
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 25, Issue 3, Ser. II (May. – June. 2023), PP 41-45

www.iosrjournals.org

DOI: 10.9790/0661-2503024145 www.iosrjournals.org 41 | Page

Critical Analysis Of Solutions To Hadoop Small File

Problem

Prof. Shwetha K S
Ph.D Research Scholar

Department of Computer Science & Engg.,

East Point College of Engineering and Technology, Bengaluru,Karnataka, INDIA

Dr. Chandramouli H
Professor

Department of Computer Science & Engg.,

East Point College of Engineering and Technology, Bengaluru,, Karnataka, INDIA

Abstract
Hadoop big data platform is designed to process large volume of data. Small file problem is a performance

bottleneck in Hadoop processing. Small files lower than the block size of Hadoop creates huge storage overhead

at Namenode’s and also wastes computational resources due to spawning of many map tasks. Various solutions

like merging small files, mapping multiple map threads to same java virtual machine instance etc have been

proposed to solve the small file problems in Hadoop. This survey does a critical analysis of existing works

addressing small file problems in Hadoop and its variant platforms like Spark. The aim is to understand their

effectiveness in reducing the storage/computational overhead and identify the open issues for further research.

Date of Submission: 01-06-2023 Date of Acceptance: 10-06-2023

--- ------

I. INTRODUCTION
Hadoop is an open source big data processing platform designed to process large volume of data. The

data is kept in form of files in Hadoop distributed file system (HDFS). A map job is spawned on a java virtual

machine (JVM) instance for each file in HDFS. The file data is copied to a memory block and the block is

passed to map task. In addition, a object instance is created for each file in the Namenode of Hadoop to facilitate

processing. When the file size is more than or equal to block size, maximum performance gain in achieved in

terms of number of maps spawned and the meta data storage overhead at Namenode. In case of IoT applications,

the data files are small (less than 2KB) and when these files are stored in HDFS for data processing, it affects

the Hadoop performance [1-2]. On one hand, it drastically increases the storage overhead at Namenode for

object bookkeeping [3]. On another hand it exhausts the computational resources by spawning multiple map

tasks which only lasts for smaller duration to process small files. The time spent in bootstrapping the map task

becomes higher than data processing time in case of small files. Various solutions have been proposed

addressing the Hadoop small file problem. The existing solutions can be categorized as: (i) file merging

solutions, (ii) file caching solutions, (iii) optimizing Hadoop cluster structure and (iv) Map task optimizations.

In file merging solutions, pre-treatment of small files is done to form a big file and this big file is stored in

HDFS. In file caching solutions, files are sent to a file queue, and when queue size crosses threshold files are

sent to processing in a systematic manner. In Hadoop cluster structure optimization solutions, hierarchical

memory structure is created combining cache and HDFS memory to reduce the overhead due to single name

node. In map task optimization solution, number of JVM instances spawned for map tasks are reduced and

shared.

This work does a critical analysis on various solutions in the above four categories of file merging, file

caching, Hadoop cluster structure optimization and map task optimization. The effectiveness of each of the

solutions in terms of storage and computation are analyzed and their open issues are identified. Based on the

open issues, a prospective solution framework is designed and detailed.

Critical Analysis of Solutions to Hadoop Small File Problem

DOI: 10.9790/0661-2503024145 www.iosrjournals.org 42 | Page

II. SURVEY
Ahad et al [4] proposed a dynamic merging strategy based on the file type for Hadoop. Dynamic

variable size portioning is applied to blocks and the file contents are fitted to blocks using next fit allocation

policy. By this way large file is created and saved to HDFS. In addition, authors also secured the block using

Twofish cryptographic technique. The solution reduced name node memory, number of data blocks and

processing time. Merging was done only based on file types without considering the context and their semantic

relation. Siddiqui et al [5] proposed a cache based block management technique for Hadoop as a replacement for

default Hadoop Archives (HAR). A logical chain of small files is built and transferred to data blocks. In

addition, efficient read/write on blocks was facilitated using block manager. Though the solution achieved more

than 92% space utilization of data blocks, small files are merged only based on size, without considering the

semantic relations and content characteristics. Zhai et al [6] built a index based archive file to solve the small

file problem in Hadoop. The small files are merged to large file and metadata record is created to retrieve each

file content. Meta data records are arranged into buckets. An order preserving hash is created over metadata

records. The hash and the metadata records are in turn written to a index file. The index files helps to retrieve

the file contents for processing. This method is able to save atleast 11% disk space but the solution access

efficiency becomes lower with large number of small files. Also the indexing does not support streaming inputs.

