seaborn libraries. A pair-plot was generated to visualize pairwise relationships 

between features, revealing patterns and correlations. A correlation matrix was also used to assess the strength 

of correlations between columns, including target variables and other features. Heatmaps were created to 

examine patterns of predictive labels over time, including variables such as hour of the day, day of the month, 

week of the month, and month of the year. These heatmaps revealed time-related trends and patterns, aiding in 

the understanding of influential factors and potential feature engineering for future predictions. 
 

Data Collection and Preparation 

In this study, the data was obtained from solar and meteorological ground measurements repository, 

collected from a network of weather stations located in Bauchi State, Nigeria, as part of the West African Power 

Pool project [15]. The data contains measurements of different parameters taken per second, with a minimum 

period of one year from September 2021 to September 2022. Bauchi State was chosen for this study due to its 

availability of data. Bauchi is a northern state in Nigeria with large land area and diverse topography, including 

the northern end of the Jos Plateau, the Yankari Game Reserve, and the Gongola River.  

The World Bank and West African Power Pool (WAPP) implemented a solar resource measurement 

campaign project in Bauchi, Nigeria to measure solar irradiance and other relevant parameters for solar energy 

power plant projects. An automatic weather station (AWS) was installed at the TCN substation in Bauchi with 

the objective of collecting two years of ground measurement data for a planned utility-scale photovoltaic (PV) 

power plant. The measurement data is regularly transmitted to Concentrating Solar Power Services (CSPS) for 

data quality monitoring and control, and it is also accessible on a protected web server for real-time data 

monitoring and download [15]. Table 1 below shows the measurement parameter descriptions in the data which 

was equally used in this study. 

 

Table 1: Measurement Parameter Descriptions of the Solar Measurement Data [15] 
Measurement Description Unit 

Timestamp Date and time according to ISO8601 yyyy-mm-dd hh:mm 

GHI Global horizontal irradiance W/m² 

DNI Direct normal irradiance W/m² 

DHI Diffuse horizontal irradiance W/m² 

ModA PV soiling measurement system (reference module) W/m² 

ModB PV soiling measurement system (measurement module) W/m² 

Tamb Ambient temperature °C 

RH Relative humidity % 

WS Wind speed m/s 

WSgust Maximal wind speed (3 second average) m/s 

WSstdev Standard deviation of wind speed m/s 

WD Wind direction °N (to east) 

WDstdev Standard deviation of wind direction ° 

BP Barometric air pressure hPa 

Cleaning Cleaning of sensors: A cleaning event is marked with a "1" 1 or 0 

Precipitation Precipitation (rain) mm/min 

TModA Backside module temperature (ModA) °C 

TModB Backside module temperature (ModB) °C 

 

Data Pre-processing Techniques, Feature Extraction and Selection 

Various pre-processing techniques were applied to prepare the dataset for model training using Darts. 

Initially, the relevant columns from the Bauchi data were selected, including Timestamp, GHI, DNI, DHI, 

ModA, ModB, Tamb, RH, WSgust, BP, Precipitation, TModA, TModB, WS, and WD. Less relevant columns 

such as standard deviation of wind speed and wind direction, as well as sensor cleaning indication, were 

dropped to prevent data leakage since these variables were derived from the labels to be predicted.  
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The data was loaded and cleaned using the Pandas library which is the most common and powerful 

library for data manipulation in python. Since the first row contained the variable name, and the second row 

contain the unit of measurement, we dropped the second row that contains the unit of measurement when 

loading, as we do not need it by using the skiprows parameter set to ―1‖ to skip the second row that contains the 

unit of measurement. Also, while loading, the data had an encoding, so we used a ‗unicode_escape()‘ encoding 

method and got the data information using the ‗info()‘ function in python, giving us 525,600 records with 14 

columns. We parsed the timestamp column as dates and used it as our index column. Other data types were 

checked and fixed accordingly to ensure each numeric values are float or integer type. We also checked for 

missing values using the ‗isnull()‘ method and found no missing values, therefore there was no need to address 

missing values through interpolation with nearest numbers, since we are dealing with time series. 

Since we have our data in per second, which was too granular, we resampled our data using the 

‗resample()‘ method, which is a powerful resampling tool in pandas. For all the variables, including wind speed 

we aggregated the mean for each hour. However, for wind direction which is a circular data (360
o
), we used the 

circular mean method or the mean resultant vector. To achieve the resampling method, we used the Numpy 

library to efficiently define a function that first converts the input wind direction data x from degrees to radians 

using ‗np.radians(x)‘. It then takes the mean of the cosine and sine of the input data using ‗np.mean(np.cos(x))‘ 

and ‗np.mean(np.sin(x))‘, respectively. The mean wind direction is then calculated using the arctan2() function, 

which returns the angle between the positive x-axis and a point given in polar coordinates (i.e., the sine and 

cosine of the angle).  

