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ABSTRACT

Stuttering is a speech disease which involves abnormalities or disorder in speech signal. It is also called as
stammering. Stuttering involves disorders in speech, such as repetition of word, interjections, prolongations,
broken words, revisions, incomplete phrases and silent pauses. Stammering is the research matter in many
advance areas like speech psychology, signal analysis. Therefore, this speech study is advantage for advanced
field for scientific work. One of the main issues still unresolved in area of speech disfluency is an aid and automatic
way of detection on patient condition after initial and final speech therapy techniques and a contribution of
treatment made after intercession. Generally, classification of speech language disfluency is taken up as a very
difficult and complicated problem however some typical problems related to stuttering are known. Stammering is
a poorly known communication with 1% predominance. Analysis of stuttered signal includes syllable per minute
(SPM), Percentage disfluency (PD), number of repetitions, number of prolongation and interjection.
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I. INTRODUCTION

In traditional stuttering detection process, the speech signal is translated and disfluencies like counts of
repetitions, interjections and prolongations are identified[1]. Then the frequency of occurrence of each disorder is
counted. These detection processes are based on the ability and experience of speech consultants. The main
drawbacks of such detection are wastage of time, subjective, not consistent and also poor decision when different
consultants make counts on same signal.

In conventional stuttering detection process, stuttering events like repetition, interjection and
prolongation are counted manually from an observed recorded speech. From these counts the number of dysfluent
words and fluent words are calculated, but in this method result will not produce correctly. Therefore in order to
help the speech pathologists to treat the stuttered patients effectively automatic stuttering detection process[21],
it also improves the judgement of stuttered events. Conventional stuttering process will consume time to analyze
and also results are not produced correctly. Therefore, in order to get the correct result automatic stuttering
detection[18] process are used in stuttering analysis process.

I1. FACTORS THAT LEAD TO CONTRIBUTION OF SPLITTEERING
Stuttering is detected by identifying either of four signatures [5] of speech disorder: Developmental disorders
Stuttering takes place during developmental stage. In other words, it can be described as an adult stuttering. The
primary reason for stuttering is that when person starts stuttering from his childhood.

Auditory processing under activities
When persons stutters brain scans found that auditory processing region is underactive. To correct this abnormal
a electronic device called altered auditory feedback is used.

Over activities of speech motor control

When persons stutters brain scans found that speech muscle control [14] area is overactive. To correct
this abnormal fluency shaping therapy technique is used to speak with relaxed speech muscles. Stuttering [8]
person over tense his breathing, jaws, tongues, vocal folds and lips.

Stress related response
Most stuttered person speaks fluently [21] when he is in relaxation mode, but he will stutters when gone under
stress. To correct this abnormality personal construct therapy is used.

DOI: 10.9790/0661-2504023845 www.iosrjournals.org 38 | Page



Stuttered Speech Analysis Using Machine Learning Algorithms

Neurotransmitter and genes

High levels of neurotransmitter dopamine in left region of speech motor control areas leads to a neurological
abnormality.

I1l. SEGMENTATION OF SPEECH SIGNAL

Speech is one of the mediums by which communication is possible for human beings. For improved
speech recognition system speech or syllable segmentation is employed. Segmentation of a speech will be done
into units such as words and syllables. Speech segmentation is required to make better speech recognition between
machines and humans as if like between humans. For making speech better understandable and to improve
interpretation speech segmentation is used. Speech signals are classified as silence, unvoiced and voiced. Silence
is nothing but the representation of gaps between voiced speeches. Phonetic will not provide accurate amount of
syllables. The important feature of syllable is a dynamical part of transient consonant-vowel. The feeling of a
syllable edge is usually very tough and not unique. Techniques used in an automatic syllable segmentation of
speech, includes signal extremes and auto regressive coefficients (AR). The segmented syllables are fed to a
feature extraction process. Speech segmentation acts as sub part of a speech recognition system. Speech
recognition and synthesis systems are segmented into units such as syllables or words.
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Figure 1. Schematic diagram of proposed system

Methods of Segmentation

Segmentation of speech is a process of breaking a continuous speech into primitive units with having
finest edges. Recognition of speech is a crucial step; it also plays an important aspect in other certain applications.
Segmentation of speech can be used for recognition of speech. Speech segmentation are of two types,
» Manual segmentation
» Automatic segmentation

In case of manual segmentation, speech segmentation will be done manually by testing a speech signal
waveform with a spectrogram. In this process drawbacks are results cannot produce back, time consuming,
endless process and contains more errors. Figure 1. Shows the Spectogram of a speech signal

In case of automatic segmentation speech segmentation is considered as better when compared to
manual segmentation. In this case speech can efficiently segmented to its primitive units such as syllables and
words. The various techniques involving in automatic syllable segmentation are
Fourier transform method
Short term energy-based method
Minimum phase group delay method
Wavelet method
Word chopper technique

YVVVYV

Voice Activity Detection (VAD) Segmentation
Voice activity detection (VAD) based segmentation detects the voiced speech from a given speech
samples. The basic principle of VAD segmentation involves in extracting the features from given input samples
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and to compare it with the thresholds generated from noise activity. Voice activity detection (VAD=one) denotes
if calculated value exceeds above thresholds. For non speech or silence portion of speech VAD is terminated as
zero. The basic flow of VAD syllable segmentation is shown in Figure 2.

