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Abstract. This paper deals with application of decision tree algorithms based on data mining methodologies 

for optimizing the representative process of Nuclear Power Plant by estimating the steady state parametric 

values of key performance indicator variables. With this the operator will be in apposition to estimate the 

optimum values of the critical parameters, tune the process to the estimated values so that the process efficiency 

can be improved with the available resources. He will also be able to forecast process upset conditions and plan 
for maintenance and surveillance schedules with these predictions. Expert systems using data mining is a 

promising area of process optimization. It plays an important role in improving the plant capacity factor, 

increases the availability and reduces the down times. Operator Assistance by systems based on data mining 

techniques will act as a cognitive aid to assess the process conditions, take quick decisions and corrective 

actions. 

In this paper, we introduce classification models using data mining methods to improve the performance of a 

typical nuclear reactor cooling pump lubrication system process. In this study, we have built the models based 

on Decision Tree Algorithm. Various models of decision tree algorithms along with their boosting and bagging 

methods are developed using a training data set and a holdout test data set derived from the plant data for a 

month of steady operation. On evaluation of the developed models with calculated metrics, we found that the 

classification models based on decision trees are in fact useful for fair prediction of key parameters in a 

multiclass environment with class imbalance. 
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I. Introduction 
Nuclear Energy contributes to about 3.2 percent of the total power generated in India. Nuclear power 

plants involves high capital cost, long gestation period and are highly regulated based on various safety, 

environmental and societal regulations. All the Nuclear Power Plants in our country are operated as base load 

stations requiring a near constant load factors. If it shuts down due to any grid disturbances, process upset 

situations or malfunction of equipment, after correcting the fault, the restart time is typically 36 hours due to 

constraints from nuclear physics and thermodynamic considerations. As seen from the recent Fukushima 

Nuclear Accident due to Tsunami in Japan, the impact of any beyond design basis incidents will have larger 

implications in the society and the reputation of the nation altogether. Further the restoration efforts are high 

resource intensive, time consuming and require a very huge cost. Yet the contribution of Nuclear Energy in a 

power starving country like us cannot be dispensed with. Hence, to be competitive in the power generation 
market, the Nuclear Plant Process systems are designed, engineered and operated with high safety margin and 

high thermodynamic efficiency. The operators are required to be extensively  trained and licensed by the 

regulator to understand the process stability, act swiftly during a process upset condition, monitor and 

understand the behavior of the process  at all states of the reactor and take quick control or safety action as 

warranted using their knowledge, skill and experience. 

Hence providing him a computerized expert systems will enhance the capability of the decision making 

process by the operator. The Expert System can acquire the data from the plant wide distributed control systems, 

have machine language algorithms to understand the process dynamics and develop data mining models to 

provide predictions/recommendations on the process to the operator in a cognitive mode. The system can be 

fairly accurate to be dependent upon and can predict under all operating regimes of the process. 

We propose in this study the performance evaluation of classification models based on Decision Tree 
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Injunction Techniques on a critical process system of oil lubrication for reactor coolant pump. In this paper, we 

apply classification models based on decision tree algorithms on the plant process data to make predictions on 

the identified key performance variables. Different decision tree models are developed and evaluated for their 
performance. Further use of bagging and boosting models based on Decision Trees are also developed and 

evaluated to identify the suitability and best fit so that we can deploy similar models for other safety systems 

after due review and clearance. The models are developed for the key parameters of the process taken for this 

study. 

 

II. Literature Review 
Flynn, Ritchie, and Cregan[1] demonstrated the power plant monitoring and control using data oriented 

models and algorithms utilizing the Distributed Control System(DCS) data. During the process upset conditions 

the DCS would be flooded with many alarm signals resulting in critical parameters of the process losing the 
attention of the plant operator. Further, many of the process parameters are correlated and show similar trends 

and behavior. Hence, the author suggests development of an expert system using data mining algorithms that 

will establish the relationships among the parameters under steady state condition. The algorithm will also help 

to identify abnormal conditions from the original trained observations. 

Li et al.[2] Proposes similar power plant process optimization using data mining techniques using the 

Plant data Acquisition systems using fuzzy association rule mining. 

Ogilvie, Swidenbank, and Hogg [3] also used association rule mining on the data from the historian 

servers to analyze the behavior of steam generator system for a thermal power plant. 

In our earlier paper [4] we used data analytics for identifying the drift in triplicated sensors for 

monitoring a safety parameter in a nuclear power plant. We had proposed a single online soft parameter derived 

from the data model. Further in another paper by us [5], we had applied principal component analysis and k-
means clustering to identify stable operating regimes of a process in a nuclear power plant. We had also applied 

association rule mining techniques and multi collinearity analysis to identify Key Performance Indicators (KPI) 

and their optimum values for a stable process. 

In the paper[6] we have specifically applied classification algorithms based on association rules on the 

key performance parameters identified for the stable process of the nuclear plant. The estimation models were 

built for the identified KPIs and they were evaluated for their performance using confusion matrix. 

Davidov, Tsur, and Rappoport [7] have demonstrated the data mining algorithms Support Vector 

Machines(SVM) and Naïve Bayes to classify data for the web analysis project. The result gave us a confidence 

that SVM and Naïve Bayes can be considered models for further research on expanding their domains of 

applications. The models are trained on the steady state condition of the process under class imbalance 

conditions and were evaluated with a test data set. The results are under publication. 

Ahmad et al. [8] discussed the high variability of renewable generation necessitating forecasting for 
optimal balancing and dispatch of generation in a smarter grid against the challenge to improve the accuracy . 

The paper investigated the accuracy, stability and computational cost of Random Forest and Extra Trees for 

predicting hourly PV generation output, and compared their performance with support vector regression (SVR).  

