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Abstract: 
Android, being an open-source operating system, offers a comprehensive understanding of its architecture. To 

build mobile devices (smartphones, smartwatches, and smart glasses) under various brand names, including as 

Google Pixel, Motorola, Samsung, and Sony, numerous manufacturers are using this OS. This widespread 

adoption has significantly increased the Android user base. However, some unscrupulous individuals develop 

malware for personal gain, recognition, or other nefarious purposes. To combat Android malware, researchers 

have proposed different techniques. Among these techniques, ML-based methods that utilize static features of 

apps as input vectors have demonstrated clear advantages in terms of code coverage, operational efficiency, 

and the ability to detect a large number of samples. In this study, we examined the structure of Android 

applications, analyzed various sources of static features, reviewed ML methods used for detecting Android 

malware, assessed the strengths and limitations of these methods, and explored future directions in this field. 

Overall, this research acts as a valuable resource for both beginner security professionals and experienced 

researchers, providing direction for the creation of innovative studies aimed at identifying malware using static 

analysis techniques. 

 

I. Introduction 
Android: 

In the last ten years, cellphones have become incredibly popular, attracting billions of users worldwide. 

The convenience and versatility of smartphones have contributed to their widespread adoption. These devices 

offer a multitude of functionalities, including sending emails, playing games, capturing photos and videos, 

browsing the internet, utilizing GPS, and much more. The Android operating system, initially developed as a 

modified Linux kernel for touchscreen devices, has played a significant role in enabling these capabilities. The 

Android ecosystem has witnessed an exponential growth of applications, surpassing 3.5 million apps last year. 

These apps serve various purposes such as banking, social media, healthcare, education, and entertainment. The 

total number of mobile network subscriptions for smartphones worldwide was almost 6.4 billion in 2022 and is 

expected to surpass 7.7 billion by 2028. Leading countries in terms of smartphone subscriptions include China, 

India, and the United States [1].According to a report by the International Data Corporation (IDC) in the second 

quarter of 2016, Google's Android OS dominated the smartphone market with a substantial market share of 

87.6%. On the other hand, Apple's iOS secured the second position with a share of 11.7%. However, iOS has 

experienced stagnant growth and a gradual decline in market share. The appealing aspect of these mobile 

platforms is the availability of feature-rich applications. 

 

Android Malware  
The majority of the above applications are utilized for the benefit of their users. However, some are 

employed maliciously by hackers and exploiters. These malicious programmes, sometimes referred to as 

malware, are intrusive programmes intended to steal data or destroy a user's machine. Cybercriminals create 

malware in a variety of formats, such as Trojan viruses, worms, ransomware, and adware.[2]. Keeping up with 

security breaches has become increasingly challenging due to the constant evolution of malicious software. For 

example, in 2021, Check Point, a cybersecurity firm, warned Android users about the vulnerability of millions 

of smartphones to the Agent Smith malware [3]. This spyware also utilized WhatsApp as a disguise to target 

Android systems. In the same year, coccus reported that over a billion Android smartphones were at risk of 

hacking due to the absence of up-to-date security updates [3]. Recently, there have been cases of Facebook 

accounts being hacked using the android malware app called "FlyTrap". These malicious apps steal personal 

information, initiate unauthorized calls and text messages to initiate deductions, and exploit root privileges to 

take access over the machine, causing serious harm to users. To combat these security threats, various Android 

Malware detection techniques have been developed. One effective approach is the utilization of machine 

learning-based detection methods. 
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Malware Detection Techniques: 

Anomaly Detection: Anomaly detection in cybersecurity utilizes artificial intelligence to establish a 

standard operating pattern and detects variances from this pattern. While it can uncover new threats, it 

frequently produces a considerable number of false positive results. 

Behavioral Detection: Unusual activities, like opening and encrypting numerous files, are frequently 

exhibited by malware. Behavioral detection is employed to identify the existence of malware on a system by 

identifying these atypical behaviors 

Static Analysis: Static analysis refers to the examination of a suspicious or malicious executable 

without executing it. This method ensures safety while examining malware and offers valuable insights into the 

functionality of the malware, as well as indicators of compromise (IoCs) that can aid in signature detection. 

Honeypots: Honeypots are purposely created systems that mimic attractive targets for attackers or 

malware. If these systems become infected, security experts can analyze the malware and develop protective 

measures for their actual systems. 

Allowlisting: An allowlist outlines the approved items on a system, while blocking anything not listed. 

In the context of malware detection, an allowlist can be used to specify authorized files on a system, with the 

assumption that all other programs are potentially malicious. 