Cai et al [7] proposed a file merging algorithm based on two factors of distribution of the files and the

correlation of the file. Correlation between files is built based on their history of access and the highly correlated

files are kept in the same block. Through experiments, author found that placing highly correlated files in same

block improved the speed up. The correlation is not based on content characteristics so over a period of time,

performance can reduce. Choi et al [8] integrated combinedfileinputformat and JVM reuse to solve the small file

problem. Small files are combined till block size and passed to map task. JVM instances are reused for the map

task , so they overhead of JVM bootstrap is minimized. Though the integration reduces the computational

overhead, the approach combined files in order without considering their semantics. Also the memory buildup

due to JVM reuse can crash the tasks due to inefficient memory management. Peng et al [9] combined merging

and caching techniques to solve the small file problem. User based collaborative filtering is applied to learn the

correlation between the files. Files with higher correlation are merged into single large file. Remote procedure

call (RPC) requests to fetch the block information about the files are reduced by caching the access requests and

looking into cache for the blocks before placing RPC requests. By this way, authors were able to reduce the file

access time by 50% and increase storage utilization by 25% compared to default Hadoop. The scheme does not

works well for streaming data, as the correlation model proposed in this work is not adaptive to streaming data.

Niazi et al [10] proposed a new technique called inode stuffing to solve the small file problem. For small files,

the metadata and data block are combined and decoupling is maintained only for large files. The approach is not

scalable as it increases the metadata storage overhead at Namenodes. Jing et al [11] proposed a dynamic queue

method to solve the small file problem. The files are first classified using the period classification algorithm.

The algorithm calculates similarity score based on sentence similarity between two documents. The similar files

are then merged to large file using multiple queues for specific file sizes. Authors also used file pre-fetching

strategy to improve the efficiency of file access. Analyzing similarity between pairs is a cumbersome task for

large number of files. Sharma et al [12] proposed a dual merge technique called Hash Based-Extended Hadoop

Archive to solve the small file problem in Hadoop. The small files are merged using two level compaction. This

reduces the storage overhead at Namenode and increase the data block space utilization at Datanodes. File

access is made efficient using two level hash function. The proposed solution is atleast 13% faster compared to

default Hadoop. The files were merged without considering the content characteristics and their semantics.

Wang et al [13] combined merging and caching to solve the small file problem in Hadoop. Authors proposed a

equilibrium merger queue algorithm to merge small files to Hadoop block size and then merged file is saved to

HDFS. Indexing is built to access small files. To reduce the communication overhead between the client and

Namenode for small file access, pre-fetched cache is used. With the cache, the number of RPC calls to name

node is reduced. The memory consumption at Namenode drastically reduced in the proposed solution compared

to default Hadoop Archives. Contents were merged without considering their content characteristics and

semantic correlation. Ali et al [14] proposed a enhanced best fit merging algorithm to merge small files based on

type and size. The merging is done till Hadoop block size is reached and merged file is saved to HDFS. Author

found that merging improved Hadoop storage utilization by 64% but the file access time was higher in this

work. Prasanna et al [15] compressed many small files into a zip file to the size of Hadoop data block and saved

to disk. This increased the disk utilization of data nodes and name nodes. But the computational overhead in

compressing stage and decompressing during processing is higher. Huang et al [16] addressed the small file

problem for the case of images in Hadoop. A two level model was proposed specific to medical images. The

images were grouped at first level based on series and next level based on examination. The grouped images are

saved to data blocks in HDFS. Indexing and pre-fetching is done to done is reduce the access time for small

image files. The pre-fetching algorithm did not have higher cache hit. Renner et al [17] extended the Hadoop

Critical Analysis of Solutions to Hadoop Small File Problem

DOI: 10.9790/0661-2503024145 www.iosrjournals.org 43 | Page

archive to appendable file format to solve the small file problem. Small files are appended to existing archive

data files whose block size is not completely used. Authors used first fit algorithm to select the data blocks. In

addition indexing is done to facilitate faster access. Red black tree structure is used for indexing for efficient

lookup. Though this scheme improved the data block utilization, appending is done without considering content

characteristics and semantic similarity. Liu et al [18] proposed a file merging strategy based on content

similarity. Files are converted to vector space features and correlation between the features is measured using

cosine similarity. When cosine similarity is greater than threshold, files are merged. In addition authors used

pre-fetching and caching to speed up the file access. Constructing a global feature space for streaming data is

difficult and thus this approach is not suitable for streaming data.Lyu et al [19] proposed an optimized merging

strategy to solve small file problem. The small files are merged based on size in such that way block size is fully

utilized. In addition authors used pre-fetching and caching to increase the access speed. Only block size

utilization was considered as the only criteria for merging without considering content characteristics and

semantic relations. Similar to it Mu et al [20] proposed an optimization strategy to maximally fill the existing

