
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 24, Issue 3, Ser. II (May. –June. 2022), PP 13-24

www.iosrjournals.org

DOI: 10.9790/0661-2403021324 www.iosrjournals.org 13 | Page

A Deep Learning Model for Visually Impaired Person:

Blind Sight

Rishi Mishra
1
 & Bramah Hazela

1

rishi.mishra1.777@gmail.com;bramahhazela77@gmail.com
1 Amity University, Lucknow UP, India

Abstract
This paper is about creating a model, which can be used to extract data from image that is it is able to perform
image captioning and then how to host it as a web application by integrating this model with the flask

framework. I used Kaggle to create, train and test my model because the dataset which I used is of

approximately 1 Gigabyte so it is not possible for my machine to train this model so for that I was required to

use a cloud based platform which provides free of charge computing resources including GPU’s like Kaggle,

Google Colab. I have used flickr8k dataset for this model, it has 8000 images and each image is associated with

five captions, which explains what is happening in the image. Kaggle and VS code helped me a lot to increase

my productivity. I tried to create a deep learning model that can extract text from any image and render it on

the screen. Image and caption related to that image will be given to us in the form of (x,y) pairs and can be

extracted from Flickr8k dataset which I used to build this project, here my goal is to learn some mapping

between x and y that is image and their respective captions y=f(x). The basic requirements for creating this

model include MLP (Multilayer Perceptron Architecture), Convolution Neural Network, Recurrent Neural
Network, Word Embedding’s, Transfer Learning.

Keywords: Neuron, Perceptron, CNN, MLP, RNN, LSTM, Transfer Learning

Date of Submission: 29-05-2022 Date of Acceptance: 10-06-2022

I. Deep Learning

1.1 Artificial Neural Network

Human brain consists of millions of neurons. Neuron is nothing but a basic smallest and undividable

unit of human brain. Neurons sends the input to the human brain by taking it from the surroundings via sensory

organs. Brain or the neural network takes that input, processes that input, interprets it and generates the

appropriate output to take the appropriate action at a given instance. When this same functionality we try to

achieve artificially then that falls under artificial neural network. Artificial neuron is the replica of biological

neuron. Artificial neuron has two main components: summation and activation function.

Let us understand with the help of analogy when a human touches the hot object then using the sensory

receptors of skin this signal is transmitted to the brain and brain collects all these signals which are coming from

different neurons and if brain finds that the all the signals when combined together gives a value greater than the

threshold value then it responds by taking the action of removing the hand from that hot object. Similarly, a
node or an artificial neuron is taking the input from various other node’s output and associate that input with a

weight and then the summation inside the node calculate the weighted sum (w1*x1 + w2*x2 + + wn*xn) and

gives that weighted sum to the activation function which generates the particular output for a given node based

on the input which is being provided to it.

Similarity between artificial neuron and biological neuron

BIOLOGICAL NEURON ARTIFICIAL NEURON

Dendrites Input

Synaptic gap Weight is associated to each input

Axon Output

Soma Summation and Activation Function

A Deep Learning Model for Visually Impaired Person: Blind Sight

DOI: 10.9790/0661-2403021324 www.iosrjournals.org 14 | Page

1.2 Perceptron

Perceptron is very small neural network containing only one unit, which is called as single layer neural

network. Perceptron is used for classification of linear networks that is when data is linearly separable then we
use perceptron (meaning we can draw at least one line between the two classes, which separates the two classes,

which we are trying to identify). This network will contain some inputs, weights and a constant called as bias.[2]

Input is represented by x1 and different weights are associated with each input. Summation is

responsible for summing together all the weighted inputs with one constant called as bias then this weighted

sum is given to activation function which categorizes the input into any one of the two different classes so f(x)

represents the equation of a line if by putting the values of input into equation of line we get either positive

value(or zero) or negative value so on the basis of the sign of the value which we obtain we classify whether the

inputs belong to first class or the second class.[1]

1.3 MLP
A multilayer perceptron is a perceptron with multiple layers. Each neuron has its own activation function. It

consists of three parts namely input layer, hidden layers and output layer.

1. Input Layer:

 It is responsible for introducing input values into the network.

 It does not contain any activation function or processing unit.

2. Hidden Layer

 Hidden layers performs classification of features. After getting the desired features, we perform

mathematical operations on it like multiplying the features with their associated weights and find the summation

of all inputs, etc.