 

Classification Techniques of Android Malware 

This section provides an overview of the process of classifying Android malware based on extracted 

features from selected subsets of valid features. There are three main categories of Android malware detection 

methods: signature-based, heuristic-based, and machine learning-based.  

Signature-based detection is the most mature method and relies on pattern matching using a library of 

malware signatures. Each known Android malware has a unique signature stored in the library, and the detection 

process involves checking if a sample matches any of the signatures. This method is widely used due to its 

speed and accuracy, but it requires manual or automatic maintenance of the signature library and may not be 

effective against new malware. 

Heuristic-based detection, also known as anomaly-based detection, focuses on identifying unknown 

malicious software. In order to detect whether a sample belongs to a certain malware family, this method 

compares the traits of unknown samples with those of known malware families and applies sets of rules. It can 

discover unknown malicious software and employs multiple methods to distinguish between benign software 

and malicious. However, it may have a higher error rate for zero-day malware. 

ML-based detection involves training a learner by adjusting parameters to make accurate predictions. It has 

proven to be an effective method for detecting Android malware, and numerous studies have explored its 

potential in detecting unknown Android malware. In the following subsections, we will delve into the details of 

machine learning-based detection technologies. 

 

Feature used for static analysis of android malware detection 

 Permissions: Android malware often requests excessive or unusual permissions. For example, a 

flashlight app may not need permission to access the user's contacts or location. 

 API calls: Static analysis can be used to identify suspicious API calls, such as calls to methods that 

send data to remote servers or that modify the Android system. 

 Code structure: Static analysis can be used to identify unusual or suspicious code patterns, such as the 

use of reflection or the loading of code from unknown sources. 

 String resources: Static analysis can be used to identify malicious strings in the app's resources, such as 

strings that contain phishing URLs or that are known to be associated with malware. 

 Manifest file: The manifest file contains information about the app, such as its permissions, 

components, and activities. Static analysis can be used to identify suspicious entries in the manifest file, such as 

apps that declare activities that are not actually implemented. 

 

Methodology: In Figure 1 the architecture of static analysis of android malware Detection has been shown. 

Firstly, we gather several applications from app stores as well as unofficial malapps. Second step would be to 

extract static features from from each apk. After that we use different Classification Algorithms for detecting 

malicious or benign application. 
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Figure 1 Architecture of Static Analysis of Android Malware Detection 

 

Related works 

Amin et al. [4] proposes an innovative and definitive method for detecting malware on Android 

devices. Researcher have introduced two distinct detection methods: one based on network analysis, which 

involves capturing network packets, tracing their URLs, and cross-referencing them with a database of 

malicious servers, and another based on system call analysis, which entails measuring the frequency of system 

calls made by an app and comparing it to those of known malicious apps. The results indicate that our system 

call-based approach achieves an accuracy of 87% in detecting malware, which is quite significant within the 

broader context of malware detection. 

Shabtai et al. [5] conducted a study on the utilization of static analysis techniques to examine Android 

source code. Additionally, they employed ML methods to categorize games and tools based on static features 

extracted from Android apps. We conducted the evaluation using a dataset comprising 2,850 games and tools. 

For this purpose, we extracted features from Android application (.apk) files and employed them as input during 

the classification process. As there were no malicious applications available for Android at the time, our 

evaluation focused solely on distinguishing between tools and games. We conducted the evaluation using a 

dataset comprising 2,850 games and tools. The results indicate that by merging Boosted Bayesian Networks 

with the top 800 characteristicschosen using Information Gain, we achieved an accuracy level of 0.918, with a 

false positive rate (FPR) of 0.172. 

The author in [6] introduce MARVIN, a system that integrates static and dynamic analysis and utilizes 

ML methods to evaluate the potential risk posed by unfamiliar Android apps, quantified as a malice score. 

MARVIN conducts off-device static and dynamic analysis to capture various properties and behavioral 

characteristics of an app, employing a comprehensive set of featuresIn our analysis, utilizing the largest dataset 

of Android malware classifications to date, which includes over 135,000 Android applications and 15,000 

instances of malware, MARVIN achieves an accuracy of 98.24% in identifying malicious apps, with an 

extremely low false positive rate of under 0.04%. 

This article[7] presents ThinAV, an Android anti-malware system that utilizes existing web-based file 

scanning services for detecting malware. The objective of developing ThinAV was to investigate the feasibility 

of offering real-time anti-malware scanning over a resource-constrained wide area network. Consequently, our 

research offers a contrasting perspective to the resource-intensive, high-budget solutions often proposed in the 

field of cloud-based security. The evaluation of ThinAV demonstrates its effective performance over a wide area 

network, establishing it as a highly practical system for delivering anti-malware security on smartphones. 