Hadoop archive by appending small files. In addition author also used secondary index to speed up the

execution of file access. But here too merging was done without considering content characteristics and

semantic relation. Wang et al [21] used probabilistic latent semantic analysis to determine the user access

pattern and based on it small files are merged to a large file and placed in HDFS. In addition author also

improved the pre-fetching hit ratio based user access transition pattern. Both the strategies improvised the speed

of access and data block utilization. But this scheme is not suitable for multi user environment as for each user,

a merging order must be kept and this increases the storage overhead. He et al [22] merging the small files based

on balance of data blocks. The aim was to increase the data block utilization. Merging did not consider content

characteristics and their semantic relation. Fu et al [23] proposed an flat storage architecture to handle the small

files. In this scheme, both files and meta data are collocated with meta size fixed for any number of small files.

This is facilitates by meta data having only pointer to related information in its index. But the scheme is not

suited for Hadoop as collocation causes higher access overhead for large files. Tao et al [24] merged small files

to large file and built a linear hash to small files to speed up access. File size was the only criteria considered

for merging. Bok et al [25] integrated file merging and caching to solve the small file problem. Author used two

level of cache for small files, so that access requests to Namenode is totally minimized. Least recently used

(LRU) mechanism is used to upgrade the cache. The merging was based only on size without considering the

content characteristics and semantic similarity.

The summary of survey so far discussed is presented in Table 1.

Table 1 Survey summary
Work Solution for small file problem Gap

Ahad et al [4] dynamic merging strategy based on the file type Merging was done only based on
file types without considering the

context and their semantic relation

Siddiqui et al [5] cache based block management technique small files are merged only based on

size, without considering the
semantic relations and content

characteristics

Zhai et al [6] a index based archive file with order preserving
hash for speedup

Does not support streaming

Cai et al [7] file merging algorithm based on two factors of

distribution of the files and the correlation of the
file

The correlation is not based on

content characteristics

Choi et al [8] integrated combinedfileinputformat and JVM

reuse to solve the small file problem

memory buildup due to JVM reuse

can crash the tasks due to inefficient

memory management

Peng et al [9] combined merging and caching techniques to

solve the small file problem

The scheme does not works well for

streaming data, as the correlation

model proposed in this work is not
adaptive to streaming data

Niazi et al [10] Coupling both meta data and small file together. The approach is not scalable as it

increases the metadata storage

overhead at Namenodes

Jing et al [11] Files classified using the period classification

algorithm and merged based on similarity

Analyzing similarity between pairs

is a cumbersome task for large

number of files

Sharma et al [12] Hash Based-Extended Hadoop Archive to solve
the small file problem

The files were merged without
considering the content

characteristics and their semantics.

Wang et al [13] combined merging and caching to solve the small
file problem

Contents were merged without
considering their content

characteristics and semantic

Critical Analysis of Solutions to Hadoop Small File Problem

DOI: 10.9790/0661-2503024145 www.iosrjournals.org 44 | Page

correlation

Ali et al [14] enhanced best fit merging algorithm to merge

small files based on type and size.

file access time was higher in this

work

Huang et al [16] A two level model was proposed specific to

medical images

The pre-fetching algorithm did not

have higher cache hit

Renner et al [17] Small files are appended to existing archive data

files

Appending is done without

considering content characteristics

and semantic similarity

Liu et al [18] File content based merging Constructing a global feature space
for streaming data is difficult and

thus this approach is not suitable for

streaming data

Lyu et al [19] optimized merging strategy to solve small file

problem.

Only block size utilization was

considered as the only criteria for

merging without considering content
characteristics and semantic

relations

Wang et al [21] probabilistic latent semantic analysis to determine

the user access pattern and based on it small files

are merged to a large file

scheme is not suitable for multi user

environment as for each user, a

merging order must be kept and this

increases the storage overhead

He et al [22] merging the small files based on balance of data

blocks

Merging did not consider content

characteristics and their semantic
relation

Fu et al [23] flat storage architecture collocating metadata and

file in same object

the scheme is not suited for Hadoop

as collocation causes higher access
overhead for large files

Tao et al [24] merged small files to large file and built a linear

hash to small files to speed up access

File size was the only criteria

considered for merging

Bok et al [25] integrated file merging and caching to solve the
small file problem

The merging was based only on size
without considering the content

characteristics and semantic

similarity

III. OPEN ISSUES
From the survey, following three open issues are identified

(i) Context specific merging

(ii) Personalized access

(iii) Streaming support

Context specific merging: In most of the existing approaches, merging was based only on size.