 Two hidden layers are sufficient to solve almost any problem.

3. Output Layer

 The only difference between the hidden layers and the output layer is that hidden layer is hidden from

outside world but functionally both hidden and output layers are same.

More complex problems that are not linearly can be solved using multi-layered perceptron. For example if we

consider the case for Boolean operations like AND (&&) or OR (||) and draw the truth table for them then we

get to know about that these are linearly separable problems.

In the figures we can see that, we have to use only one line in order to separate the cluster of true and false for

Boolean Operation AND and OR.

A Deep Learning Model for Visually Impaired Person: Blind Sight

DOI: 10.9790/0661-2403021324 www.iosrjournals.org 15 | Page

But in this figure as we can see that there we have literally no option to divide cluster of true and false by using

only one line, at least two line are required to divide the clusters of true and false for Boolean operation XOR.

So, using single layer perceptron it is not possible to even solve the simple XOR operation that’s why multi-

layer perceptron came into existence. Since we know that

a ^ b = a’b’ + ab = ((a.b)’ . (a+b))’ (1)

Therefore, using three layer perceptron we can easily create that (analogy in this case it is same as creating a

digital circuit using AND and OR gates to turn on the LED for XOR operation)[2]

1.4 CNN

CNNs (Convolutional Neural Network) are powerful deep neural networks that are widely used in image related

tasks like Image Recognition, Segmentation, Computer Vision, etc. Generally, input to these networks are

images.

A Deep Learning Model for Visually Impaired Person: Blind Sight

DOI: 10.9790/0661-2403021324 www.iosrjournals.org 16 | Page

The Need of CNN:

Problem with Multi-layer perceptron

 Overfitting occurs due to too many parameters (~millions), while working with medium-large sized
images which means that our model performs exceptionally well with the training data but in case of new data it

produces very poor result, this happens because our model tries to cover all the data points present in the dataset,

Because of this, the model starts caching noise and inaccurate values and this multitude of variables lessen the

effectiveness and exactness of the model.

For example suppose we have an image of 100*100 pixels so it results in making almost 10,000 features and

assuming that we have 200 neurons in our first layer then this will result in making the weight matrix of shape

[200*10,000] = [20,00,000] ~ which approximates to million parameters and if we suppose that we have only

1000 images and that many parameters describing our model then our MLP model will over-fit.

 MLP is not very good at handling variance in the images like translation, rotation, illumination, size,

etc.

For example: If we give an image to MLP and say that it is a statue then MLP learns that following pixels in the
given region are activated which means that it is a statue. After training, the MLP model if we again give the

image of statue to our MLP model then if it founds that in the similar region pixels are activated then it predicts

that the image is of statue. But if we give the translated image of statue (that is it is somewhat shifted in x or y

direction) then due to the translation, the pixels present in different region gets activated when we flatten the

image into a linear layer which results in activating different set of neurons and in that case our MLP model will

fail to predict that it is an image of statue because it treats every single pixel value as a feature but in reality this

is not the case.

These are the various reason why MLP does not work very well in case of images because they can only give

the good results on similar images, however if we give the image of same object to the MLP which may be

taken from different angle, may be rotated or translated or may be of different size then in those case MLP will
not be able to detect that the image corresponds to same object.

Intuition behind CNN:

In CNN, we do not consider all the pixels of image as relevant. The pixels or features that helps us to

classify whether the image contains the specific object or not are concentrated in a local region. Therefore,

instead of flattening all the pixels or features and then giving it to the neural model we can give the specific

region of our image to the neural model, which is more helpful/useful in predicting that the image is of the

specific object. The step of getting an activation map by applying the filter over an entire image is called as

convolution.

Intuition is that if we take one input image and one filter/kernel/template where filter represents the

image, which we want to find in our original image and try to match the filter with whole of the image by

sliding the filter. If we find something similar to filter in our original image then we say that this image belongs

to the specific class with which the filter is associated to, if not then our original image does not contains that

specific object.

A Deep Learning Model for Visually Impaired Person: Blind Sight

DOI: 10.9790/0661-2403021324 www.iosrjournals.org 17 | Page

If the particular region of the original image is more similar to our filter then it will result in yielding

the higher value in the activation map and if it is less similar to the filter, kernel, or template then it will result in

yielding the lower value in the activation map. This means that when the feature is present in the part of an

image, the convolution operation between the filter and that part of the image results in a real number with the

high value. If the feature is not present, then the resulting value is low.

