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Abstract: 
The task of localizing text in scene images is a challenging task due to varying possible orientations, fonts, and 

backgrounds. Methods that can model a richer context of text instances outperform models that only consider 

limited feature representation of the text instance. TextFuseNet is one such method that uses three levels of 

hierarchical feature representations - character-level, word-level, and global-level features of text instances 

present in the images and uses them to be fused with text proposal's feature maps to make richer fused features. 

To further improve the richness of the context of a text instance, we use efficient attention to model the long-

range dependencies across the feature maps in several locations of the network. We conduct experiments on the 

SynthText dataset and achieved a 9.3% improvement in average precision with attention added after the third 

and fourth ResNet blocks, after each FPN layer, and within the global segmentation mask compared to the 

baseline of no attention added to the TextFuseNet architecture. Hence demonstrating the effectiveness of adding 

efficient attention to the TextFuseNet framework. 
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I. Introduction 
Text localization in images is the task of detecting any text instances that might be present in the scene 

image along with their locations. Generally, object localization involves drawing bounding boxes around the 

object to be detected. Accurate text localization remains an open problem of active research. The problem is 

challenging since text can be present in any orientation with varying fonts and possibly obscured in a scene 

image. Deep learning techniques have been the most effective method to solve the problem of text localization 

[Yao et al, 2016][Zhang et al, 2018][Lyu et al, 2018].  

The TextFuseNet framework [Lyu et al, 2018] demonstrated state-of-the-art accuracies for text 

localization. TextFuseNet is a modification of the Mask R-CNN framework [He et al, 2017]. The Mask R-CNN 

framework involves creating a feature pyramid on which candidate regions are proposed which are then 

classified and refined through bounding box regression. Also, a mask is generated for instance segmentation. 

One of the limitations of just using the mask R-CNN framework is that text is detected based on a single region 

of interest (RoI) without considering the global context. Thus, the RoI pooling acts as a bottleneck for semantic 

information to be used for accurate text detection. To remedy this, TextFuseNet modifies the original pipeline to 

generate three levels of feature representations: character-level, word-level, and global-level. The newer features 

are fused with the pooled feature maps to create richer fused features. These representations provide the required 

semantic information to guide the detection process, thus improving localization accuracy.  

Therefore the goal of recent research has been to essentially solve the bottleneck of semantic 

information caused by pooling layers and the kernel sizes of convolutions. The goal is to provide the model with 

as much semantic context as possible to detect texts accurately. Understanding what is present around the text 

area is essential for accurately detecting the location of text instances. Thus the goal is to model long-range 

dependencies across the image, or within the feature maps of a deep learning network.  

Dot-product attention is a popular method to model long-range dependencies and has been pivotal to 

the field of natural language processing[Bengio et al, 2015][Vaswani et al, 2017]. It has also been used to try to 

solve tasks in computer vision [Wang et al, 2018] but found limited success due to its quadratic memory and 

computational complexities. Efficient attention [Zhouran et al, 2021] is mathematically equivalent but a 
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modification of dot-product attention and has linear memory and computational complexities. It also 

demonstrated state-of-the-art accuracies for the task of stereo depth estimation. Thus the efficient attention 

module allows freer use of dot-product attention within several locations of a network. 

In this paper, we demonstrate the effectiveness of adding efficient attention modules within the 

TextFuseNet framework. We conduct an ablation study for the addition of attention into different locations of 

the network trained on the SynthText dataset [Gupta et al, 2016]. We also find that the addition of attention after 

the 3rd and 4th ResNet blocks, after each FPN layer, and within the global segmentation mask of the 

TextFuseNet architecture yields the best localization accuracy. 

 

II. Background and Scope: 
Localizing text in scene images has been an area of active interest due to its wide applications in many 

practical applications such as robot navigation, reading road-signs by self-driving cars, and text-based image 

retrieval. It has been an active area of interest since the last decade.  