Input VAD
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Figure 2. Basic Block Diagram for VAD Segmentation

In case of VAD segmentation it extracts a acoustic features that appropriate indicates a probability of
observed speech signals. Based on the calculated acoustic features it determines whether the target speech signals
present in a observed speech signals by using a computed threshold value. VAD output performance is based on
frame and frame pattern where input signal frame length is given by 5-40ms duration. The reliability and accuracy
of VAD segmentation is based on decision thresholds. The threshold values helps to detect the track of voice
activity and thus results in efficient voice activity detection result. The threshold and energy of observed speech
signal will be compared which depends on the noise in case of energy based VAD segmentation.

Proposed VAD Segmentation Algorithm

In proposed VAD syllable segmentation algorithm periodicity measurement of speech signal, low
frequency to high frequency energy ratio and computation of full energy band were used as feature extraction for
segmentation process.Pitch period of signal is main factor to determine the signal periodicity (C). In order to reduce
complexity of computation, center clipping of input signal is achieved than for pitch estimated normalized function
of autocorrelation r(t) is used in Equation 1

r(t) = (ENZP T x() x x(n = 1) + (VIR 22+ 1)) (1)

Where x(n) denotes an input frame signal n= 0,1, ........, N. The function of autocorrelation calculated
for the values of t from tmin to tmax. The constant tmax and tmin represent the upper and lower limits of respected
pitch periods. The function of autocorrelation is maximized by the value of t which is equal to pitch period of a
voiced frame. The periodicity of speech signal (C) is determined by maximum value of r(t).

The RMSE of complete band is calculated from a range of frequency (Ohz to 4khz). The threshold
computation of complete energy level Emax and Emin obtained from incoming frames. The value of Emin and
Emax are stored in the memory and threshold is computed by the following equation 2

Threshold = (1 —X)-Emax + (A - Emin) 2

Where A is a scaling factor which controls the process of estimation. VAD detection segmentation
performs effectively when scaling factor lies in the range of 0.95 to 0.999. For different values of signals A value
would not remain same it should be set properly. Computation of scaling factor by the equation 3

A= Emax — Emin / Emax 3)

Energy ratio (Er) is the ratio between energy of high frequency to low frequency. The high frequency part
is obtained by passing the speech signal to high pass filter of 2khz. The energy ratio (Er) is determined by following
equation 4

Er = Eh/ (Ef-Eh) 4)

Where Eh and Ef are high band and full band energy of signal respectively. Once feature extraction process
is completed, VAD initial decision (Ivad) is computed by comparing the extracted features with thresholds. Once
the thresholds have been compared to detect the value of Ivad then final decision is done by observing lower portion
of flowchart. For each value of Ivad, output decision Fvad is computed by the comparison of threshold. At the final
output smooth hangover algorithm is used to detect the voiced portion and silence part. At the beginning of VAD,
final VAD flag (Fvad) and hangover flag (Hvad) will set to zero. The output block of algorithm check whether the
Ivad = 1 if it satisfied, then presence of speech will be detected. Then output decision sets hangover flag and final
VAD flag to be one. It means speech has been not detected. The output decision checks for whether smoothened
value (Efs) less than Emin, then hold over has been indicated. Therefore output block maintains final VAD decision
to be one even though speech signal been not detected . Figure 3 shows the flowchart for VAD Segmentation.
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Figure 3. VAD segmentation Flowchart

Mel Cepstrums

In the final step the log spectrum which is in frequency domain converted back to time domain.
Therefore, this result is named as MFCC. The cepstral of speech signal provides local spectral properties of speech
signal which will useful in signal analysis. Since the calculated mel coefficients contains real numbers. It can be
converted back to domain of time by using discrete cosine transform (DCT). MFCC provides speech signal
spectral properties which can be extracted during the process of feature extraction as shown in Figure 4

MFCC Mel Spectrum
DCT Log()

a

Figure 4. Mel Cepstrums Coefficients

This speech signal is represented as a convolution between quickly varying source (glottal pulse) and
slowly varying filter (vocal tract impulse response) and also speech signal spectrum consists of the low frequency
(spectral envelope) and the high frequency (spectral details).

The logarithm leads to effect of change from multiplication to addition. The same technique is used to
separate the spectral details and spectral envelope from a magnitude spectrum[13][17]. After this we have to apply
DCT on the magnitude spectrum. From Sk values of each filter given, parameter of cepstrum in a Mel scale can
be calculated by following equation 6.

MFCC, = X_,(logSk)cos [n(k — 0.5) ()] (6)

Where N is the required MFCC parameter number, Sk is the power spectrum coefficient, k is the number
of filters n=1,2,...N.

This speech signal is represented as a convolution between quickly varying source glottal pulse and
slowly varying filter (vocal tract impulse response) and also speech signal spectrum consists of the low frequency
(spectral envelope) and the high frequency spectral details. Table 1 shows the technical parameters of MFCC
process.