Merging did not consider user access or application contexts, content characteristics and their semantic relation.

In applications like recommendations based on user comments, it is necessary to co-locate user comments

related to specific product characteristics in same blocks for application speedup.

Personalized access: In most of the existing caching strategies, caching was based on least recently

used at a global context without considering the user access context. But it is important to consider user access

context as each user access behavior is different. Caching on global context can provide better performance for

some users and can give worst performance for other users. To solve this access time discrepancy among the

users, personalized caching strategy must be employed.

Steaming support: Most of the merging schemes does not handle the steaming data effectively.

Streaming data content similarity cannot be computed effectively using vector space modeling and their

merging can become ineffective. Merging based on streaming arrival patterns has not been considered in earlier

works.

.

IV. RESEARCH DIRECTIONS
Based on the open issues identified, a prospective framework for further research is presented in Figure 1.

The framework addresses three problem areas of context specific merging, personalized access and

streaming support.

Context specific merging: It can be facilitated and made adaptive using machine learning. Based on the

application contexts and inherent data characteristics the files to be merged can be found. Blocks can be

categorized based on context and small files can be categorized based on context. Context based merging is the

realized to merge files and blocks based on context similarity. Instead of flat context, hierarchical context can be

learnt automatically from file summarization. File summarization strategies specific to file types can be

proposed to identify the context to be associated with files and blocks.

Personalized access: User can be clustered based on their content access patterns over a temporal

duration and multiple caches can be maintained for each user group. Also the cache item management can be

Critical Analysis of Solutions to Hadoop Small File Problem

DOI: 10.9790/0661-2503024145 www.iosrjournals.org 45 | Page

based on multi criteria optimization instead of LRU mechanisms. The items to pre-fetch can be identified based

on context associated with files. By this way access speed up can be increased and optimized specific to each

user group.

Streaming support: To support streaming data, the context must be learnt dynamically in a light weight

manner and association of small file to blocks must be done based on context. To learn context in a light weight

manner, the streaming data characteristics and their arrival patterns must be used.

.

V. CONCLUSION
This survey made a critical analysis of existing solutions for small file problem in Hadoop. The

solutions were analyzed in four categories of file merging solutions, file caching solutions, optimizing Hadoop

cluster structure and Map task optimizations. Based on the survey, three open issues of context specific merging,

personalized access and streaming support are identified. Prospective solutions to these three open issues were

identified and a solution roadmap for further exploration in this area was documented.

REFERENCES
[1]. Small size problem in Hadoop: http://blog.cloudera.com/blog/2009/02/the-small-files-problem/

[2]. Solving Small size problem in Hadoop https://pastiaro.wordpress.com/2013/06/05/solving-the-small-files-problem-in-apache-
hadoop-appending-and-merging-in-hdfs/

[3]. Bo Dong , Qinghua Zheng, Feng Tian , Kuo-Ming Chao , Rui Ma, Rachid Anane.(2012), An optimized approach for storing and

accessing small files on cloud storage, Journal of Network and Computer Applications, 35 (2012) 1847-1862, Elsevier
[4]. Ahad, Mohd & Biswas, Ranjit. (2018). Dynamic Merging based Small File Storage (DM-SFS) Architecture for Efficiently Storing

Small Size Files in Hadoop. Procedia Computer Science. 132. 1626-1635. 10.1016/j.procs.2018.05.128.

[5]. Siddiqui, Isma & Qureshi, Nawab Muhammad Faseeh & Chowdhry, Bhawani & Uqaili, Mohammad. (2020). Pseudo-Cache-Based
IoT Small Files Management Framework in HDFS Cluster. Wireless Personal Communications. 113. 10.1007/s11277-020-07312-3.

[6]. Zhai, Yanlong & Tchaye-Kondi, Jude & Lin, Kwei-Jay & Zhu, Liehuang & Tao, Wenjun & Du, Xiaojiang & Guizani, Mohsen.

(2021). Hadoop Perfect File: A fast and memory-efficient metadata access archive file to face small files problem in HDFS. Journal
of Parallel and Distributed Computing. 156. 10.1016/j.jpdc.2021.05.011.

[7]. Cai, Xun & Chen, Cai & Liang, Yi. (2018). An optimization strategy of massive small files storage based on HDFS. 10.2991/jiaet-

18.2018.40.
[8]. Choi, C., Choi, C., Choi, J. et al. Improved performance optimization for massive small files in cloud computing environment. Ann

Oper Res 265, 305–317 (2018)

[9]. Peng, Jian-feng & Wei, Wen-guo & Zhao, Hui-min & Dai, Qing-yun & Xie, Gui-yuan & Cai, Jun & He, Ke-jing. (2018). Hadoop
Massive Small File Merging Technology Based on Visiting Hot-Spot and Associated File Optimization: 9th International

Conference, BICS 2018, Xi'an, China, July 7-8, 2018, Proceedings. 10.1007/978-3-030-00563-4_50.