 

Pre-deeplearning era, the work by the computer vision community went in two parallel streams of 

approaches to solve the problem of text localization. These approaches were connected components analysis 

(CCA) and sliding windows classification. CCA methods extract candidate components using several techniques 

and then filter out non-text components using classifiers trained on hand-crafted features. [Jain & Yu, 1998]  

made use of several pre-processing of the original image and performed connected component analysis to 

extract several connected parts and then edge features are computed for these parts which are used to classify 

the text region and obtain location coordinates using SVM. [Ephtein et al, 2010] presented Stroke width 

transform (SWT) which is based on grouping pixels based on assuming consistent stroke width within each 

character. [Neumann & Matas. 2010] made use of Maximally stable Extremal Regions (MSERSs) of text as 

features. [Yi & Tian, 2011] proposed two algorithms for detecting text strings based on grouping adjacent 

characters and grouping text-lines together. [Huang et al, 2013] proposed a modified SWT called Stroke Feature 

Transform (SFT) which had better performance, SFT’s output was classified into text components and text-

lines. [Yin et al, 2014] extracted MSERs as character candidates which were grouped into text candidates using 

a single-link clustering algorithm which was learned by a self-training distance metric learning algorithm. 

The deep learning era began with the seminal work of using a deep CNN architecture called AlexNet 

for the classification of objects in images from the Imagenet dataset [Krizhevsky et al, 2012], achieving the best 

classification accuracies. It demonstrated the effectiveness of multiple stacked convolutional blocks for 

extracting useful representations from visual data i.e. images. Convolutional neural networks also showed their 

efficacy in the task of end-to-end text recognition [T. Wang et al, 2012] and scene text detection [Huang et al, 

2014], making them the basic building blocks of all future text recognition and detection architectures.  

The convolution operation restricts the field of view of the network to the kernel size of the filter, 

hence cannot capture global dependencies for localizing text. To tackle this limitation, [Yao et al, 2016] first 

produces global, pixel-wise prediction maps to capture global context, on which text detection is performed. 

Methods casting text localization as an object detection problem emerged with the prominent work of [Jaderberg 

et al, 2016] which proposed a framework similar to R-CNN [Girshik et al, 2014], where word candidate 

bounding box proposals were quickly generated with high recall which was classified by a random forest 

classifier and the boxes were refined using CNNs. [Zhang et al, 2018] modified the R-FCN framework [Dai et 

al, 2016] with a feature enhance network which essentially fused lower and higher-level features from the 

Resnet-101 backbone [He et al, 2016], and also introduced a modified ROI-pooling layer which was position-

sensitive as compared to position-agnostic normal ROI pooling, thus improving localization accuracies.  

The idea of backbone feature hierarchies (FPN) and an improved ROI pooling layer (ROIAlign) was 

best introduced with the Mask R-CNN framework by [He et al, 2017]. It involved four components: a feature 

pyramid network (FPN) [Lin, Dollar, et al, 2017] formed out of a backbone feature extractor, a region proposal 

network (RPN) [Ren et al, 2015], a Fast R-CNN for bounding box regression, and a mask branch for instance 

segmentation. [Lyu et al, 2018] used the Mask R-CNN framework for spotting text with arbitrary shapes, 

achieving a state-of-the-art performance. The effort to capture more context-aware features within the Mask R-

CNN framework carried on with the work of [Lyu et al, 2018] where they were able to extract three levels of 

feature representations: character-level, word-level, and global-level and fused them to create richer features for 

text detection. It also introduced a global segmentation map to create the global-level features to guide text 

detection. By capturing better global context, TextFuseNet demonstrated state-of-the-art localization accuracies. 

The idea of capturing global context to improve localization is essentially trying to model long-range 

dependencies across the feature maps or regions in the image. A popular method to capture such dependencies is 

the attention mechanism. It has found rampant usage in the natural language processing domain [Bengio et al, 

2015][Vaswani et al, 2017]. [Pan et al, 2017] made use of regional attention using aggregated features of the 

inception modules for creating a single shot text detector. The dot-product attention [Bengio et al, 2015] was 
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adapted for computer vision in the non-local module introduced by [Wang et al, 2018]. The memory and 

computation cost of dot-product attention grows quadratically with the input size, hence limiting its usage. 

Efficient Attention [Zhouran et al, 2021] introduced a mathematically equivalent but more efficient 

implementation of dot product attention with linear complexities. Thus efficient attention modules can be added 

flexibly in different locations of the network architecture to model long-range dependencies. 

