
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 23, Issue 3, Ser. II (May – June 2021), PP 01-05

www.iosrjournals.org

DOI: 10.9790/0661-2303020105 www.iosrjournals.org 1 | Page

Web Scraping with Python and Selenium

Sarah Fatima
1
, Shaik Luqmaan

2
 , Nuha Abdul Rasheed

3

1(Department of Computer Science and Engineering, Muffakham Jah College of Engineering and Technology /

Osmania University, India)
2(Department of Computer Science and Engineering, Muffakham Jah College of Engineering and Technology /

Osmania University, India)
3(Department of Computer Science and Engineering, Muffakham Jah College of Engineering and Technology /

Osmania University, India)

Abstract:
In this paper, we have designed a method for retrieving web information using selenium and python script.

Selenium is used to automate web browser interaction. The block-based structure is obtained by using a python
script. Web information is mostly unstructured, the proposed work helps to organize the unstructured data and

make it useful for various data analysis techniques. It also focuses on ways in which data can be persisted and

used from various websites for which APIs are not available.

Key Word: Web scraping; Selenium; Information Extraction; HTML Parsing; Web data retrieval.

Date of Submission: 02-06-2021 Date of Acceptance: 15-06-2021

I. Introduction
 Web scraping is a process of information extraction from the world wide web (www), accomplished by

writing automated script routines that request data by querying the desired web server and retrieving the data by

using different parsing techniques [1]. Scraping helps in transforming unstructured HTML data into various

structured data formats like CSV, spreadsheets. As it is known, the nature of web data is changing frequently,

using an easy-to-use language like python which accepts dynamic inputs can be highly productive, as code

changes are easily done to keep up with the speed of web updates. Using the wide collection of python libraries,

such as requests, pandas, csv, webdriver can ease the process of fetching URLs and pulling out information

from web pages, building scrapers that can hop from one domain to another, gather information, and store that

information for later use. To automate web browser interaction, the single interface open-source tool Selenium
is used that can mimic human browsing behaviors. Besides, numpy and pandas are used to process the data [2].

By using this implementation, web data is transformed into structured blocks. The block-based structure is

obtained by using a python script with Selenium. The proposed experimental work shows, parsing the HTML

code, installation of python and selenium, python scripting and interpretation, and structural extraction of web

information. The evolving needs of internet and social media services require various techniques for the

extraction of web data. Web information is mostly unstructured, the proposed work helps to organize the

unstructured data and make it useful for various data analysis techniques.

Web Scraping and its applications:

Web Scraping is the practice of gathering information automatically from any website using an

application that simulates human web-behavior. This is achieved by writing automated scripts that query the
web server, request data, and transform the data in various structured formats like CSV, spreadsheets, and

JSON. This technique is highly used to persist the data from various websites for which APIs are not available.

In practice, web scraping uses a wide variety of programming techniques and technologies, such as data

analysis, information retrieval and security, Cyber Security, HTML parsing techniques. Web scraping has

various applications across many domains. Some of them are

● For collecting data from a collection of sites that do not have a warranted API. With web scraping,

even a small, finite amount of data can be viewed and accessed via a Python script and stored in a database for

further processing.

● Analysis of product data from social media platforms like Twitter and e-commerce sites like amazon
i.e., big data and sentiment analysis.

● To use the raw extracted data like texts, images to refine machine learning models and to develop

datasets.

Web Scraping with Python and Selenium

DOI: 10.9790/0661-2303020105 www.iosrjournals.org 2 | Page

● Observing customer sentiment by scraping customer feedback and reviews of different businesses as

visiting various websites can be cumbersome.

Scraping with Python and Selenium:

 Web Scraping is all about dealing with huge amounts of data, Python is one of the most

favorable options to handle it, as it has a relatively easy learning curve and has a vast set of libraries and

frameworks like NumPy, CSV, Webdriver, etc. Using Python-based web scraping tools such as Selenium has

its benefits. Selenium is an automation testing framework for websites that takes control of the browser and

mimics actual human behavior using a web-driver package. With the majority of the websites being JavaScript-

heavy, Selenium provides an easy way to extract data using Scrapy selectors to grab HTML code.

II. Related Work
 Before the evolution of technology, people used to manually copy the data from various websites and

paste it in a local file to analyze the data. But in today's day and age with technology increasing at a rapid pace

the old method of extracting the data can be overwhelming and time consuming. This is where web scraping

can be useful. It can automate the data extraction process and transform the data into desired structured format.

Web Scraping Tools and Techniques

In this section various tools as well as techniques used for web scraping are presented. They have been found

through searching the web or having heard about them due to their popularity.

1 Scrapy
Scrapy is an open-source Python framework initially outlined exclusively for web scraping and also supports

web crawling and extricate data via APIs. Data extraction can be done using Xpath or CSS which is the built-in
way as well as by using external libraries such as BeautifulSoup and xml. It allows for storing data within the

cloud.

2 HtmlUnit

HtmlUnit is a typical headless Java browser used for testing web applications. It allows commonly used

browser functionality such as following links, filling out forms, etc.

Moreover, it is used for web scraping purposes. The objective is to mimic a “real” browser, and thus HtmlUnit

incorporates support for JavaScript, AJAX and usage of cookies 13.

3 Text pattern matching

A basic yet effective approach to extract data from web pages can be based on the UNIX grep command or

regular expression - coordinating facilities of programming languages (for example, Perl or Python).

4 HTTP programming

HTTP requests posted to the remote web server using socket programming are used to retrieve static and
dynamic web pages.

