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Abstract 
In the realm of scene classification, it is clear that deep learning models excel when a large amount of labeled 

data is available. However, continual learningsuffers from a lack of old tasks' data.   Continual learning (CL) is 

a needed aspect of artificial intelligence (AI). Inspired from the human ongoing learning capacity, endowing a 

deep learning model with the ability to preserve previous knowledge is legitimate. Training a deep learning 

model for sequential learning of tasks leads to a continual decline in the performance for previous tasks due to 

the non-availability of their training data.  This phenomenon is known, in the literature, as catastrophic 

forgetting. We proposed a two deep blocks model.  A feature extraction module composed of an EfficientNet_B5 

followed by a contrastive learning model to boost the reparability in the feature space. A conditional generative 

adversarial network (CGAN) to capture the latent structure of the previous tasks’ data. Experiments are 

conducted on two scene datasets (Merced and Optimal31). The experimental results assert the outperformance 

and robustness of the proposed model.       
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I. Introduction 
Remote sensing images, collected from imagery sensors on satellites and airplanes, serve to detect and 

monitor the physical characteristics of an area, region, and Earth. Plentiful land-cover datasets are collected, and 

accurate classification models for remote sensing applications are developed thanks to the progress in remote 

sensing technology. 

In the past, methods using handcrafted features followed by a classifier have been developed for scene 

classification, including bag-of-visual-words [1], sparse coding [2], midlevel visual elements-oriented features 

[3], a multi-scale local binary pattern. From multilayer perceptron (MLP) [4], and inspired by biological 

processes, convolutional neural networks (CNN) are introduced in 1980s and have proven as one of the 

excellent algorithms to extract visual information very efficiently [5], [6]. In fact, the big success of CNNs is 

due to their ability to learn the hierarchical features at intermediate layers automatically from the data. Several 

CNN based deep learning models such as Inception and ResNet are trained to extract good discriminative 

features from remote sensing images.  

Inspired by the aptitude of humans to continually acquire knowledge and skills, a lot of efforts have 

been consecrated by researchers to overcome the catastrophic forgetting phenomena and develop continual deep 

learning models [7], [8]. Authors in [9] used a technique to penalize significant changes to the task-sensitive 

parameters when learning a new task. In [10], the authors expanded a trained model with additional layers 

associated with the new task. The authors in [11], [12] proposed a continual learning technique using a 

dynamically expanding model. Cumulative learning is realized in [13] by inserting new nodes to each layer in 

the model determined by a dedicated controller, freezing the previously learned parameters, and retraining the 

model on the new task. Authors in [14] used memory replay techniques to prevent losing old knowledge. To 

overcome catastrophic forgetting, authors in [15] used the average of the previously seen classes to generate a 

class exemplar and used them in training with the new task. In the remote sensing field, limited works were 

proposed. For instance, a continual learning technique for land-cover imagers classification is proposed in [16]. 

In this paper, a model composed of two trainable deep learning networks is proposed, the first module ensure 

the feature extraction and classification tasks, the second module learns maximize the separation between the 

tasks in order to identify each task.  

Recently, a re-emergence of research in contrastive learning provided major advances in self-

supervised representation learning [17], [18]. The key idea of contrastive learning is to pull together an anchor 

and a positive sample in embedding space, and push apart the anchor from many negative samples. 
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In this paper, we aim to endow the deep-learning architecture with the ability to learn sequentially to 

maintain its performance on the previous tasks. Each classification task contains a group of land-cover classes.  

We propose a new deep learning model based on two trainable modules as illustrated in Figure 1. First, 

a feature extraction module extracts discriminative features from the remote sensing scene images. Then, and in 

order to boost the classifier performance, a contrastive learning module is added to increase the 

distinguishability between the classes in the embedded space. The weights of the first module are adjusted by 

discriminating between the land-cover classes within the new task using a contrastive loss. Normalized 

representations from the same class are pulled closer together, and representations from different classes are 

pushed away from each other. To preserve the old tasks' knowledge and avoid catastrophic forgetting, a second-

deep learning architecture tries to discover the latent structure of previously seen tasks' data and to generate old 

tasks' data. Experimental results on two-scene datasets (Merced and Optimal31) demonstrate the advantage of 

the proposed contrastive learning and VAE based hybrid network in remote sensing images classification. 