 

III. Materials and Methodology: 
Our proposed work is inspired by [Zhouran et al, 2021] use of efficient attention within a mask RCNN 

framework [He et al, 2018] for the task of localizing text in images. We incorporate attention to the 

TextFuseNet [Ye et al, 2020] architecture which involves extracting multi-level text feature representations in 

the detection and mask branch of the Mask-RCNN framework. TextFuseNet extracts global-level, word-level, 

and character-level features and fuses them to form richer features for the task of bounding box regression, 

classification, and instance segmentation. In this section, we shall describe how we can localize text using 

TextFuseNet, the efficient attention mechanism, and where it can be incorporated into the network architecture.  

Our hypothesis was that the incorporation of attention modules in different locations of the 

TextFuseNet architecture will yield better localization accuracy. 

 

3.1. TextFuseNet: 

 
Figure 1: The overall pipeline of the TextFuseNet architecture.  It follows the mask RCNN framework but 

also involves multi-level feature fusion of word-level, character-level, and global-level features using a multi-

path feature fusion module as shown in the figure. 

 

3.1.1. Framework 

The Textfusenet uses ResNet [He et al, 2016] to extract features from the input image. ResNets has 

repeating blocks whose output feature maps of varying scales are used to create a feature pyramid network 

(FPN). Then a region proposal network (RPN) generates proposals at all the levels of the feature pyramid using 

anchors. The proposals are classified as objects (text) or backgrounds by the RPN. For each proposal, ROIAlign 

pooling is performed. The pooled proposals then pass through two branches i.e. detection branch and mask 

branch. The detection branch classifies the object in the proposal and performs bounding box regression. The 

mask branch performs instance segmentation on the text in the pooled proposal. 

The features of FPN are also used to create a third branch i.e. segmentation branch which generates a 

segmentation map for all objects i.e. text in the image. The segmentation map is used to provide global context 

to create richer fused features within the detection and mask branch. Within the detection branch, the pooled 

proposals' feature maps are fused with the global segmentation map using a multi-path feature fusion module to 

give fused features on which bounding box regression and classification occurs. Within the mask branch, the 

pooled proposals are classified into character-proposals and word-proposals. The character-level, word-level, 

and global-level (segmentation map) features are then fused using the multi-path fusion module to give richer 

fused features for instance segmentation. 

 

Therefore, the overall objective of the TextFuseNet architecture for text localization is 

 

L = Lᵣₚₚ + Lseg+ Ldet+ Lmask(1) 

 

Where L is the total loss for our objective which is a sum of the loss function of RPN, semantic segmentation 

branch, detection branch, and mask branch. 
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3.1.2. Segmentation branch: 

All the levels of the FPN are upsampled and fused by elementwise summation to produce a single 

feature map. And then this feature map is upsampled to give a feature map of the same shape as the input image 

to produce a binary mask of where text is present in the image i.e. segmentation map. This provides the global 

contextual information necessary for guiding regression of boxes and instance segmentation in detection and 

mask branch respectively. 

After pooling, the field of view of the network is restricted to the region of interest, hence losing 

important information that might lie beyond the region of interest that can help in classifying the proposal and 

performing instance segmentation for the object in the proposal. Therefore a global context map is computed to 

solve this issue which will be fused within the features in the detection and mask branch.  

 
Figure 2: Illustration of creation of global segmentation map. All the levels of FPN are upscaled to a 

common shape, allowing for elementwise summation across the different levels after which the fused feature 

map is further upscaled to be the same shape of the image to create a segmentation map. 

 

3.1.3. Detection branch 

After pooling the proposals using ROIAlign, word-level feature maps are obtained. Generally, these 

feature maps are further convolved to give layers for computing classes and coordinate logits to perform 

classification and bounding box regression for each proposal. To guide the process, feature maps can be 

enriched with global context features using the segmentation map. Thus multi-path fusing is performed within 

the detection branch between word-level and global-level features. 

The global segmentation map is downsampled to the same shape as the pooled proposals and performs 

elementwise summation of the context to each of them. The multipath fusion module is responsible for 

downsampling and performing summation, on which further convolutions are applied to bridge the semantic gap 

among the different features. Residual connections are also provided to ensure a degree of freedom for the 

pooled features to whether or not to make use of global context features. 