Table 1. Technical parameters of MFCC process (* express units in 100n)
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Configuration Value
parameters
SOURCEKIND waveform
SOURCERATE 625" MFCC extraction
process
TARGETKIND mfcc 0
PREEMCOEF 0.97 } Pre-emphasis
TARGETRATE 100000*
WINDOWSIZE 250000.0° Frame blocking and
Hamming windowing

USEHAMMING true
NUMCHANS 24 Filtabank and
NUMCEPS 12 MFCC coefficients

V. CLASSIFICATION OF SPEECH SIGNAL
KNN Classifier

KNN algorithm stands for k nearest neighbors based algorithm which is a non-parametric technique used
for regression and classification work. The output of k-nn classifier depends on whether it is used for regression
or classification. In feature space an input consists of closest k training examples for both regression and
classification work.

In this work two training data set is made one for dysfluent speech (repetition, prolongation and
interjection) and another for fluent speech set. For each test data the training samples are detected with K-nearest
neighbours. Further this k-nearest neighbours suitable class is labelled based on its majority voting. This class
labels can be dysfluent speech or fluent speech. K-nn algorithm is based on clustering algorithms which will
partitions a provided dataset into specified quantity of cluster k. Figure 5. shows the Knn classifier flow chart.

The code generation of training vector begins from initial estimate and will continue with centroid
technique and nearest neighbor until termination criterion is achieved. This procedure will continue until mean
squared error between cluster centroids and feature vectors falls below some threshold.

+<

No

Centroids

.

Distance objects to
centroids

v

Grouping based on
minimum distance

l

Figure 5. K-nn Classifier Flow chart
The Process steps are depicted in the flow chart shown in fig 5 and squared function shown in Eq 7.
The squared function is given by,

J = s o) — o[ 0

No object
move group

V. RESULTS AND ANALYSIS
Pre-Emphasis filter output and Signal Parameters
The first order high pass filter is designed in the preprocessing of speech signal. The objective is to enhance the
total energy present in the high frequency part.

Table 2: Pre-Emphasis Signal Parameters
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signall 44.1khz 6.8%e+04m 73.23 0.000660
signal2 25khz 7.2%e+04m 72.37 0.000719
signal3 40khz 6.8%e+03m 70.2 0.000894
signal4 11.025khz 2.72%e+04m 90.5 0.000116
signalS 20khz 15%e+03m 78.07 0.000407
signalé 16khz 16*e+03m 99.65 0.000047
signal7 15khz 17*e+03m 96.61 0.000064
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Figure 6. Pre-emphasis filter output

Figure 6 shows the Pre- emphasis filter output. From this figure, it is clear that the high frequency
component that suppressed was compensated by Pre- emphasis filter. After Pre- emphasis filter applied it leads
to improvement in the peak signal to noise ratio and mean square error is reduced.

The Table 2 describes about the peak signal to noise ratio and mean square error obtained after
pre-emphasis filter is applied. From table it is clear that peak signalto noise ratio will be improved after Pre-
emphasis filter is applied. Peak signal to noiseratio is the ratio between maximum possible powers to the power
of corrupting noise. Better PSNR leads to a better result of the signal. From above table we will get a good
PSNR for signal6, signal7, and signal4. MSE should be as low as possible for a processing of speech signal Since
MSE is inversely proportional to a PSNR. For less PSNR ratio the mean square error will be high. For improved
signal processing technique. PSNR ratio must be high and mean square error (MSE) should be low.

The below table 3 shows the segmented [21] test data which describes the number of words segmented
using VAD segmentation. The number of words will differ for different speech signals, if time duration of
speech signal is more than we can get more words.

Table 3 : Segmented test data
[Test Data Number of Words
[Test Data 1 31
[Test Data 6 30
[Test Data 7 14
[Test Data 8 72
[Test Data 9 89
[Test Data 10 84
[Test Data 11 50
[Test Data 12 44
[Test Data 13 238
[Test Data 14 120
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MFCC Feature Output

The graph describes the Mel frequency cepstrum coefficients which are subjected to classification work.

These features are stored in data matrix during training phase and used for comparison using testing phase. Figure
7 shows the MFCC feature output and Figure 8 shows Mel frequency cepstrum coefficients.
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Figure 7 MFCC Feature Output Figure 8 Mel-frequency cepstrum coefficients

The table 4 describes the performance measures of the various algorithms. From above table KNN

classifier considered as the best classifier since it leads to high accuracy when compared to another classifier.

Table 4 Performance measure of proposed algorithm

Method Accuracy (%)
Artificial Neural segmentation Network with manual 73.25

Hidden Markov segmentation Model with manual 80

KNN Classifier with VAD segmentation 85.71

VI. CONCLUSIONS
The main aim of this project is classification and analysis of stuttered speech signal using Mel

frequency cepstrum coefficients based feature extraction and K-nn classifier framework. Using K-nn classifier
classification of fluent and non fluent is done and obtained the accuracy of 85.71%. For training phase, hundred
and fifteen speechsegmented samples are used. Analysis of signal such as stages of stuttering, , percentage
disfluency, syllable per minute, and number of dysfluencies are calculated effectively.
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