Finally, we converted the result back to degrees using ‗np.degrees()‘ and applied modulo 360 to ensure 

that the output falls within the range of 0 to 360 degrees. This approach is known as the circular mean or 

directional statistics, and it is a well-established technique for calculating the mean direction of circular data 

such as wind direction. While we took the mean of other variables, precipitation variable was summed, because 

this shows the amount of rainfall measured over a certain period, usually over an hour. Therefore, by summing 

precipitation over the hour, we get the total amount of rainfall over that period, which is a useful measure of 

weather conditions and averaging precipitation would not give us an accurate representation of the 

amount of rainfall during that hour. 
To accommodate the training and testing of models with and without covariates, the wind speed and 

wind direction covariates were converted into Darts time series objects, and like the target variables, these 

covariates were transformed and split into training and validation sets. The transformation process involved the 

use of a scaler to normalize the data and a missing values filler to handle any missing values. Covariates in this 

context refer to additional variables in the data that are used to inform the model training process for both wind 

speed and direction. By including covariates, the models can consider other relevant factors that may influence 

the prediction accuracy, thereby improving the overall performance. 

 

 
Figure 1: Wind Speed Timeseries training and validation split. 

 

 
Figure 2: Wind Direction Timeseries training and validation split. 

 

Darts Machine Learning Algorithms Selection and Configuration 
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10 machine learning algorithms were selected to provide an overview of how different types of 

algorithms performed in effectively predicting wind speed and direction across Darts. To help understand how 

each model would perform on univariate and multivariate data, considerations were made regarding the use of 

covariates and using target variables only for prediction. Models representing linear, decision trees, boosting 

algorithms, and neural networks were implemented to span our comparison across different model algorithm 

types. The algorithms used in the project are discussed below and link to details of the trained models are 

available in Appendix 3. 
Linear Regression Model 

The Linear Regression model in Darts is a univariate model that uses a linear equation to predict the 

target variable based on its past values. It learns these coefficients through ordinary least squares (OLS) 

regression, minimizing the sum of squared errors between predicted and actual values. To avoid overfitting, the 

model supports L1 and L2 regularization, which add penalty terms to the OLS objective function. Additionally, 

the model can incorporate lagged values of external time series (covariates) to enhance its predictive 

performance [16, 14]. In the case of our project, we used both the simple regression using only date and target 

variable; and multiple linear regression method which has the addition of all the covariates. The algorithm for a 

simple linear regression explains the linear relationship between the dependent (output) variable y and the 

independent (predictor) variable X [16]. 

Yi = β0 + β1Xi 

where Yi = Dependent variable, β0 = constant/Intercept, β1 = Slope/Intercept, and Xi = Independent variable 

On the other hand, the multiple linear regression uses the technique to understand the relationship 

between a single dependent variable and multiple independent variables which has a formula like simple linear 

regression, except that instead of having one beta variable, we now have for all the variables used as shown 

below: 

Y = B0 + B1X1 + B2X2 + … + BnXn + ε 

Linear-regression models have been chosen in this study since it helps to understand the linearity, 

strength of predictors using a simple procedure and it has been a proven algorithm for prediction. 
Random Forest Algorithm 

Random Forest is an ensemble learning method that constructs a multitude of decision trees at training 

time and outputs the class that is the mode of the classes (classification) or mean prediction (regression) of the 

individual trees. It is implemented in the RandomForest class in Darts, which allows the user to specify 

hyperparameters such as the number of trees to include in the model, the maximum depth of each tree, and the 

number of features to consider when splitting nodes. Additionally, RandomForest in Darts supports 

parallelization to speed up training and can be used for both univariate and multivariate time series forecasting 

tasks [17, 14]. 

Random Forest has been chosen in this study to represent decision tree algorithm, and due to its high 

accuracy, robustness, feature importance, adaptability, and scalability. It also reduces overfitting by averaging 

multiple decision trees and is less sensitive to noise and outliers available in the data [17]. 

 

 

Figure 3: Diagrammatic representation of Random Forest Model Implementation [18] 

 

Gradient Boosting Algorithms (CatBoost, LightGBM and XGBoost) 

Gradient boosting on decision trees is a machine learning technique used by CatBoost and it was 

chosen as it is known for its ability to handle categorical characteristics and reduce the need for data pre-

processing, making it a high-performance tool. Darts offers CatBoost as one of its machine learning algorithms 

for time series data prediction. A series of decision trees are generated, with each tree created to correct the 
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flaws of the previous tree in the chain. To handle categorical variables with numerous levels, CatBoost employs 

techniques such as ordered boosting and gradient-based One-Group Selection [14]. 

Light Gradient Boosting Machine is another gradient boosting system that employs tree-based learning 

techniques. It is intended to be efficient and capable of handling huge datasets, which is known to be generally 

faster and more memory efficient. Darts' LightGBM model is a time series forecasting application of the 

LightGBM algorithm. It uses previous values of the target variable and historical covariates to anticipate future 

values of the target variable. The LightGBM model in Darts also lets you to tune hyperparameters like learning 

rate, number of trees, and tree depth to improve the model's performance [14]. 