 

3.1.4. Mask branch: 

Within the mask branch, the word proposals and character proposals have been identified by the RPN. 

For each word proposal, its corresponding character proposals are found. Thus character-level features can be 

created for each word proposal. Also to guide instance segmentation, global context is provided to the proposals 

using the downsampled global segmentation map features. Hence character-level, word-level, and global-level 

features are fused to give richer fused features to perform instance segmentation. 

For a word proposal ri, a ratio of the area of intersection of character proposals with r over the 

character's area is determined. A character proposal belong to the word ri if the ratio is over a threshold (which 

was 0.8 in our implementation). Thus for input word ri, a set of characters Ci can be identified: 
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 Ci  = {ci | (ai ∩ aj)÷aj>  𝑇 }                                                     (2) 

 

Where ai and ajare areas of character proposal’s bounding box and word proposal’s bounding box respectively, 

and T is the threshold. 

   

 
Figure 3: Illustration of how a character proposal is considered to belong to a word proposal. The above 

region represents the proposals generated by the RPN on one of the levels of FPN. A character proposal belongs 

to a word if the fraction of its area of intersection with the word over its own area is greater than threshold T 

(0.8 in our implementation). 

 

The character set Ci corresponding to each word will vary in cardinality. Therefore the character proposals are 

first extracted into 14x14 shapes using ROIAlign and then are fused through elementwise summation. Further 

convolutions are applied to give character-level features corresponding to each word-level feature. The 

character-level features provide local context, thus instance segmentation of the word proposal, when fused with 

its character features, occurs more accurately. 

 

The global feature map is downsampled to the same shape as character-level and word-level feature maps. For 

each word-level feature map, its corresponding character-level features are added with the global features 

through elementwise summation. After summation, further convolutions are applied to bridge the semantic gap 

and residual connections are also provided from the initial word proposal as well. Thus, richer fused features are 

obtained within the mask branch. 

 
Figure 4: Illustration of multipath fusion. On the left are the proposals generated on a level of FPN by the 

RPN. Character-level features, word-level features, and global-level features are extracted and then fused 

together through element-wise summation to give richer fused features for instance segmentation.Illustration of 

multipath fusion. On the left are the proposals generated on a level of FPN by the RPN. Character-level features, 

word-level features, and global-level features are extracted and then fused together through element-wise 

summation to give richer fused features for instance segmentation. 
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3.2 Efficient Attention (EA): 

Attention is a mechanism for modeling long-range dependencies within neural networks. In a computer vision 

task, it allows each pixel within a feature map to attend to all the other feature maps. Hence the field of view 

increases with the use of attention mechanisms. Generally in an attention mechanism, pairwise similarity 

between queries Q and keys K is measured for each position and use the similarities as weights to sum over the 

values V for all positions [Poupart, 2019]. 

 

attention(Q, K, V) = �i similarity(Q, ki)×vi                                           (3) 

 

The similarity function is what differs among the different attention mechanisms. Consider that we have an 

input feature map ℝh × w × c  
and flatten it to 𝑛 = ℎ 𝑤 ⇒ℝn× c

. Hence we have 𝑛  positions each of depth 𝑐 . This 

feature map of size 𝑛 × 𝑐  is passed  through convolutions to produce 3 features: Queries Q∈ℝn × dₚ
,  Keys 

K∈ℝn × dₚ
 and Values V∈ℝn × dᵥ

. Then the efficient attention mechanism [Zhouran et al, 2021] works as per the 

following equation: 

 

E(Q, K, V)= 𝜌q(Q) (𝜌k (K)ᵀ V)                                                   (4) 

 

where𝜌q  and𝜌k  are normalization functions for Qand Krespectively. In practice, we use the softmax function for 

normalization.  