For Example detecting vertical edge in the greyscale image. So, for this an input greyscale image and a

vertical edge filter is required. Assuming that we have an image of 4*4 pixel and a vertical edge filter of 3*3

pixel.

VERTICAL EDGE FILTER (3*3)

1 0 -1

2 0 -2

1 0 -1

IMAGE (6*6)

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

ACTIVATION MAP (n-f+1=6-3+1=2=>4*4)

0 -4 -4 0

0 -4 -4 0

0 -4 -4 0

0 -4 -4 0

Now after getting this activation map we can again retransform this image by using min-max scaler. In

the activation map we find out what is the min value (-4) and max value (0) and change the min value to

minimum value in terms of image (which is 0 because minimum number of pixels in an image is 0) and max

value to maximum value in terms of image (which is 255 because maximum number of pixels in an image is

A Deep Learning Model for Visually Impaired Person: Blind Sight

DOI: 10.9790/0661-2403021324 www.iosrjournals.org 18 | Page

255). The transformed image we get is:

255 0 0 255

255 0 0 255

255 0 0 255

255 0 0 255

Now in the transformed image we see that the middle layer (2 and 3 column) is completely our white

side and first and last column represents the dark side. The white layer is specifically determining the details of

3 and 4 column of our original image. Hence, with the help of convolution operation and vertical edge filter we

are able to determine whether our image contains the vertical edge or not. Since in our original image vertical

edge is present so, it determined that.[2]

1.5 Transfer Learning

In the real life scenarios, humans learn from experiences or from things that they have not done
personally but they have observed them or someone told them that. For example if you have a car and if you do

rash driving you know that can it may happen you met with an accident but it is possible that this knowledge

may not be gained by you with experience instead you know it because you saw a person who is doing rash

driving got crashed or your elders told you that or your read it from newspaper. So, this knowledge is transferred

to you from various sources that is called as transfer learning.

Similarly, if in computer vision we have a very small dataset assuming it contains only 2000 images

and we want to train very complex convolutional neural network to classify images, which has some 50 million

parameters. So, this kind of a network is easily going to over-fit may be in 1-2 epochs and not produce good

generalization the reason being is 2000 images (less data) are not sufficient to train complex neural network and

because of less data the network will not be able to learn features well. This is where transfer learning comes
into picture. The idea in transfer learning is to use pre-trained networks like Alexnet, VGG, Resnet50,

Resnet101, Inception, Resnet-Inception, MobileNets, etc. Since the networks that are built by training the

models are very large so we cannot train them from scratch but we can use transfer learning to train our model

on our dataset by using feature extraction or fine-tuning.

VGG and MobileNet has almost similar accuracy advantage of using MobileNet model over VGG is

that MobileNet are light weight networks that is if we assume that VGG has 140 million parameters then

Mobilenet will have only 4 million parameters so it results in less computation

There are three ways in which we can use pre-trained networks/models for the purpose of transfer learning:

1. Feature Extraction

2. Fine Tuning
3. Prediction

Feature Extraction

When we give input to the model then first it passes through convolutional base where feature

extraction takes place and then goes to classifier that assigns probability value for each class and the class

having highest probability value the input belongs to that class.

So, in feature extraction transfer learning what we do is that we freeze the convolutional base which is

responsible for feature extraction because it is generic for all images and has already calculated weights and then

define our own classifier for classifying the images and train that the classifier to classify the image in the given

number of classes (suppose the initial classifier is classifying the image into 100 classes now the classifier which

we created classifies the image into 3 classes only). So, instead of training the model for feature extraction we

can use pre-trained model for feature extraction and then create our own classifier for classification of images.

Prediction

Since modern Convolutional Networks take 2-3 weeks to train across multiple GPUs on ImageNet, it is

common for people to release their final Convolutional Networks checkpoints for the benefit of others who can

use the networks for fine-tuning. We can directly load these models and use them for predicting in which of the

following class our input image belongs to, without explicitly training our model.