5 HTML parsing

Data of the same category are typically encoded into similar pages (generated from database) by a common

script or template. In data mining, a wrapper is a program that extracts contents from such templates in a

particular information source and translates it into a relational form. HTML pages can be parsed, and content

can be retrieved using semi structured data query languages like Xquery and the HTQL.

6 DOM parsing

Browsers such as Mozilla browser or Internet Explorer can parse web pages into a DOM tree using which parts

of pages can be retrieved by programs. The resulting DOM tree is parsed using languages like Xpath.

Web scraping using BeautifulSoup
BeautifulSoup module is a web scraping framework of Python which is used to query and organize all

the parsed HTML into data using different parsers which the module has to offer. BeautifulSoup uses the

HTML parser that's native to Python's standard library known as html parser.

To get started, import Beautiful Soup and need to create beautiful soup objects called ‘soup’. There are

lots of ways to navigate the HTML using BeautifulSoup objects, one of the more common methods is find all

methods. Here we can enter a single tag name and it will return either the first or all of the tags of that kind. We

could also provide a list of tag names and the method will provide anything matching either tag. Alternatively,

we can specify the attributes, such as ID or class and it will return based on that criterion.

III. Proposed Methodology and Implementation
The proposed work focuses on analyzing a web page and extracting required visual blocks which can

be lists or unstructured tables and store these datasets in various already available structured formats such as

CSV, spreadsheets or SQL databases using respective Python libraries. Selenium web drivers are used to mimic

Web Scraping with Python and Selenium

DOI: 10.9790/0661-2303020105 www.iosrjournals.org 3 | Page

human behavior and ease the extraction of large data sets and images, we have created one script to perform

required scraping.

Fig.1. Web Scraping Timeline

Main tools used

1. Python (3.5)

2. Selenium library: for handling text extraction from a web page’s source code using element id, XPath

expressions or CSS selectors.

3. requests library: for handling the interaction with the web page (Using HTTP requests).

4. csv library: for storing extracted data.
5. Proxy header rotations: generating random headers and getting free proxy IPs in order to avoid IP

blocks.

Description of work

The research work is developed in Python using HTML parsing running on Anaconda Platform. Script is

supported by Selenium library [5]. The site used for scraping instances of unstructured data with and without

pagination. Simulation of experimented work:

A. Installation of Python

B. Importing selenium web drivers, requests and csv library

C. Execution of script using Python

D. Persisting the generated structured data in the database.

 Fig.2. Complete flow of web scraping

When the script is run, an instance of chrome web driver is initiated, and the required output CSV files are

initialized. The scraper then parses the data from the aforementioned URL using element id or XPath and starts

collecting the data, which then will be written in output files using writer headers. The script is designed to

throw errors in case of time out or if the element id or XPath is missing.

Web Scraping with Python and Selenium

DOI: 10.9790/0661-2303020105 www.iosrjournals.org 4 | Page

 Fig.3. Initialization of selenium web driver

 Fig.4. Extraction of data using element id

 Fig.5. Extraction of next links using Xpath when paginated

Results from the data files obtained from web scraping can further be used for machine learning and data

analytics techniques.

IV. Discussion
When we start web scraping, we will notice how much we value the simple things that browsers

perform for us. The web browser is a very handy tool for generating and sending the information packets from

our computer, and interpreting the data we receive as text, images, etc. back from the server. The internet

includes many types of interesting data sources that serve as a goldmine of interesting stuff. Unfortunately, the

current unstructured nature of the web makes it extremely difficult to easily access or export this data. Modern
browsers are brilliant at showcasing visuals, displaying motions, and arranging out websites in a pleasing style,

but they do not offer a capacitance to export their data, at least not in most situations. So, web scraping, instead

of seeing the website page through the interface of your browser, gathers the data from the browser. Now-a-

days many websites provide a service called an API, which gives access to the data, but most of the website

doesn't provide an API to interact with or doesn't expose an API required for our functionality. In such cases

building a web scraper to gather the data can be handy.

Applications of Web Scraping:

● E-Commerce

● Finance

● Research

● Data Science
● Social Media

● Sales

V. Conclusion
 Web scraping can be useful to gather different types of data from websites either for business

or personal purposes and there are many ways to do it. But it is also necessary to be mindful of the burden that

your web scraper is putting on the website and there can be consequences of irresponsible web scraping.

Consider running a script throughout the first 100 pages; this would be an aggressive scraper, and we would be

placing an unreasonably enormous strain on the website servers, perhaps disrupting their operation and web
scraping is a violation of certain websites' terms and conditions in such cases the website is likely to take action

against you.

Web Scraping with Python and Selenium

DOI: 10.9790/0661-2303020105 www.iosrjournals.org 5 | Page

Web Scraping Code of Conduct:

1. Don't unlawfully distribute downloaded materials.

2. Downloading copies of documents that are plainly not public is not permitted.
3. Check if the data which is required is already available.

4. Don’t try aggressively scrapping, introduce delays in the scripts.

5. Check state’s law before scraping any website.

References
[1]. Anand V. Saurkar, Kedar G. Pathare, Shweta A. Gode, “An overview of web scraping techniques and tools” International Journal

on Future Revolution in Computer Science and Communication Engineering, April 2018.

[2]. Jiahao Wu, “Web Scraping using Python: Step by step guide” ResearchGate publications (2019).

[3]. Matthew Russell, “Using python for web scraping,” No Starch Press, 2012.

[4]. Ryan Mitchell, “Web scraping with Python,” O’Reilly Media, 2015.

[5]. Selenium Library : https://pypi.org/project/selenium/.

Sarah Fatima, et. al. “Web Scraping with Python and Selenium.” IOSR Journal of Computer Engineering

(IOSR-JCE), 23(3), 2021, pp. 01-05.

https://pypi.org/project/selenium/