 

II. Materials and Methods 
An incremental multi-class classification problem consists of an long series of tasks 𝑇𝑙 =

{𝑋𝑖
(𝑙)

, 𝑦𝑖
(𝑙)

}
𝑖=1

𝑛𝑙
, 𝑙 = 1, … 𝑘, . . , 𝐾, where each task 𝑇𝑙  includes a subset 𝑐𝑙 of classes with 𝑛𝑙 images 𝑋(𝑙) and their 

corresponding categorical class labels 𝑦(𝑙). We seek to train a unified classification deep model on a new task 

and make it able to maintain its performance on both the previously seen tasks and the new task. In the 

following, we illustrate the main steps for training this deep networks architecture for a continual learning 

process.  

 
Figure 1. Contrastive learning and CGAN based hybrid model. 

 

2.1 Learning the kth task 𝑻𝒌 

After 𝑘 − 1 tasks, we want to train the pre-trained model on a new task 𝑇𝑘 = {𝑋(𝑘), 𝑦(𝑘)}. The model 

uses EfficientNet Network (EfficientNet B5) as a feature extractor backbone; however other well-known CNN 

models could be used as well. The feature extractor module is trained only for the first task and then frozen for 

the rest of the tasks. In [19], the authors observed that carefully balancing the depth, width, and resolution of a 

deep model can produce better accuracy and efficiency. Based on this observation, they proposed a new family 

of CNN architectures, called EfficientNet, that uniformly scales all dimensions of depth, width, and resolution 

of the network. We prune this backbone network by removing the softmax classification layer and add a 40 by 

40 reshaping layer. Then, we placed a contrastive learning sub-module at the top of the architecture.  To train 

the deep model on the task 𝑇k = {𝑋(k), 𝑦(k)}, we first generated the old tasks’ data using a trained VAE 

generator {𝑋(1:k−1), 𝑦(1:k−1)}and  we add them to the new task’s dataset. Then, we add a softmax layer as output 

layer  with the total number of output classes 𝐶, and we use the 𝑐1:k outputs related to the tasks 𝑇1:𝑘 number of 

classes and put zeros at the 𝑐𝑘+1:𝐾 other outputs. 

 

2.2 Contrastive feature optimization 

The contrastive learning uses losses based on metric distance learning between similar samples and 

different ones as shown in Figure 2. These losses are used to learn powerful discriminative representations.This 

sub-module encapsulates a data-augmentation module 𝐴𝑢𝑔(∙), an encoder 𝐸𝑛𝑐(∙) to obtain a 2048-dimensional 
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vector 𝑟 = 𝐸𝑛𝑐(𝑥) normalized embedding from each input sample𝑥 , and a projection network 𝑃𝑟𝑜𝑗(∙) which 

maps the vector 𝑟 to a 128-dimensional normalized vector 𝑧 = 𝑃𝑟𝑜𝑗(𝑟). The projection network is discarded at 

inference time. To apply contrastive learning, we first create two copies from one batch of data using data 

augmentation twice and pass them through the encoder and the projection network. The supervised contrastive 

loss is calculated on the outputs of the projection network. A classifier on top of the frozen representations is 

trained using a cross-entropy loss for a classification purpose. 

 

 
Figure 2. Contrastive learning representation. 

 

From a batch of a set of 𝑁 randomly chosen sample/label pairs {𝑥𝑛 , 𝑦𝑛}𝑛=1
𝑁 , a 2𝑁 multi-viewed batch 

{𝑥̃𝑙 , 𝑦̃𝑙}𝑙=1
2𝑁  containing 𝑥̃2𝑘 and 𝑥̃2𝑘−1augmentations is built  using data augmentation process (positives: sampled 

from the same class, and negatives: sampled from different classes). The contrastive learning sub-module is 

trained using supervised contrastive losses: 

ℒ𝑐𝑜𝑛𝑡 = ∑
−1

|𝑃(𝑖)|
𝑖∈𝐼

∑ 𝑙𝑜𝑔
exp(𝑧𝑖 ∙ 𝑧𝑝/𝜏)

∑ exp(𝑧𝑖 ∙ 𝑧𝑎/𝜏)𝑎∈𝐴(𝑖)
𝑝∈𝑃(𝑖)

 
 

(1) 

 

Here, 𝑧𝑖 = 𝑃𝑟𝑜𝑗(𝐸𝑛𝑐(𝑥̃𝑙)), the symbol ∙ denotes the inner product, 𝜏 is the temperature parameter,    𝑖 ∈ 𝐼 ≡

{1 … 2𝑁} is the index of an arbitrary augmented sample in the multi-viewed batch. 𝑃(𝑖) ≡ {𝑝 ∈ 𝐴(𝑖): 𝑦̃𝑝 = 𝑦̃𝑖} 

the set of indices of all positives distinct from 𝑖, 𝐴(𝑖) ≡ 𝐼\{𝑖}, and  |∙| denotes the cardinality. 