XGBoost short for extreme gradient boosting, is another gradient boosting machine learning method 

used in Darts that creates a sequence of weak models that improve on each other to generate a final prediction. 

Although based on decision trees, it advances other methods such as random forest and gradient boost, with its 

ability to work well with large, complicated datasets by using various optimization methods. It uses gradient 

descent to optimize the objective function and can handle missing values, numeric and categorical data. It 

includes a regularization term to minimize overfitting and has been shown to be useful in a variety of machine 

learning applications, including univariate and multivariate time series forecasting [14]. 
 

Block Recurrent Neural Network (BRNN) 

In Darts, the BRNN model is a customized recurrent neural network (RNN) that employs long short-

term memory networks (LSTM) cells and a novel input layer architecture. Its input layer is made up of 

numerous blocks of LSTM cells, allowing it to capture both short-term and long-term relationships in the data. 

To boost efficiency, the outputs of these blocks are concatenated and transferred to the next layer, and the model 

also permits skip connections between LSTM blocks, allowing previous outputs to be used as inputs while 

having hidden states. The architecture of a traditional RNN is shown below: 

 

 
Figure 4: Diagrammatic Representation of BRNN Architecture [19]. 

 
For each timestep t, the activation a

<t>
 and the output y

<t>
 are expressed as follows: 

a
<t>

= g1(Waaa
<t-1>

 + Waxx
<t>

 + ba) and y
<t

> = g2 (Wyaa
<t>

 + by) 

where Wax, Waa, Wya, ba, by, are coefficients that are share temporally and g1, g2 are activation functions. 

 

 
Figure 5: Diagrammatic Representation of a specific Block in BRNN[19] 

 

Overall, the Darts BRNN model is well-suited for time series forecasting applications, taking 

advantage of the characteristics of LSTM cells, and supporting variable-length input sequences. 

 

Neural Basis Expansion Analysis Time Series Forecasting (N-BEATS) 

Darts' N-BEATS model is a deep learning system for time series forecasting. It is a deep neural 

architecture based on backward and forward residual links and a very deep stack of fully connected layers with 

several required properties, being explainable, relevant without modification to a wide array of target domains, 

and fast to train. The diagram below shows the architectural representation of N-BEATS. 
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Figure 6: Diagrammatic Representation of N-BEATS Architecture [20] 

 

N-BEATS generates a collection of fundamental functions that are coupled linearly to provide 

predictions for future time steps using a completely parallelized and interpretable architecture consisting of fully 

linked layers with gating mechanisms. It may be trained on several time series and manage a variety of temporal 

granularities. It also allows for the use of exogenous input information to improve predicting accuracy. Overall, 

Darts' N-BEATS model combines the benefits of deep learning with interpretability and flexibility, making it a 

useful tool for time series forecasting problems [14, 20]. 

 

Temporal Fusion Transformer 

The Darts Temporal Fusion Transformer (TFT) model is a deep learning technique for time series 

forecasting. It employs the Transformer architecture and includes attention techniques as well as autoregressive 

modelling. It is made up of encoder and decoder blocks, with numerous layers of attention mechanisms and 

feed-forward neural networks in each. The encoder analyses past data and develops a latent representation of the 

input sequence, while the decoder makes predictions based on the encoder's output and future covariate inputs. 

A gating mechanism is also used by the TFT model to dynamically modify its weights based on the importance 

of each input characteristic. The TFT model is a useful tool for time series forecasting applications because to its 

ability to handle complicated data structures and deliver reliable forecasts[14]. 

 

 
Figure 7: Diagrammatic Representation of TFT Architecture [21] 

 

Temporal Convolutional Network (TCN) 

The TCN model in Darts is a deep learning model that extracts features from time series data using 1D 

dilated convolutional layers. It overcomes the constraints of classic recurrent neural network models and is ideal 

for univariate and multivariate time series forecasting. It is made up of many blocks that have dilated causal 
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convolutional layers, residual connections, and normalization. To capture information at different sizes, the 

dilation rate grows exponentially, and its outputs are fed into a fully linked layer for final predictions. 

Regularization and scaling can be accomplished using dropout regularization and activation functions. Darts' 

TCN model is a strong time series forecasting method, particularly for long-term forecasts[14]. 

 

 
Figure 8: Darts TCN Model Framework [14]. 

 
Transformer Model 

Darts' Transformer model is a deep learning model for time series forecasting. To avoid information 

leakage, it employs self-attention mechanisms, a position-wise feedforward network with residual connections, a 

causal mask, and seasonal embeddings to capture periodic patterns. Backpropagation over time may be used to 

train it, and gradient descent can be used to optimize it. Across several datasets, the Transformer model 

outperformed standard forecasting algorithms [22, 14]. 