 

 
Figure 5: Efficient attention mechanism illustration 

 

Efficient attention essentially uses the keys K∈ℝn × dₚ
 as dₚ template attention maps. Each template attention 

map is capable of capturing the different semantic aspects of the input feature map. These semantic aspects can 

be the foreground, background, center of the text, edges of text, etc. The values V∈ℝn × dᵥ
, which depend on the 

input, are aggregated using the keys in Kthrough the linear combination to produce global context vectors 

G∈ℝdₚ × dᵥ
. Vectors in G  also summarize a global semantic aspect of the input feature map. For each position, 

iin the input feature, each query in Q i.e. qi∈ℝ
 1 × dₚ

 is used as coefficients over the sum of the global context 

vectors {g0, g1, g2, …, gd� - 1} where gj∈ℝ
 1 ×dᵥ

 : 

 

ei= qi,0g0 + qi,1g1 + qi,2g2 + qi,3g3 + … + qi,d� - 1gd� - 1                                       (5) 

 

where eiis the i
th

 position’s efficient attention output. For example, if there is a text pixel at position i, qiwould 

be such that the weightage of global context vectors g capturing text would be greater. Thus allowing the 

representation at i to be refined using attention.  
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The total output feature map is E ∈ℝn × dᵥ
. If the dimension of values dᵥ ≠ c i.e. to the number of channels in the 

input feature, 1×1 convolutions are applied to restore the original dimensions. A residual connection from the 

input feature is also added to the output of the Efficient attention block to ensure that the neural network doesn’t 

lose important representations during the computation of attention. 

 

3.3. Details of adding Efficient Attention modules (EA): 

The efficient attention module can be added into several locations of the TextFuseNet architecture. These 

modules can help model long-range dependencies across the feature map in different locations to help improve 

localization accuracy. Here we shall discuss these locations and how the EA module has been incorporated in 

detail. 

 

At each location, the dimensions of keys and values have been both set to 64. The output feature shape of the 

EA block will be the same as the input feature shape. Adding the EA module cannot decrease the localization 

accuracy compared to the baseline since residual connections are provided as well. 

 

3.3.1. ResNet backbone: 

The ResNet backbone is built using blocks that are repeated multiple times. The blocks are Res2, Res3, Res4, 

and Res5 which are repeated depending upon the resnet depth, for example in ResNet-50, they are repeated 3, 4, 

6, 3 times respectively. As we move along the depth of the backbone, the outputs of each block capture more 

and more abstract representations of the input image. We can add EA modules in between each block to allow 

the network to attend to specific locations of the input image where text can be present.  

We will add EA after the Res3 block [28×28×128], Res4 block [14×14×256], Res5 block [7×7×512]. The 

outputs of each block are used as input to the next block and also used to create the feature pyramid network 

(FPN). 

 

 
Figure 6: Illustration of addition of efficient attention to the ResNet backbone. ResNet is made up of 

repeating blocks such as Res1. Res2, Res3 and Res4, between which efficient attention modules can be added. 

In the above figure, red areas depict the possible locations for adding efficient attention modules. 

 

3.3.2. Feature Pyramid Network (FPN): 

As the layers of the pyramid are built in a top-down approach, where the top (smaller) layer of FPN is taken and 

interpolate it to be the same size as the next ResNet input. The next ResNet input is known as the lateral feature. 

Then the lateral features and top-down features are added element-wise to produce the next level of FPN. After 

the element-wise summation to create the level of FPN, we added the efficient attention module with the same 

channels as the level with dimensions of keys and values as 64.  

 

We add the EA module similarly for each level of FPN. Adding these EA layers makes it possible for the model 

to be able to attend to specific regions of features at each FPN level. Therefore it can improve the accuracies of 
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the region proposal network and similarly for the global segmentation mask which makes use of the features of 

FPN. 

 
 

Figure 7: Illustration of addition of efficient attention to the feature pyramid network. Efficient attention 

can be added between each layer of the FPN where each feature map goes through the attention module and then 

is combined with the lateral features from the ResNet backbone through elementwise summation to make the 

next layer of the feature pyramid. 

 

3.3.3. Multi-path-fusion module: 

Multipath fusion module takes multiple level features i.e. global, word, and character level, and fuses them 

through element-wise summation to give richer fused features. We add EA just before global mask features are 

used as input to the multipath fusion module, thus we send global mask features with attention as input for 

multipath fusion. We can also add EA after the fusion of all the multi-level features i.e. we add attention to the 

richer fused features. 

 
 

Figure 8: Illustration of addition of efficient attention to the multipath fusion module. The efficient 

attention module has been after the downsampled features from the segmentation map and also after the fused 

feature map.Red blocks represent feature maps after attention.  
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IV. Experiments: 
To test our hypotheses, we shall describe the dataset that was used to train and test and the experiments that 

were conducted with different locations of attention incorporation into the TextFuseNet architecture. 