In this paper,[8] we have presented a solid approach that utilizes static analysis of Android APK files 

for extracting features such as API Calls, Permissions, Command signature and Intents. To train our machine 

learning classifier, we have utilized the Malgenome and Drebin datasets.After performing feature extraction 

from the Android APK files, we conducted several experiments, considering both the combined extracted 

features and the pairwise combinations of permissions.We then trainedSVM, Random Forest , and SVM with 

Principal Component Analysis  classifiers to differentiate between benign and malicious applications. In terms 

of accuracy, the RF classifier outperformed the others, achieving a 96.27% accuracy rate when using the Drebin 

permission feature combination. On the other hand, the SVM with PCA classifier performed the best when using 

the Malgenome dataset, achieving a maximum accuracy of 97.63% with the Malgenome permission 

combination. 

In this research paper[9], In our academic paper [9], we present a method for identifying Android 

applications using a static approach. This method involves extracting permissions and API calls as features. We 
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utilize various ML methods in our approach. The experimental results show that our technique achieves an 

accuracy rate of over 90%.. Additionally, we conclude that the feature set combining "Permissions + API" 

generally performs better for classification compared to a feature set consisting of only "Permissions". 

In this research paper[10], our proposal involves combining permissions and API calls in order to 

detect malicious Android applications. Our approach entails extracting permissions from each application's 

profile information and extracting APIs from the packed application file using packages and classes to represent 

API calls. By utilizing these permissions and API calls as features, we are able to train a classifier to determine 

whether an application is potentially malicious. An inherent advantage of our method is that it relies solely on 

simple static analysis and does not require dynamic tracing of system calls. 

In this research paper[11], we utilize an existing attack framework to classify various attack scenarios 

against machine learning-based malware detection tools. We consider attackers with different levels of expertise 

and capabilities, and based on this, we develop evasion attacks to evaluate the effectiveness of Drebin, an 

Android malware detector. The key contribution of our study is the introduction of a secure-learning paradigm 

that effectively addresses the impact of evasion attacks, while only marginally decreasing the detection rate 

when there are no attacks. We also suggest that our secure-learning approach can be easily applied to other 

malware detection tasks. 

In this research[12], we propose a novel approach called DroidEnsemble for detecting Android 

malicious applications (malapps) by utilizing both string features and structural features. Our goal is to build a 

more accurate detection model by comprehensively characterizing the static behaviors of Android apps. We 

extract various string features such as hardware features, restricted API calls, permissions, filter intents, used 

permissions, and code patterns, along with structural features like function call graphs.To evaluate the 

performance of these feature types and their ensemble, we employ three ML algorithms: SVM, KNN, and RF. 

Our evaluation involves a dataset consisting of 1386 benign apps and 1296 malapps. The extensive experimental 

results demonstrate the effectiveness of DroidEnsemble. When using only string features, DroidEnsemble 

achieves a detection accuracy of 95.8%. 

In this research paper[13], we presented a novel technique for detecting Android malware by utilizing 

multiple features and the TF-IDF algorithm. Our approach incorporates static features of the Android application 

package. To process the permission feature, we employed the bag of words (BOW) technique, while 

standardization was used for processing the package size feature. The TF-IDF algorithm was utilized to handle 

the API calls features. For classification, we employed machine learning algorithms including AdaBoost, 

LinearSVC, and GaussianNB. Through experiments conducted on public datasets, we demonstrated that our 

system is capable of efficiently detecting Android malware. 

The author in [14] propose novel machine learning techniques for detecting Android malware by 

utilizing a feature set consisting of API calls and permissions. These features are commonly used to identify 

malicious applications. Initially, we examine the viability of a "yearly dataset-based trained classifier" 

(YDataC), which involves training the classifier on 80% of the dataset from a specific year (2014-2021) and 

testing it on the remaining 20% from each year. Our experiments reveal a significant decline in classification 

accuracy since 2019, indicating a major shift. Consequently, the YDataC approach is deemed unsustainable. To 

address this, we introduce and evaluate two incremental learning methods for gradual training: an incrementally 

trained Random Forest (RF) and an incrementally trained Neural Network (NN). Evaluation results demonstrate 

that both incremental learning classifiers exhibit superior sustainability compared to the YDataC approach. 

Specifically, the incrementally trained RF demonstrates better sustainability than the incrementally trained NN 

based on metrics such as f1 score and AUT (Area under Time). 