 

 
Figure 9: Architecture of transformer-based forecasting model [22] 

 

Model Training and Evaluation for Performance Comparison 

To ensure objectivity, models were trained using default parameters and without hyperparameter 

tuning. Their performance was evaluated on a separate validation set as mentioned earlier, to ensure predictions 

are done on data the model has never seen before; using Mean Absolute Error (MAE) and Root Mean Squared 

Error (RMSE). Results, including metrics, were presented in a table and graph for fair comparison.  

MAE measures the average absolute difference between predicted and actual values. This helps us 

understand the magnitude of difference between the prediction of an observation and the true value of that 

observation which is also referred to as L1 loss function. It is an easy-to-understand quantifiable measurement 

of errors in regression problems and it is widely used due to its resiliency to outliers or extreme values, coming 

down to the degree at which we want to be able to penalize large errors. Below shows mean absolute error 

equation: 
MAE = (1/n) Σ(i=1 to n) |y_i – ŷ_i| 

n = the number of observations; Σ = summation symbol (which means ―add them all up‖); y_i is the true value; 

ŷ_i is the predicted value. 
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RMSE on the other hand, computes the square root of the mean of the squared differences. It is more 

sensitive to outliers compared to RMSE which helps to penalize large errors more than MAE since the errors are 

initially squared. It is interpreted as the average weighted performance of the model, where a larger weight is 

added to outlier predictions.
52

 Root means square error can be expressed as: 

RMSE = √ [ Σ (Pi – Oi)
2
 / n] 

Pi is the predicted value for the ith observation in the dataset; Oi is the observed value for the ith observation in 

the dataset; n is the sample size. 

Although both metrics are similar, but MAE returns values that are more interpretable as it is simply 

the average of absolute errors. In the project, we want to be able to see the differences in the metrics, while 

trying to penalize large errors, and at the same time, treating all errors equally to return a more interpretable 

value, hence the choice of using both RMSE and MAE. Generally, both metrics can go from 0 to infinity, with 

lower values indicating better performance, while values close to zero indicates high accuracy and precision in 

predictions. 

Furthermore, the impact of time lags on model performance was explored by varying lag values for 

target variables and past covariates in all models except neural networks. Lag helps identify patterns in data, 

therefore, lag values of 1, 2, 6, 12, 24, and 48 hours were compared. Two evaluation approaches were used: one 

with target variables only and the other incorporating covariates. This aimed to determine optimal lag values and 

assess covariate impact on predictions. 

Computational efficiency was also evaluated by measuring prediction time for each model on the 

validation data. This analysis, using the Python time library, identified differences in speed and computational 

requirements, crucial for real-world applications. This is important to help understand the model that would be 

more efficient by saving time, cost for computing resources. 

Lastly, to enable us to explain what happened in our models from input to output, model explain-ability 

was investigated using the Shap Explainer in Darts. The SHAP method determined each feature's contribution to 

predictions, considering past lags of targets and covariates. SHAP values created a summary plot, ranking 

features by importance, aiding interpretation of the model's behavior. 

 

III. Results And Discussion 
This section aims to provide a comprehensive analysis of the study's outcomes and contribute to the 

understanding of the research problem. The results of the experiments conducted is presented, including model 

performance, explain-ability, and their significance. The link to all code repositories is available in Appendix 3. 

 

Descriptive Statistics of the Dataset 

As shown in figure 10 below, the analysis conducted on wind speed and direction revealed that their 

distributions were right skewed for both the original and resampled data. Resampling resulted in higher 

frequency counts at the minimum and maximum wind direction values, but the statistical properties of wind 

speed remained stable. However, the maximum wind speed value decreased from 24.1 to 10.4 after resampling, 

and most samples fell within the range of 0-5. Wind direction exhibited a slight increase in mean and median 

values with an evenly distributed sample. 
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Figure 10: Distribution of Wind Speed and Direction 

The analysis also examined the influence of time-related factors, such as the hour of the day and the 

month of the year, on wind speed and wind direction. The findings revealed significant patterns in both 

variables. Figure 11 and 12 clearly illustrates that certain periods of the day and specific months of the year have 

a substantial impact on wind speed and wind direction.  

 

 
Figure 11: Wind Speed (m/s) Patterns Across Time 

 

Specifically, the analysis demonstrated that wind speed tends to increase predominantly between the 

9th and 17th hour of the day. Additionally, the increase in wind speed is more pronounced during the months of 

December to June, while it remains comparatively lower during the rest of the year. These observations strongly 

influenced the selection of time features extracted from the data's timestamp. Overall, the analysis highlights the 

importance of considering time-related factors when studying wind speed and wind direction, with the hour of 

the day and the month of the year emerging as significant variables affecting these meteorological phenomena. 

Like wind speed, wind direction displayed distinct patterns in relation to these variables, as depicted in 

figure 12. In the early hours of the day (the first 7 hours), the data consistently indicated that the wind direction 

predominantly ranged from 200° to 360°N (eastward). For the remaining hours of the day, the wind direction 

tended to be less than 200°N (eastward). This pattern emphasizes a consistent shift in wind direction as the day 

progresses. 