 

4.1. Infrastructure Limitations: 

We were restricted due to the limited infrastructure available to us for training on large datasets. We only had 

access to GPUs through free google colab access. Google colab provides access to only one GPU for a limited 

time.  

 

Therefore we opted for conducting small-scale experiments where we shall take a smaller dataset and train for a 

limited number of iterations. We ensured that hyperparameters of training remain the same for all the different 

modified architectures we are trying to compare. All of the models were trained on the same training set and 

then we inferred on the same test set and computed localization accuracy for the bounding box and mask using 

Average precision as our metric.  

 

The fixed hyperparameters, same train set, and test set served as a control of the experiment, enabling us to 

compare localization accuracy of different modified architectures and deduce observations from the results. 

 

4.2. Dataset: 

TextFuseNet architecture requires word-level and character-level annotations for text present in images to be 

trained. We decided to test our hypothesis using a dataset that did have character-level annotation i.e.SynthText 

dataset. 

 

SynthText dataset was curated by [Gupta et al] in 2016, where they used an engine to overlay synthetic 

(generated) text to existing background images in a natural way, accounting for the local 3D-scene geometry. 

They generated 800,000 synthetic text images using their engine where each image had about 10-word instances 

annotated with character and word-level bounding boxes. 

Figure 9: Text is overlaid on images using a generator that takes into account 3-D geometry to ensure realism. 

On the left, we have an image from the SynthText dataset, and on the right are its annotations. 

 

Using the existing annotations, we created a segmentation mask using polygon coordinates of the bounding 

boxes themselves. Thus each object (character or word) in the dataset had the following labels: 

1. bounding box [x, y, w, h] where (x,y) are the coordinates of the top-left corner and w and h are the 

absolute width and height of the box. 

2. segmentation mask [x1, y1, x2, y2, x3, y3, x4, y4] where (xi, yi) are coordinates of the polygon mask in 

clockwise order starting from the top-left corner. 

3. class label out of the following classes:  

{“text”, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, a, b, 

c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z} 

Therefore we have a total of 63 categories of objects where 1 is for text and 62 for alphanumeric characters. 

 

The training set contained 2428 images sampled randomly from the SynthText dataset, similarly the test set 

contained 122 images which were also sampled randomly from the SynthText dataset. 
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Table 1: Distribution of instances among the different classes in the sampled training set and test set. There were 

99112 total instances in the training set and 4229 instances in the test set. 

 

4.3. Evaluation Metric: 

The task of our model is to draw bounding boxes and polygons for localization and segmentation respectively of 

characters/text in an image. It also classifies each identified object into 63 classes as defined earlier. To evaluate 

the effectiveness of the model, we must compare the predicted labels with the ground-truth labels.  

 

We consider a predicted bounding box/polygon to be a true-positive(TP) if its intersection over union (IoU) with 

the ground truth bounding box/polygon is above a certain threshold. A prediction would be a false-positive(FP) 

if its IoU is below the threshold. If a ground-truth bounding box/polygon doesn't have an IoU with any 

predictions over the threshold, we consider it to be a false-negative(FN) since our model has not been able to 

predict it. For the different thresholds of IoU, we will have different numbers of true-positives, false-

positives,and false-negatives. Precision is defined as the fraction of true positives overall predictions for 

bounding boxes/polygons made by the model. Whereas, recall is defined as the fraction of true positives overall 

ground truths i.e. actual bounding-boxes/polygons that exist in the image. 

 

Precision = 
𝑇𝑃

𝑇𝑃  + 𝐹𝑃
                                Recall = 

𝑇𝑃

𝑇𝑃  + 𝐹𝑁
   (6) 

 

Average Precision (AP) is defined as the area under the precision-recall (PR) curve. For the 63 different possible 

classes of objects, we calculate AP separately for each class and then take the mean of all APs to give mean 

average precision (mAP). We also calculate mAP at different IoUs, mAP calculated at 0.5 IoU is termed AP50, 

similarly, mAP calculated at 0.75 IoU is termed AP75. The mAP is also calculated separately for objects at 

different scales, giving APs, APm, and APl where they are mAP for small, medium, and large objects 

respectively. Using the metrics such as AP50, AP75, APs, APm, and APl, we can judge the effectiveness of a 

model at localizing text in images. 