In this research paper[15], a ML-based intelligent model is introduced to detect malware applications 

on smartphones using static malware analysis techniques. The model analyzes various features of Android 

applications, including permissions, intents, system commands, and API calls. These features are extracted from 

the application manifest file and source code. The proposed model is evaluated on two distinct datasets, namely 

DREBIN and MALGENOME. The experimental findings reveal that the RF classifier outperforms other 

algorithms in accurately identifying Android malware applications. 

In this study[16], we propose a mechanism based on static features to detect Android malware using a 

static analyst approach. The mechanism analyzes static information such as permissions, component 

deployment, Intent message passing, and API calls to characterize the behavior of Android applications. To 

improve the capability of modeling malware with different intentions, various clustering algorithms can be 

applied. We have developed a system called Droid Mat that utilizes this mechanism. Droid Mat extracts 

information from the manifest file of each application, including requested permissions and Intent message 

passing. It considers components (Activity, Service, Receiver) as entry points and traces API calls related to 

permissions. The system then applies the K-means algorithm to enhance malware modeling, determining the 

number of clusters using the Singular Value Decomposition (SVD) method. Finally, it uses the kNN algorithm 

to classify applications as benign or malicious. Experimental results demonstrate that our approach has a higher 

recall rate compared to the well-known tool Androguard. Additionally, Droid Mat is efficient, taking only half 
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the time of Androguard to predict the status of 1738 apps as either benign or Android malware. It achieves an 

accuracy of up to 97.87 percentage points. 

In this research paper[17], we have introduced a malware detection system for the Android platform 

that relies on machine learning techniques. Our system utilizes a dataset containing both benign and malicious 

apps to train the classifiers. Unlike previous approaches, our system considers additional features such as 

requested permissions, vulnerable API calls, and the presence of dynamic code, reflection code, native code, 

cryptographic code, and database in the applications. These features are used in various machine learning 

classifiers to develop a classification model. To evaluate the effectiveness of our system, we conducted several 

experiments using a tool called "RanDroid". The results demonstrated that RanDroid achieved a high 

classification accuracy of 97.7 percent. 

 
No. Dataset Samples Feature Source Algorithm Result Ref 

1.  PRAGaurd Google Play 669 malware 
652 benign 

Permissions API calls Logistic 
Regression 

Accuracy = 0.9725 [18] 

2.  MalGenome Official and 

third markets  

1000 malware 

1000 benign 

API calls Resources 

Assets Libraries 

Permissions 

Naïve Bayes Accuracy = 0.921  

TNR=0.937 

FPR = 0.063  
TPR = 0.906 

 FNR = 0.094  

AUC = 0.9722  
Precision =0.935 

[19] 

3.  Drebin 5559 malware 

123,452 
benign 

Permissions 

Components API calls 
Network addresses 

KNN Accuracy = 0.9948 [20] 

4.  Drebin Several public 

malware libraries Google 

Play 

3986 malware 

3986 benign 

Permissions API calls SVM KNN TPR= 0.975 

 FPR= 0.032  

Accuracy = 0.975  
Recall=0.975  

[21] 

5.  Collected by the 

researchers 

No malware 

820 benign 

Frequency of strings 

Permissions from app 
Permissions from 

markets 

RF KNN 

SVM 

AUC = 0.93 [22] 

6.  DREBIN and 

MALGENOME. 

 permissions, intents, 

system commands, and 
API calls. 

RF --- [15] 

 

II. Result: 
In the survey conducted in Figure 2 it was concluded that there are numerous datasets used by 

researchers however most of the researchers were more inclined to use Derbin dataset and the second most 

popular dataset was Mal Genome other than that there were many datasets used from many other sources below 

is a figure showcasing the results of the survey:  

 

 
Figure 2 Dataset used for static Analysis 

 

As shown in Figure 3, SVM were the most commonly employed models for detecting the Android Malware 

using ML. However, some researchers have used the other models like Random Forest, KNN, Decision Tree etc. 
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Figure 3 ML algorithms used for static analysis 

 

III. Conclusion 
The issue of Android malware has been brought into focus due to the rapid growth in the use of 

Android devices. This has resulted to the development of machine learning (ML)-based techniques for malware 

detection. These ML-based approaches have the potential to identify previously unseen malware, thus offering 

the ability to prevent zero day attacks. In this survey, the author thoroughly examined the use of static malware 

detection in Android malware apps. They compared the current techniques based on certain criteria. The study 

delved into Android app composition, analyzed the source of static features, reviewed machine learning-based 

static detection technology for Android malware, and discussed future development directions. The datasets and 

ML methods that were employed in the Android malware detection static analysis were also examined. 

Compared to other types of Android malicious application detection technology, the static detection method 

based on ML demonstrates advantages in terms of comprehensiveness, accuracy, and reduced dependence on 

experts, although it does have some weaknesses. 
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