 

2.3 The Generative network  

To control the forgetting phenomenon, we use a deep learning-based conditional generative network to 

memorize the latent structure of the previously seen data. Thus, we can generate samples of the old tasks needed 

to train the classification model on the new classification task without forgetting the previous tasks. The 

discriminator 𝐷𝜃(∙) of a the CGAN estimates the probability that an input came from the true data rather than 

the generated data.  The loss function of the discriminator gathers the error of predicting true sample coming 

from the dataset and fake sample coming from the generator given their labels 

ℒ𝜃,𝜙
(𝐷)

= −𝔼𝑥~𝑝𝜙
𝑙𝑜𝑔𝐷𝜃(𝑥|𝑦) − 𝔼𝑧~𝑞𝜃

log (1 − 𝐷𝜃 (𝐺𝜙(𝑧|𝑦′))) 
(2) 

 

The generator 𝐺𝜙(∙) learns to map a noise input to the true dataset images space by minimizing its loss function, 

which is built using gathered prediction of the discriminator on generated samples conditioned on the specified 

labels. 

ℒ𝜃,𝜙
(𝐺)

= −𝔼𝑧~𝑞𝜃
log (𝐷𝜃 (𝐺𝜙(𝑧|𝑦′))) 

(3) 

The CGAN is trained by minimizing the alternatively the discriminator loss ℒ𝜃,𝜙
(𝐷)

and the generator loss ℒ𝜃,𝜙
(𝐺)

. 

The total loss function is:   

ℒ𝜃,𝜙
(𝐶𝐺𝐴𝑁)

= ℒ𝜃,𝜙
(𝐷)

+ ℒ𝜃,𝜙
(𝐺)

 (4) 
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III. Experimental results and discussion 
3.1 Dataset Description 

Two datasets of remote sensing images are used to evaluate the performance of the proposed continual 

learning architecture, Merced and Optimal-31 scene datasets. The Merced dataset was built from the United 

States Geographical Survey (USGS) National Map[20].Figure 3 (a)illustrates samples images from Merced 

dataset. It contains 21 classes of remote sensing images with 100 RGB images of dimension 256 × 256 pixels 

in each one. Besides, the Optimal31 dataset was collected from Google Earth[21]. Optimal31 dataset is built 

using 1860 RGB images separated into 31 categories of 60 images per class. This dataset is more challenging 

than Merced dataset and contains ten more classes. Figure 3 (b) shows image samples from the Optimal31 

dataset.  

 

 
(a)                                                           (b) 

Figure 3. Sample images from (a) Merced and (b) optimal31datasets. 

 

3.2Experiment Setup  

To perform a continuous learning process, we split the dataset into a bench of subsets, where each 

subset is consecrated to one task during the sequential learning process. In the first experiment, seven tasks with 

three classes per task are performed using the Merced dataset. For the Optimal31 dataset, ten tasks with three 

classes per task are used (the last task for Optinal31 contains 4 classes). In the second experiment, we inspected 

the robustness of the proposed classification model to the number of tasks and the number of classes by task. As 

stated in the methodological section, the parameters of the proposed model are learned in a contrastive manner 

for each new task. The generator sub-module auto-generates the feature images of previous classification tasks 

and augments the training dataset by automatically adding the reconstructed feature images to the new task’s 

feature images. The dataset of each task is divided into 80% for the training dataset and 20% for the testing 

dataset. The experiments were conducted on the Google Colaboratory cloud service using the available GPU to 

accelerate the deep learning process. 

 

3.3 Results 

Joint learning 

In the first experiment, and to have an indication about the overall accuracy when we train the model 

jointly on all the dataset, an OA of 97% for Merced dataset (21 classes) and an OA 94 % for Optimal31 dataset 

(31 classes) are obtained when we trained the model on all the datasets in one task. These accuracies are used to 

be as baseline for evaluating the performances of the continual learning strategy.  

 

Continual learning process 

After the joint learning, and as a second experiment, we implemented the proposed continual learning 

model and reported the model performance results in Table1. For Merced dataset, the proposed model achieved 

an OA of 100% in the first task and then decayed slowly and reached the OA of 92% at the end of the last 

classification task, after executing sequentially seven consecutive classification tasks. The model performed 

with a biases of +3% with the first classification task and -5%with the last task compared to the joint training. 