A Deep Learning Model for Visually Impaired Person: Blind Sight

DOI: 10.9790/0661-2403021324 www.iosrjournals.org 19 | Page

Fine Tuning

In fine-tuning, we not only replace and retrain the classifier present on top of the Convolutional

Network but we also fine tune the weights of the pre-trained network by using the back propagation. We can
perform this fine-tuning of the whole convolutional network but generally this fine-tuning is performed on

higher-lower portion of the network because lower-level layers are very generic since they extract edges,

patterns, what kind of texture is present in image, etc. but higher layer layers determine how different parts are

combine to form specific object thus we do not need to tune the lower level layers. Suppose we have a different

dataset and we want to combine the features learnt by the smaller layers in the different manner then fine tuning

is useful in such scenarios.

Another thing which we need to keep in mind when we are applying fine tuning then we have to keep

the learning rate very small because when we apply weight update rule, w=w–η* Δw, then learning rate should

be kept small because if we make it large then we are effectively destroying the weights learnt by the model

earlier. So, in this case we freeze the lower level layers and just fine-tune the higher level layers to make the

model learn the classifier weights.

1.6 RNN

RNN is used for effectively drawing information from textual data. For example we have textual data

like “This is a great movie” on the basis of this sentence we want to assign the movie which are talking about in

the sentence a rating of 4 out of 5. One way to do this we can take our entire sentence and transform into a fixed

length vector and we feed to a multilayer perceptron to do the classification which basically will classify the

move in the category of 4 star. But, this approach does not work very well with the sentences the reason being in

MPL, the ordering of the words does not matter, it just sees what all words are present in the sentence and it

makes the prediction. So, if in case we have sentence like this “This is not a great movie” then it might again

give you positive result or put in the 4 or 3 star category.

Therefore, to get rid of this drawback we can use sequence models. The whole idea of sequence models

is to process information word by word. Suppose we have sentence like this ”This is a great movie” then as
humans process the sentence from left to right processing each word at a time and maintaining a state in brain

about what we have read so far in the similar fashion sequence models also process the data.

For example if we have a sentence “This is a great movie but the ending was not up to the mark”.

So, if we give this sentence to CNN or MLP as they are stateless models they do not remember what

previous word or sentence they have processed but here in this sentence as we can see that the sentence should

be given 3 start out of 5 stars because in the beginning the client told that the movie was great but then after he

told that the ending was not up to the mark. So, this is a kind of mixed review and hence the feedback should be

given neutral class but if the model was not able to remember the previous states then it might have not

classified the sentence in the correct category. Therefore, Recurrent Neural Network came into existence to

avoid such problems, which is a sequence model.

Recurrent Neural Network consists of RNN cells, which performs some function on the given inputs
(x) and produces some outputs (y) that is word by word processing takes place and a state-vector (a) is also

maintained which is subsequently passed to each RNN cells and consequently gets updated by it also and the

update state vector is passed to next RNN cell. Here, the state vector maintains at each step what the model has

seen so far.

A Deep Learning Model for Visually Impaired Person: Blind Sight

DOI: 10.9790/0661-2403021324 www.iosrjournals.org 20 | Page

1.7 Word Embedding

When we give textual data to our model we need some kind of representation to represent that data. One

of the way is to make a vocabulary by combining all the unique words, which are present in the dictionary and

we associate each word with a unique index. Now, if we want to represent a word “movie” then we will pick

word “movie” from vocabulary and find its unique index then convert that index into one hot encoded vector of

total words present in that vocabulary (one hot encoded vector means all the indexes of the vector will have

value 0 except the index which represents the word “movie” in the vocabulary). But this type of representation

has one type of problem that is it is sparse which means that it has a lot of zeroes depending on the size of

vocabulary. If we pass that vector to our model then it will increase the time consumed by the model when we
train it. So, here the goal is to use compact representation instead of using a very large sized sparse one hot

encoded vector for representing word. Using the compact vector for representation purpose is called as

embedding and the compact vectors are also called as distributed representations.

There are two ways achieving this goal if we have very large training dataset and we are using deep

learning to train our model then we can train it along with whatever task we are trying to achieve. Second option

is we can start with pre-trained embedding.

There are two popular embedding’s that are available:

 Word2Vec- generate by Google

 Glove Vectors –generated by Stanford

These embedding’s are specifically useful when we have smaller dataset. In keras, we also have one

layer called embedding layer. It consist of huge matrix called embedding matrix having number of rows equal to

the size of vocabulary and number of columns (k) as size of compact vector. Earlier if our vocabulary was of

size 10,000 then we were using a sparse vector of size 10,000 to represent a word but now if we try to convert

that sparse vector to compact vector using glove embedding then we can reduce its size to k which are number

of columns that are present in the word embedding matrix. The task of embedding layer is to convert one very

large sparse vector into a smaller size compact vector.