 

4.4. Implementation Details: 

All of our experiments were conducted on a single NVIDIA Tesla P100 (16G) provided through Google Colab. 

Training and inference were done on a single GPU. Everything was done using the Detectron2 [Wu et al, 2019] 

framework built using PyTorch. 
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4.4.1. Architecture: 
We use the ResNet-50 backbone and build an FPN that takes in [res2, res3, res4, res5] block's outputs to 

produce a 5-layer FPN [p2, p3, p4, p5, p6]. In the RPN, we use anchors of sizes [32, 64, 128, 256, 512] and 

aspect ratios [0.5, 1.0, 2.0]. RPN generates 2000 proposals and chooses the top 1000 proposals after non-

maximal suppression (NMS) on each level of FPN. ROI Heads selects a batch of 512 proposals per image from 

proposals on levels [p2, p3, p4, p5] to perform ROIAlign on. The number of ROI heads is 63 i.e. equal to the 

number of classes. For the detection branch, ROI head with pooler resolution 7 is used whereas, for mask 

branch, pooler resolution 14 is used. The segmentation head takes in [p2, p3, p4, p5] levels of FPN and fuses 

them to produce a segmentation map of the input image. Multipath fusion module was added in the mask 

branch. Efficient attention can be added in different locations as stated earlier in section 3.3. 

 

4.4.2. Training: 

Weights pretrained on Microsoft COCO dataset [Lin et al, 2014] for instance segmentation were used for the 

Mask RCNN components of our architecture. The added components' weights i.e. EA and multi-path fusion 

modules were initialized using the Kaiming uniform method [He et al, 2015]. The network was trained using 

stochastic gradient descent (SGD) with 1 image per batch for 2000 iterations with the momentum equal to 0.9. 

The base learning rate was 0.001 which was decreased by dividing by 0.1 after the 1000th iteration. Data 

Augmentation techniques such as multi-scaling and random flipping were also applied during training. 

 

4.4.3. Inference: 

During inference, the shortest edge of images in the test set were all resized to 800. We then make predictions 

on each image and calculate AP50, AP75, APs, APm, and APl for bounding box and segmentation mask 

prediction separately. 

 

4.5 Ablation Study & Results: 

To validate our hypothesis, we first trained the TextFuseNet architecture, without any attention added, to the 

subset of the SynthText dataset. We then inferred on the test set and obtained localization accuracies for text 

detection and segmentation respectively. This served as the baseline for our experiments, against which we 

compared the subsequent additions of attention to understand their utility in improving localization accuracy. 

 

Attention was added in the several locations of the network as per section 3.3, and the network was trained with 

the same initial configuration as the baseline on the training set. Then localization accuracies on the same test 

set were recorded for the different combinations of attention incorporation to the network. Table 2 contains all 

of our observations. 

 

We observed that certain combinations of attention addition did increase the localization accuracy compared to 

the baseline. Out of which, the combination of attention added to res3, res4, fpn, and global segmentation mask 

yielded the best improvement of 9.3% in overall average precision. The combination of res3, res4, and fpn 

demonstrated better results for AP75 and APm, which means that this network makes much tighter predictions 

around the ground truth for medium-sized text with the incorporation of attention. Hence our hypothesis has 

been validated. 

 

 
Table 2: Localization Accuracies of different experiments on the subset of SynthText dataset for the task of text 

detection (Box AP) and segmentation (Mask AP). ‘seg’ stands for attention added to global segmentation mask, 

‘m’ stands for multipath fusion module and attention added after downsampling of global segmentation map (g) 

and after feature fusion (f). Please refer to section 3.3 for implementation details. 
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V. Conclusion: 
In this paper, we demonstrated that adding efficient attention modules in several locations of the 

TextFuseNet architecture will improve localization accuracies. We also discovered through our experiments that 

the best combination of addition of attention to the network is after the 3rd and 4th ResNet blocks, after each 

FPN layer, and within the global segmentation mask. A better state-of-the-art model can be achieved with the 

use of efficient attention in TextFuseNet, hence moving closer to solving the problem of text localization in 

images. 
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