[10]. S. Niazi, M. Ronström, S. Haridi, and J. Dowling, ‘Size Matters : Improving the Performance of Small Files in Hadoop’, presented
at the Middleware’18. ACM, Rennes, France, 2018, p. 14.

[11]. Jing, Weipeng & Tong, Danyu & Chen, GuangSheng & Zhao, Chuanyu & Zhu, LiangKuan. (2018). An optimized method of HDFS

for massive small files storage. Computer Science and Information Systems. 15. 21-21. 10.2298/CSIS171015021J.
[12]. S. Sharma, A. Afthanorhan, N. C. Barwar, S. Singh and H. Malik, "A Dynamic Repository Approach for Small File Management

With Fast Access Time on Hadoop Cluster: Hash Based Extended Hadoop Archive," in IEEE Access, vol. 10, pp. 36856-36867,

2022
[13]. K. Wang, Y. Yang, X. Qiu and Z. Gao, "MOSM: An approach for efficient storing massive small files on Hadoop," 2017 IEEE 2nd

International Conference on Big Data Analysis (ICBDA), Beijing, China, 2017, pp. 397-401

[14]. Ali, N. M. Mirza and M. K. Ishak, "Enhanced best fit algorithm for merging small files," Computer Systems Science and
Engineering, vol. 46, no.1, pp. 913–928, 2023.

[15]. L. Prasanna. Kumar, “Optimization Scheme for Storing and Accessing Huge Number of Small Files on HADOOP Distributed File
System”. International Journal on Recent and Innovation Trends in Computing and Communication, vol. 4, no. 2, Feb. 2016, pp.

315-9

[16]. Xin Huang, Wenlong Yi, Jiwei Wang, Zhijian Xu, "Hadoop-Based Medical Image Storage and Access Method for Examination
Series", Mathematical Problems in Engineering, vol. 2021, Article ID 5525009, 10 pages, 2021.

[17]. Thomas Renner, Johannes Müller, Lauritz Thamsen, and Odej Kao. 2017. Addressing Hadoop's Small File Problem With an

Appendable Archive File Format. In Proceedings of the Computing Frontiers Conference (CF'17). Association for Computing
Machinery, New York, NY, USA, 367–372.

[18]. Liu, Jun. (2019). Storage-Optimization Method for Massive Small Files of Agricultural Resources Based on Hadoop. Journal of

Advanced Computational Intelligence and Intelligent Informatics. 23. 634-640. 10.20965/jaciii.2019.p0634.
[19]. Y. Lyu, X. Fan, and K. Liu, “An optimized strategy for small files storing and accessing in HDFS,'' in Proc. IEEE Int. Conf. CSE,

IEEE Int. Conf. EUC, Jul. 2017, pp. 611_614.

[20]. Q. Mu,Y. Jia, and B. Luo, ``The optimization scheme research of small files storage based on HDFS,'' in Proc. 8th Int. Symp.
Comput. Intell. Design, Dec. 2015, pp. 431_434.

[21]. T. Wang, S. Yao, Z. Xu, L. Xiong, X. Gu, and X. Yang, ``An effective strategy for improving small _le problem in distributed file

system,'' in Proc. 2nd Int. Conf. Inf. Sci. Control Eng., Apr. 2015, pp. 122_126
[22]. H. He, Z. Du, W. Zhang, and A. Chen, ``Optimization strategy of Hadoop small _le storage for big data in healthcare,'' J.

Supercomput., vol. 72, no. 10, pp. 3696_3707, Aug. 2016

[23]. S. Fu, L. He, C. Huang, X. Liao, and K. Li, ``Performance optimization for managing massive numbers of small files in distributed
file systems,'' IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 12, pp. 3433_3448, Dec. 2015

[24]. W. Tao, Y. Zhai, and J. Tchaye-Kondi, “LHF: A new archive based approach to accelerate massive small _les access performance

in HDFS”, in Proc. 5th IEEE Int. Conf. Big Data Service Appl., Apr. 2019, pp. 40_48.
[25]. K. Bok, H. Oh, J. Lim, Y. Pae, H. Choi, B. Lee, and J. Yoo, ``An efficient distributed caching for accessing small files in HDFS,''

Cluster Comput.,vol. 20, no. 4, pp. 3579_3592, Dec. 2017.