1.8 LSTM

In RNN, there are is a problem of long-term dependency, which results in reducing the effectiveness of the

algorithm.

There are basically two types of dependencies:

 Short-term dependency

 Long-term dependency

Let us understand short-term dependency with the help of an example. Suppose we have built a model using

RNN, which predicts the next word based on the incomplete sentence passed to the model. For example, we

A Deep Learning Model for Visually Impaired Person: Blind Sight

DOI: 10.9790/0661-2403021324 www.iosrjournals.org 21 | Page

passed a sentence “The clouds are in the ______” and the model has to predict the word after “the” in the

sentence so here the most important word which the model has take into consideration in order to predict the

next word is the word “cloud”. Since the most important word that tells us about the context and word which we
have to predict are very close to each other. So, it becomes the case of short-term dependency and in those cases

our regular RNN model can effectively predict the next word.

However, in case of long-term dependency suppose we have given a sentence “I grew up in France. I have

done my schooling from Joseph Fourier University (UJF). After my education got completed I got a job. As I

was able to speak fluently, ______“ now using this paragraph the RNN model has to predict the next word.

When it sees the words “speak”, ”fluently” RNN will be able to understand that the next word must be some sort

of language. In order to determine which language it has to write in the blank space it has to go the very first

sentence “I grew up in France”, to understand the context of the paragraph then only RNN will be able to

determine it has to use “French” word for prediction. However, because of vanishing gradients, RNN cannot

remember the word “France” and hence it will not be able to produce the correct result. So, if our input word is
at time-stamp (position) 1 or 2 and the word, which we have to predict, is at position 30 or 40 then the problem

of predicting the next word comes under long-term dependency. Which creates a problem in predicting the next

word because RNN will not able to remember that at time-stamp 1 or 2 you have given the word ”France” to

RNN because of vanishing gradients.

To solve the problem LSTM is used, architecture of regular RNN and LSTM is shown in below figures:

As we can see the from the RNN has only 1 neural network whereas LSTM has 4 neural networks. So number

of parameters in LSTM becomes exactly the four times of parameters present in RNN.

II. About Model
2.1 Model The model takes the image as an input and then uses certain algorithm to describe the image

that is it performs captioning of the image. We have treated this problem as a supervised learning problem in

which we can extract X (particular image) and Y (captions associated with that image) from the Flickr8k
dataset. Our goal here is to learn some mapping between X and Y that is we have to learn y as a function of x

(y=f(x)).

2.2 Dataset The dataset that I used for building this model is Flickr8k, There are different variation of

Flickr dataset that are available on internet like Flickr30k which has 30,000 images. Flickr8k is a kind of subset

A Deep Learning Model for Visually Impaired Person: Blind Sight

DOI: 10.9790/0661-2403021324 www.iosrjournals.org 22 | Page

of Flickr30k, which consists of 8000 images and with each image five captions are associated to describe the

image in different ways. Therefore, in total, there are 40,000 captions that are available and using this dataset,

we have to train our model to predict the caption of any given input image. The dataset is already is split into 3
parts, out of 8000 images 6000 images are used for training, 1000 images for validation and 1000 images for

testing.

2.3 Data Cleaning Before feeding data to our model, we have to clean that data so that our model will be

able to process our data in the best possible way. Sometimes we perform this cleaning via removal of stop-word,

lemmatization, etc. However, for this model we will follow different approach for cleaning data. For this model,

we cannot remove stop-words like is, am, an, etc. and then process the captions because if we do not teach our

model that how it should use stop-words to construct the English sentences then it won’t be able to generate the

correct sentence. For data cleaning, we cannot use stemming also because if we feed in stemmed words to our

model then our model will only be able to learn stemmed words for example if the word is “drawing” and we

feed “draw” to our model then our model will use the word “draw” instead of “drawing” wherever “drawing” is

required. Hence, it will result in prediction of sentence like “Girl is draw something on paper” instead of “Girl is
drawing something on paper”. Therefore, first we have cleaned the data by converting everything into lower

case so that the word “The” and “the” are treated same. Then we have removed non-alphabetical entities from

captions like punctuations, special characters, numbers, etc., so that our model just generate sentences without

any numbers or special characters and which in turn helped in reducing the vocab size. Reducing vocab size is

very important because if we have less vocab size then it means less number of neurons, which in turn results in

less parameters, and hence reduces the chances of overfitting of the model. It also reduces the computation time

because the model assigns every word of vocab the probability, which indicates that how much, is the chance

for any word to be the next word of the sentence, if we have small number of words in vocab then probability

distribution will be small which in turn will reduce the computation time.[3]