Similarly, for the Optimal31 dataset, the proposed architecture performs the first task with an OA of 

99% and reaches an OA of 91% for the last classification task at the end of the continual learning process. We 

can notice from Table1, and compared to the joint learning, that the biases are +5% with the first task and -3% 
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with the last classification task. We can remark, also that the accuracy of the model decays slowly, with a rate of 

change of approximately 1% for Merced dataset, indicating that the model performs with a low forgetting effect 

during the continual learning process. For the Optimal31 dataset, we can remark that the forgetting effect is not 

important. The accuracy decreases slowly from 99% at the first classification task and reaches a classification 

accuracy of 91% at the end of the continual learning process after executing ten classification tasks. The 

proposed continual learning strategy combats this challenging forgetting effect and maintains high 

performance.In the third experiment, we investigated the sensitivity of the proposed architecture to the number 

of classes (the size of the data) during each classification task in the sequential process. The structure of the new 

classification task's dataset and the generated data for all the previous classification tasks are illustrated in 

Figure 4 after a dimensionality reduction. 

 

TABLE 1.  OVERALL ACCURACY (OA) IN [%] OBTAINED FOR MERCED AND OPTIMAL31 

DATASETS. 

 

Task 

Accuracy (%) 

Merced Optimal31 

Joint 97 94.22 

1 100±0.00 99.07±0.03 

2 98.75±0.03 98.38±0.02 

3 97.33±0.02 96.05±0.03 

4 95.90±0.03 95.13±0.02 

5 94.53±0.03 93.31±0.02 

6 92.90±0.01 93.21±0.03 

7 92.00±0.02 93.19±0.01 

8 - 92.47±0.02 

9 - 92.61±0.13 

10 - 91.13±0.03 

 

 
Figure 4.Original data on top and generated data on the bottom:(a) dataset for task 1, (b) Dataset for task 2, (c) 

Dataset for task 3 

 

Sensitivity analysis regarding the task data size 

In Figure 5, the sensitivity of the performance of the continual learning process to the number of 

classes per classification task (size of the data) is illustrated. To implement the sensitivity experiments, we 

increased the size of the data by augmenting the number of classes during each classification task. As shown in 

Figure 5, we can notice that the model gives better classification accuracies with a smaller set of classes by 

classification task during the continual learning process. We can interpret this attitude by the fact that data with 

a highernumber of classes has a bigger size, with a complex hidden structure, and thereby, is not easy to 

generate. 
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Figure 5. Sensitivity to the number of classes by task 

 

Comparison to other methods 

We compared our method with three recent methods proposed in the literature to show the eminence of 

the proposed model. The first method is developed in [22]; in this paper, the authors reduced the forgetting 

effect by extending the output of the model architecture for each new classification task and fine-tuning the 

parameters of shared layers. The second method isproposed in [16], like the method proposed in [22], the 

authors used shared layers and an extension of the model for the new classification task, and they improved the 

model performance by adding a deep learning selector to connect the input to the task-specific output layer. The 

third method is developed in  [23] ; in this paper, the authors selectively reduce the impact of learning on the 

meaningful weights for the old classification tasks. The comparison experiments are conducted on Merced 

dataset and Optimal31 dataset, and the results are reported in Table II and III, respectively. The results reveal 

the promising effects of the proposed continual learning architecture. 

 

TABLE II.  COMAPRASION TO OTHER METHODS MERCED DATASET. 

Tas

k 

J. 

Kirkpatricke

t al. [18] 

Li. et 

al. [14] 

N. 

Ammour et 

al. [21] 

Propo

sed 

1 97 99 99 100 

2 95 77 99 99 

3 91 49 98 97 

4 86 29 95 96 

5 76 25 92 95 

6 68 18 93 93 

7 58 17 89 92 

 

TABLE III.  COMAPRASION TO OTHER METHODS OPTIMAL31 DATASET 

Task J. 

Kirkpatricket 

al.[23] 

Li. et 

al. [22] 

N. 

Ammour et 

al. [16]  

Proposed 

1 98 98 98 99 

2 85 82 97 98 

3 83 45 90 96 

4 78 29 87 95 

5 72 21 86 93 

6 68 21 80 93 

7 57 15 80 93 

8 48 13 77 92 

9 38 12 68 93 

10 29 12 71 91 

 

IV. Conclusions 
In this work, we have developed a new continual-learning strategy for scene classification in remote 

sensing imagery. In this paper, we propose a continual learning technique using a contrastive learning process, 

used to boost the dissimilarity between the classes in a new embedding space. Furthermore, we train a deep 

learning generator model to learn the latent structure of old classification tasks’ data. The generator is employed 

https://arxiv.org/search/cs?searchtype=author&query=Kirkpatrick%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Kirkpatrick%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Kirkpatrick%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Kirkpatrick%2C+J
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to preserve acquired knowledge from old classification tasks and to fight the forgetting phenomena. The results 

of experiment conducted on Merced and Optimal31 datasets demonstrated the efficiency of the proposed 

continual learning method.  
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