Additionally, the analysis revealed a discernible pattern in wind direction concerning the months of the 

year. The data indicated a higher degree of wind direction within the 4th to 9th months, while the degree of 

wind direction was comparatively lower in the other months of the year. This finding highlights a seasonal 

influence on wind direction, suggesting that specific months exhibit a more consistent trend in wind direction 
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than others. These findings underscore the significance of both the hour of the day and the month of the year in 

understanding wind direction variations. By considering these temporal factors, a more comprehensive 

understanding of wind patterns and their relationship to meteorological phenomena can be obtained. 

 

 
Figure 12: Wind Direction 

0
N (to east) Patterns Across Time 

A correlation matrix was constructed to investigate the relationships between various variables. As 

displayed in figure 13, the matrix revealed interesting findings regarding the associations between wind speed, 

wind direction, and other covariates. Firstly, wind speed exhibited a slight positive correlation with most of the 

other variables, except for relative humidity and wind direction, which demonstrated a negative correlation. This 

implies that as wind speed increases, the other variables tend to exhibit a positive trend, except for relative 

humidity and wind direction, which show a negative relationship with wind speed. 

Conversely, wind direction displayed a negative correlation with most of the covariates, except for 

relative humidity. This suggests that as wind direction changes, the other variables tend to exhibit a negative 

trend, except for relative humidity, which shows a positive relationship with wind direction. Moreover, the 

correlation analysis revealed that barometric pressure and precipitation exhibited the lowest or no significant 

correlation with both wind speed and wind direction. This implies that these variables have minimal or 

negligible influence on the variations observed in wind speed and wind direction. 

Overall, the correlation matrix analysis provided insights into the relationships between wind speed, 

wind direction, and the other examined variables. It indicates that certain covariates have either positive or 

negative associations with wind speed and wind direction, highlighting the complex interplay between these 

meteorological factors. 
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Figure 13: Correlation Matrix to view relationship between features in Bauchi State Solar Measurement 

Data 

 

Performance Comparison of the Machine Learning Algorithms 

The performance comparison of machine learning algorithms involved training and evaluating ten 

different models on a previously unseen validation set. To investigate the impact of covariates and lag 

parameters on model performance, the models were trained in two ways: univariate training using only wind 

speed and direction as target variables, and incorporating covariates with different lag parameters (1, 2, 6, 12, 

24, and 48-hour lags). This resulted in a total of 140 model iterations from the ten algorithms. The neural 

network models, which lacked lag attributes, were trained without incorporating lags. 

From the numerous trained models, the top 25 models, determined based on their RMSE (Root Mean 

Square Error) values, were selected for further discussion in this results section. The comprehensive table, 

available in appendix 1 and 2, provides details on all the models trained, including their usage of covariates, lag 

parameters, as well as the corresponding RMSE and MAE (Mean Absolute Error) values. 

 

Wind Speed Performance 

The chart below displays the top 25 models, ranked by their RMSE scores, for predicting wind speed 

based on evaluation on the validation datasets. The best-performing model among them was the CatBoost model 

with a 12-hour lag, achieving an RMSE score of 0.877. The findings highlight the importance of incorporating 

covariates into model training to improve performance. CatBoost and LightGBM demonstrated excellent 

performance compared to other models, while XGBoost did not make it into the top 25. None of the neural 

network models ranked in the top 10 for wind speed prediction, although TCN and Transformer models showed 

potential. 
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Figure 14: RMSE value of top 25 models for wind speed prediction 

 

The top two models, both trained on CatBoost with 12-hour and 24-hour lags, suggest the presence of a 

seasonal effect on model performance. The graphical output of the top model displaying actual and predicted 

values, is presented below. 

 

 
Figure 15: Wind Speed Prediction Using CatBoost Model with Covariates on 12-hour Lag 

 

In addition to evaluating model performance, the computational efficiency of the models was examined 

by calculating how long each fitted model took to predict the validation data. The graph below depicts the 

elapsed time for the top ten wind speed forecast models. The LightGBM model with covariates on a 24-hour lag 

had the lowest prediction time of the top ten models, requiring only 14 seconds. Even our top-performing 

model, with an elapsed duration of 18 seconds, maintained a reasonable performance. It's worth noting that the 

Catboost model, which was trained on a 48-hour lag, had the highest forecast time of the top ten models, 

clocking in at 25 seconds. The chart below depicts the predicted elapsed time in visual form. 

 

 
Figure 16: Prediction Elapsed Time in seconds of the top 10 models for wind speed prediction 

Wind Direction Performance 
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The chart below presents the top 25 models, along with their characteristics, for the prediction of wind 

speed based on the evaluation of RMSE scores on the validation datasets. Similarly, for wind direction 

prediction, CatBoost achieved the best performance with an RMSE value of 93.8, but with a 2-hour lag. 

Considering the wide range of wind direction values (0 – 360), one might expect a higher level of performance. 