2.4 Creating Vocab Vocabulary is the set all possible unique words that our model can predict. From the

cleaned descriptions, which we have found in the data-cleaning step, we will find the set of all unique words and

then use those unique words to construct the vocab. Generating a vocab is important because at the end of each
iteration, our model will predict the probability distribution for numbers, where each number is mapped with the

unique words present in the vocab and this vocab will help in finding the word associated with the maximum

probability number predicted by model. One additional thing, which we can do, is after finding out all the

unique words, we can shorten our vocab size by keeping only those words in our vocab, which are most

frequent. That is we can set a particular threshold value for frequency if any word crosses that threshold then

only we put that word in our vocab. In order to generate text we will use LSTM based layer to generate text

from image. At every step word generated from previous step will go as an input the current LSTM cell but this

process can repeat infinite number of times so in order to make our model know when to stop we have to use

special tokens like <e> which marks the end of sentence. However, the model will only be able to generate <e>

end of sentence token if we have used this token while training the model. So what we do we have to add two

tokens to our caption <s> and <e> which are used for marking the start and end of sentences respectively. With
the help of these token our model is going to recognize from where our sentence started and from where it

ended.[3]

2.5 Image and Caption Preprocessing We will use transfer learning to convert our image and caption

into features that is we will extract features from image and caption using transfer learning. There are two ways

using which we can use transfer learning one is pre-trained model and other is fine-tuning. So, for this model to

extract features from image we have used pre-trained model. The pre-trained model, which we used for feature

extraction, is resnet50. Resnet50 model is already trained on imagenet dataset. It is very deep model having 50

layers and it has also skip connections which means the gradients can back-propagate easily hence, it does not

suffers from vanishing gradients problem. Resnet50 model is not sequential model because of presence of

branches in form of skip connections. These skip connections describes that the input layer is connected to

which layers that is why when we print summary of the model we also see one other column “Connected to”.

Activation_98 layer is responsible for giving the activation maps which has the shape of (7, 7, 2048) and after
that one way is that we can directly use the output and flatten it but it will result in making 7*7*2048 neurons,

which will result in a lot parameters. Other way is that we can use global_average_pooling layer to squeeze

every channel into a single scaler the value of which is calculated by taking the average of all the parameters

present in the 7*7 channel, that will result in reducing the neurons by 49 times i.e. we wil1 just get a list of 2048

neurons (1*1*2048). These 2048 neurons tells what all features present in the particular image. If any neuron

amongst those 2048 neurons is having a higher activation value then it indicates that, that particular feature is

present in that image. So, what we did instead of using the whole resnet50 model, using the functional API of

keras we have created a new model by taking the resnet50 model only till the GAP (global_average_pooling)

layer. It will give the activation map of 2048 features and from that feature-map we will be able to identify that

what features are present in the particular image. So, using that we will able to convert our image into numbers.

A Deep Learning Model for Visually Impaired Person: Blind Sight

DOI: 10.9790/0661-2403021324 www.iosrjournals.org 23 | Page

Now, for caption preprocessing we have converted the captions into numbers using two dictionary idx_to_word

and word_to_idx which help in mapping the index numbers to words and words to index numbers. So, when we

give any caption to our model we give it in the form of numbers by converting words to index numbers and
when model predicts any caption for the input image in the form of index numbers then we can again convert

those numbers into words using those dictionaries.[5][3]

2.6 Image Captioning As A Supervised learning Model In supervised learning, we try to predict y when

value of x is given. For this model, x is input image and y is the caption for that image which we have to predict.