 

 
Figure 17: RMSE value of top 25 models for wind direction prediction 

 

However, it is important to note that, in general, only models incorporating covariates made it into the 

top 10. This suggests that the inclusion of covariates in the model training had a significant impact on 

performance improvement. The graphical output of the top model, CatBoost with covariates on a 2-hour lag, 

displaying actual and predicted values, is presented in the chart below. 

 

 
Figure 18: Wind direction prediction using CatBoost Model with Covariates on 2-hour lag. 

 

In addition to evaluating model performance, the computational efficiency of the models in predicting 

wind direction was also assessed. Like the prediction of wind speed, the LightGBM model with covariates on a 

6-hour lag achieved the shortest prediction time, taking approximately 13 seconds. However, our top-

performing model still demonstrated a favorable performance, with an elapsed time of around 16 seconds. The 

chart below provides a visual representation of the prediction elapsed time in seconds for the top 10 models in 

wind direction prediction. 
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Figure 19: Prediction elapsed time in seconds of the top 10 models for wind direction 

 

Overall, the performance of the Darts time-series model framework in predicting both wind speed and 

wind direction shows promising prospects, considering that no hyperparameters were tuned and the models were 

trained on one year of data. The lowest RMSE achieved was 0.877 for the prediction of wind speed using 

CatBoost on a 12-hour lag, and 93.8 for wind direction. These results suggest that there is a likelihood of further 

improvement by tuning the hyperparameters and incorporating more data in future work for both variables. With 

proper hyperparameter optimization and a larger dataset, the predictive accuracy of the models could potentially 

be enhanced, leading to even more accurate predictions for both wind speed and wind direction. 

 

Comparison of Performance against Previous Studies 

In comparing the performance of the top model trained using Darts in this study with previous research 

conducted without Darts but utilizing similar models available in Darts, notable findings were observed. The use 

of Darts yielded comparable or even superior results, even when simpler models were employed with their 

default settings. 

For example, the study by [13] achieved an RMSE of 0.8718 for 1-hourly data prediction using LSTM, 

which was on par with the CatBoost model trained in this study, yielding an RMSE of 0.877 without any tuning 

and with a smaller dataset. Additionally, [12], in their attempt to predict wind speed and wind direction, 

obtained an RMSE of 1.068 and 44.34, respectively. In contrast, our trained models showcased significantly 

improved performance for wind speed, with the best performing CatBoost model achieving an RMSE of 0.877 

for wind speed, however lower for wind direction which was 93.8 in our case. Nonetheless, these comparisons 

highlight the efficacy of the Darts framework in producing an equally fair or better-performing models for wind 

speed and direction prediction without any hyper-parameter tuning, when compared with other studies. 

 

Analysis of the Top Performing Model Features and Importance 

An analysis was conducted to assess the overall impact of covariates and lags on the model 

performance. The findings revealed that the introduction of covariates had a positive effect on the performance 

of the models. On the other hand, increasing the lag parameter did not have a significant impact on performance.  

Specifically, for wind speed prediction, a lag of 12 hours consistently yielded the best performance 

across all models. For wind direction prediction, a lag of 6 hours demonstrated the best performance. In general, 

it was observed that most of the neural network models trained in this study performed poorly compared to the 

classical models. This suggests that for the task of wind speed and wind direction prediction, the classical 

models outperformed the neural network models in terms of accuracy and predictive power. 

These findings provide insights into the influence of covariates and lags on model performance, 

highlighting the importance of incorporating covariates and selecting appropriate lag parameters for achieving 

accurate predictions. Furthermore, the comparison between neural network models and classical models 

underscores the need to carefully consider the choice of model architecture to optimize performance for wind 

speed and wind direction prediction. 
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Figure 20: Assessing Average RMSE values by lag(hr) and Covariates for Wind Speed and Direction 

Prediction 

 

Additionally, to gain insights into the features that significantly influenced the model performance, the 

Shap Explainer in Darts was employed. This allowed us to understand how the models‘ made predictions and 

the importance of each input feature in the prediction process. 

The chart below presents the explainability of the top models for both wind speed and wind direction. 

For wind speed prediction, the top five features contributing to the model's performance were identified as the 

previous 1-hour lag of wind speed, gust, wind direction, GHI (Global Horizontal Irradiance), and the 2-hour lag 

of wind speed. These features played a crucial role in accurately predicting wind speed. 

Conversely, for wind direction prediction, the model trained on a 2-hour lag of both the target variable 

and covariates (using the CatBoost model that yielded the best performance) identified the following top five 

features as most influential: 1-hour lag of wind direction, relative humidity, wind speed, and the 2-hour lag of 

both DNI (Direct Normal Irradiance) and RH (Relative Humidity). These features significantly contributed to 

the predictive performance of the wind direction model. 

 

 
Figure 21: Model Explainability of the top models for wind speed and direction prediction 
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By analysing the explainability of the models, we gained valuable insights into the key features driving 

their predictions. This information can be utilized to further optimize and refine the models, ultimately 

improving their performance in wind speed and wind direction prediction tasks. 

 

IV. Conclusion 

In this paper, we highlighted the potential of machine learning algorithms within the Darts framework, 

particularly when combined with covariates, for accurate wind speed and direction prediction using solar 

radiation data. The findings provide important considerations for wind energy management and policymaking, 

particularly in the context of renewable energy planning in Nigeria. The study revealed that the inclusion of 

covariates significantly improved the performance of prediction models, highlighting the importance of 

considering additional factors such as gust, GHI, and relative humidity. It also highlighted the superior 

performance of classical models, particularly CatBoost, compared to neural network models for wind energy 

prediction and performed in par with models from previous studies even without hyperparameter tuning. This 

finding provides valuable guidance for investment decision-making, as it suggests that classical models using 

Darts model should be considered reliable tools for assessing the feasibility and profitability of wind energy 

projects. The findings of this study also have significant implications for wind energy management and policy, 

particularly in the areas of energy planning, resource assessment, grid integration, and investment decision 

making. These implications are not only relevant on a broader scale but also specifically applicable to renewable 

energy planning in any country. With the implementation of Darts model for wind energy prediction, there is 

potential to unlock wind energy resources efficiently, achieve greater energy security, reduce greenhouse gas 

emissions, and contribute to a sustainable and diversified energy mix. Finally, future research can be done by 

expanding the study to longer data periods, tuning hyperparameters, and considering regional variations, which 

can further enhance the robustness, reliability, accuracy, and applicability of wind energy prediction models 

using the Darts framework. 
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Appendix 

Appendix 1.Algorithm Performance for Wind Speed Prediction 

ML Technique ML Algorithm Lag (hr) Covariates RMSE MAE Elapsed Time(s) 

With Covariates for Wind Speed Prediction 

Ensemble Technique Random Forest 

1 Yes 0.910 0.641 26.679 

2 Yes 0.907 0.638 26.773 

6 Yes 0.912 0.640 26.343 

12 Yes 0.895 0.637 28.159 

24 Yes 0.895 0.634 30.138 

48 Yes 0.902 0.641 28.971 

Gradient Boosting 

CatBoost 

1 Yes 0.880 0.619 16.341 

2 Yes 0.885 0.620 14.982 

6 Yes 0.886 0.624 16.036 

12 Yes 0.877 0.619 18.009 

24 Yes 0.879 0.623 19.799 

48 Yes 0.881 0.629 25.658 

LightGBM 

1 Yes 0.882 0.623 13.678 

2 Yes 0.892 0.625 13.772 

6 Yes 0.895 0.633 14.180 

12 Yes 0.880 0.623 14.607 

24 Yes 0.883 0.629 13.266 

48 Yes 0.882 0.633 14.726 

XGBoost 

1 Yes 0.939 0.660 14.991 

2 Yes 0.940 0.662 14.419 

6 Yes 0.946 0.667 14.038 

12 Yes 0.927 0.659 14.886 

24 Yes 0.930 0.665 13.774 

48 Yes 0.932 0.667 15.699 

Linear Regression Linear Regression 

1 Yes 0.899 0.639 14.068 

2 Yes 0.889 0.632 13.146 

6 Yes 0.894 0.642 14.261 

12 Yes 0.908 0.654 13.880 

24 Yes 0.918 0.662 13.713 

48 Yes 0.944 0.681 13.766 

Neural Network Model Block RNN None Yes 0.935 0.664 79.089 
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ML Technique ML Algorithm Lag (hr) Covariates RMSE MAE Elapsed Time(s) 