We cannot predict whole sentence at a time. The goal is to predict one word at a time until we hit the end of the

sentence. During training time of the model at every step, we will feed ground truth along with previously

generated words to the model instead of giving the actual word predicted by it so that our model is able to

effectively determine the weight matrix for LSTM. But during test phase since we do not have ground truth

available with us so at each step we will give the LSTM only the previously generated words to predict the next

word. This concept is used in language modelling.[3]

2.7 Prediction Our model will accept the photograph vector along with some partial sequences. We will

give some input_text to our model, which is initially “start_sequence”. In each iteration, we will give the
sequence which was previously generated by the model along with the current word predicted by it and we will

break from the loop when the model predicts the end sequence as next word.[3]

A Deep Learning Model for Visually Impaired Person: Blind Sight

DOI: 10.9790/0661-2403021324 www.iosrjournals.org 24 | Page

III. Pipeline For Deployment On web
In this project, the pipeline that I used is depicted via the above figure. So, first when the client opens

the website and uploads the image for which he wants the caption that request goes to the server which is

managed by flask. At the server side the uploaded image first gets saved and since we do not give directly the

uploaded image to our saved model first we compute the encoding of the image from resnet model which gives

us (1,2048) vector of encoding and then this encoding we pass to our saved model which then extracts caption

from the image and then this extracted caption is sent to the client in the form of response and shown on the

screen[4]

IV. Conclusion
The main part of this research paper is the deep learning which I have to use to implement this model,

at certain instances I got very lost while building this model since there are a lot of things which I did use in this

model to make it work like RNN, LSTM, resnet50, word embeddings, transfer learning, language models, etc.

Yes, I am no expert in those technologies and I am also not able to understand them completely. I took help

from various sources, which helped me a lot to build this model and I am really thankful to creators of these

sources as the content put me on right track whenever I got lost.

The model which I created is not up to the mark I know there are still some small flaws in it and it can

be improved to predict the captions of images more accurately. So, in future I will definitely try to remove those

small flaws and improve the accuracy of the model.

References
[1]. Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics (Advances in Computer Vision

and Pattern Recognition) By Le Lu (Editor), Xiaosong Wang (Editor), Gustavo Carneiro (Editor), Lin Yang (Editor)

[2]. Perceptrons Author, Marvin Minsky., Author, Seymour Papert

[3]. Author Harshall Lamba https://towardsdatascience.com/image-captioning-with-keras-teaching-computers-to-describe-pictures-

c88a46a311b8

[4]. Coding Blocks Data Science Course

[5]. Author Muhammad Abdelhadie Al-Malla https://journalofbigdata.springeropen.com/articles/10.1186/s40537-022-00571-w

[6]. Flanagan, David. JavaScript - The definitive guide (6 ed.). p. 1. JavaScript is part of the triad of technologies that all Web develop-

ers must learn: HTML to specify the content of web pages, CSS to specify the presentation of web pages and JavaScript to specify

the behaviour of web pages.

[7]. "JavaScript data types and data structures - JavaScript | MDN". Developer.mozilla.org. February 16, 2017. Archived from the origi-

nal on March 14, 2017. Retrieved February 24, 2017.

[8]. Clinick, Andrew (July 14, 2000). "Introducing JScript .NET". Microsoft Developer Network. Microsoft. Archived from the original

on November 10, 2017. Retrieved April 10, 2018. [S]ince the 1996 introduction of JScript version 1.0 ... we've been seeing a steady

increase in the usage of JScript on the server—particularly in Active Server Pages (ASP).

[9]. "ISO/IEC 9001: Quality management systems -- Requirements," International Organization for Standardization, 1999.

[10]. F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A

distributed storage system for structured data. ACM Trans. Comput. Syst., 26(2):1–26, 2008.

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Le+Lu&text=Le+Lu&sort=relevancerank&search-alias=books
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Xiaosong+Wang&text=Xiaosong+Wang&sort=relevancerank&search-alias=books
https://www.amazon.com/s/ref=dp_byline_sr_book_3?ie=UTF8&field-author=Gustavo+Carneiro&text=Gustavo+Carneiro&sort=relevancerank&search-alias=books
https://www.amazon.com/s/ref=dp_byline_sr_book_4?ie=UTF8&field-author=Lin+Yang&text=Lin+Yang&sort=relevancerank&search-alias=books
https://medium.com/@harshall.lamba?source=post_page-----c88a46a311b8--------------------------------
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-022-00571-w#auth-Muhammad_Abdelhadie-Al_Malla
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-022-00571-w