N-BEATS None Yes 1.020 0.730 438.231 

TCN None Yes 0.889 0.618 76.483 

TFT None Yes 1.170 0.830 435.246 

Transformer None Yes 0.896 0.642 97.169 

Without Covariates for Wind Speed Prediction 

Ensemble Technique Random Forest 

1 No 0.946 0.674 27.060 

2 No 1.011 0.729 28.485 

6 No 0.976 0.711 28.010 

12 No 0.954 0.698 23.515 

24 No 0.930 0.670 27.404 

48 No 0.926 0.667 24.790 

Gradient Boosting 

CatBoost 

1 No 0.944 0.672 13.723 

2 No 0.940 0.674 13.156 

6 No 0.941 0.679 11.032 

12 No 0.930 0.675 13.649 

24 No 0.921 0.660 13.091 

48 No 0.917 0.653 12.900 

LightGBM 

1 No 0.939 0.673 12.313 

2 No 0.940 0.677 11.761 

6 No 0.942 0.677 11.111 

12 No 0.941 0.679 11.051 

24 No 0.927 0.661 11.174 

48 No 0.928 0.663 10.940 

XGBoost 

1 No 0.952 0.674 11.914 

2 No 0.973 0.697 10.709 

6 No 0.969 0.705 11.247 

12 No 0.987 0.725 11.486 

24 No 0.977 0.703 11.418 

48 No 0.994 0.708 13.072 

Linear Regression Linear Regression 

1 No 0.948 0.678 10.789 

2 No 0.959 0.683 10.348 

6 No 0.958 0.683 23.013 

12 No 0.958 0.683 10.817 

24 No 0.932 0.665 20.832 

48 No 0.933 0.661 11.791 

Neural Network Model 

Block RNN None No 0.965 0.712 76.429 

N-BEATS None No 1.020 0.750 422.333 

TCN None No 0.936 0.675 75.866 

TFT None No 1.240 0.890 423.322 

Transformer None No 0.952 0.687 97.170 
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Appendix 2. Algorithm Performance for Wind Direction Prediction 

ML Technique ML Algorithm Lag (hr) Covariates RMSE MAE Elapsed Time(s) 

With Covariates for Wind Direction Prediction 

Ensemble Technique Random Forest 

1 Yes 97.085 68.547 26.522 

2 Yes 94.562 66.476 26.705 

6 Yes 94.455 66.793 26.819 

12 Yes 95.213 67.973 25.283 

24 Yes 95.276 69.066 26.040 

48 Yes 95.477 69.016 24.511 

Gradient Boosting 

CatBoost 

1 Yes 94.518 67.467 15.745 

2 Yes 93.797 66.526 15.874 

6 Yes 94.061 67.960 15.616 

12 Yes 95.231 69.125 17.547 

24 Yes 94.645 69.062 17.672 

48 Yes 96.241 70.709 24.074 

LightGBM 

1 Yes 95.309 68.146 14.439 

2 Yes 95.782 68.990 13.289 

6 Yes 94.083 67.303 12.869 

12 Yes 96.535 69.299 13.466 

24 Yes 96.927 69.838 12.378 

48 Yes 97.911 70.635 14.834 

XGBoost 

1 Yes 100.090 71.786 14.833 

2 Yes 99.523 71.781 14.526 

6 Yes 97.787 70.627 14.460 

12 Yes 99.412 71.306 16.309 

24 Yes 101.160 72.997 14.049 

48 Yes 103.713 74.761 15.492 

Linear Regression Linear Regression 

1 Yes 98.586 71.726 14.422 

2 Yes 98.489 71.604 13.655 

6 Yes 97.551 72.492 13.836 

12 Yes 99.798 74.575 14.367 

24 Yes 101.112 76.338 14.454 

48 Yes 104.851 79.514 14.140 

Neural Network Model 

Block RNN None Yes 97.135 69.100 77.793 

N-BEATS None Yes 113.520 79.300 431.233 

TCN None Yes 96.873 71.265 75.893 

TFT None Yes 131.840 88.120 422.265 

Transformer None Yes 115.719 97.987 101.692 

Without Covariates for Wind Direction Prediction 

Ensemble Technique Random Forest 

1 No 106.340 74.949 23.393 

2 No 103.333 70.957 22.988 

6 No 97.491 69.208 23.311 

12 No 99.769 72.349 24.965 

24 No 99.647 75.370 24.651 
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ML Technique ML Algorithm Lag (hr) Covariates RMSE MAE Elapsed Time(s) 

48 No 98.912 75.167 23.026 

Gradient Boosting 

CatBoost 

1 No 96.210 67.132 13.965 

2 No 96.694 65.989 12.940 

6 No 96.184 67.651 12.462 

12 No 100.697 72.071 11.494 

24 No 97.683 70.866 10.495 

48 No 97.938 71.663 13.582 

LightGBM 

1 No 96.464 67.246 12.623 

2 No 96.951 66.727 10.538 

6 No 96.932 68.082 11.612 

12 No 98.990 71.400 11.938 

24 No 98.240 71.324 10.870 

48 No 97.461 71.232 11.812 

XGBoost 

1 No 99.866 68.722 12.463 

2 No 102.035 69.271 13.936 

6 No 99.915 69.814 12.170 

12 No 105.022 74.689 12.652 

24 No 103.954 76.039 11.477 

48 No 104.525 77.431 13.145 

Linear Regression Linear Regression 

1 No 98.817 70.103 11.566 

2 No 97.730 69.188 12.028 

6 No 98.220 69.680 11.805 

12 No 99.798 72.532 10.495 

24 No 100.011 73.402 11.766 

48 No 100.138 74.844 10.040 

Neural Network Model 

Block RNN None No 95.627 68.275 79.750 

N-BEATS None No 113.530 79.460 421.221 

TCN None No 98.262 69.995 75.518 

TFT None No 123.190 82.510 420.634 

Transformer None No 116.617 99.001 97.474 

Appendix 3. Supplementary Information: Data Sources and Code Repositories 

Information Link 

Data Sources https://energydata.info/dataset/nigeria-solar-radiation-measurement-data 

Code Repositories https://github.com/tosmartak/darts-model-for-wind-speed-direction-prediction 
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