Gaikwad, D. P. et al.[9]  developed Intrusion Detection System for the computer network security 

using Bagging Ensemble method. The selections of relevant features are required to improve the accuracy of the 

classifier. The proposed intrusion detection system is evaluated in terms of classification accuracy, true 

positives, false positive and model building time. It was observed that proposed system achieved the highest 

classification accuracy of 99.7166% using cross validation. It exhibits higher classification accuracy than all 

classifiers except C4.5 classifier on test data set.  

Relan et al.[10] also applied decision trees for intrusion detection technology for network security 

evaluating the performance in terms of its effectiveness and the number of feature to be examined. They have 
proposed two techniques, C4.5 Decision tree algorithm and C4.5 Decision tree with Pruning, using feature 

selection. The Experimental Result shows that, C4.5 decision tree with pruning approach is giving better results 

with all most 98% of accuracy. 

The above studies have motivated us to deploy decision trees and their ensemble models for nuclear 

power plant process parameter estimation. Various models were developed and evaluated for their performance 

to assess their suitability for better performance and expert system development. 

 

The rest of the paper is organized as follows: 

In section 3, a brief description of Decision Tree, Bagging Tree, Adaboost and Random Forest 

algorithms are presented. In section-4, the data set is introduced. In section 5, we had described the data 

preparation and model building. In section-6, models are evaluated based on the metrics. In section-7, we 

conclude and highlight the possible future work. 
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III. Relevant Data Mining Algorithms 
3.1 Decision Tree Induction 

A decision tree is a flowchart-like tree structure, with roots, nodes, leaves and branches. A tree starts 

with a root node. Every internal non-leaf node tests an attribute and every terminal leaf node holds a class label. 

The outcome of a test branches to a leaf or a non-leaf node.  

Given a unknown tuple, X, a path is traced from the root to a leaf node, which holds the class 

prediction for that tuple. Decision trees can easily be converted to classification rules. 

The selection of an attribute for splitting and branching a given data partition, D, of class-labelled 

training tuples into individual classes is done either heuristically or based on Information Gain, Gain Ratio and 

Gini Index. Using these scores, the attribute/feature which yields maximum information gain is chosen as the 

splitting attribute for the given tuples. 

Let node   hold the tuples of partition . The splitting attribute for node   will be the one that 

minimizes the information needed to classify the tuples in the resulting partitions. The attribute will be the one 

with highest information gain and results in lowest number of tests to classify a given tuple and a simple tree. 

The expected information needed to classify a tuple in D is given by[11] 

                     

 

   

                             

Where    is the nonzero probability that an arbitrary tuple in   belongs to class    and is estimated by          .  

        is the average amount of information needed to identify the class label of a tuple in  .         is also 

known as the entropy of . 

Now, suppose we were to partition the tuples in   on some attribute   having   distinct values,            , 
as observed from the training data. Attribute   can be used to split   into   partitions or subsets,            , 
where    contains those tuples in   that have outcome    of  . These partitions would correspond to the 

branches grown from node N. However, the partitions may contain tuples from different classes rather than from 

a single class. Then the amount of information needed to arrive at an exact classification is measured by[11] 

          
    

   
                                 

 

   

 

The term  
    

   
 acts as the weight of the   th partition.           is the expected information required to classify a 

tuple from   based on the partitioning by . Information gain is defined as the difference between the original 

information requirement (i.e., based on just the proportion of classes) and the new requirement (i.e., obtained 

after partitioning on  .[11]  

                                                
The attribute   with the highest information gain,        , is chosen as the splitting attribute at node N, so that 

the amount of information still required to finish classifying the tuples is minimal (i.e., minimum         ). 
 

Decision tree classifiers are best suited for exploratory research as it does not require any domain knowledge or 

parameter setting. Decision trees can handle multidimensional data. The representation of the information in tree 

form is easily understandable. The learning and classification steps of decision tree induction are simple and 

fast. In general, decision tree classifiers have good accuracy. However, successful use may depend on the data at 

hand.  

A decision tree classifier is not sensitive to mislabeled data, handles irrelevant features, and is computationally 

efficient in training and prediction. It performs best when the training set is an accurate representation of the 

population [9].However it tends to over fit to the training data, resulting in a drop in accuracy and performance 

on the test data. That is, it does not generalize well. For a binary classification problem with a large, mixed 

(numerical and categorical) feature set, the decision tree is an apt classifier. It can handle irrelevant features and 
is scalable. 

C4.5 uses an extension to information gain known as gain ratio. It applies a kind of normalization to information 

gain using a “split information” value defined analogously with          as [11] 

 

                  
    

   
       

    

   
 

 

   

                          

 

This value represents the potential information generated by splitting the training data set  , into   partitions, 

corresponding to the   outcomes of a test on attribute  . The gain ratio is defined as[11] 
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The attribute with the maximum gain ratio is selected as the splitting attribute.  

The Gini index is used in CART. The Gini index measures the impurity of  , a set of training tuples, as[11] 

             
 

 

   

                                                                  

where    is the probability that a tuple in   belongs to class    and is estimated by          . The sum is 

computed over   classes. 

 

When a decision tree is built, the tree is pruned to avoid over fitting the data due to noise or outliers. Pruned 

trees tend to be smaller and less complex and, thus, easier to comprehend. They are usually faster and better at 

correctly classifying independent test data (i.e., of previously unseen tuples) than unpruned trees. 

 
Two decision tree algorithms in R package Conditional Inference Tree (ctree) and J48 pruned Tree (C4.5) have 

been demonstrated in this study. 

 

Conditional inference trees embed tree-structured regression models into a well-defined theory of 

conditional inference procedures. This non-parametric class of regression trees is applicable to all kinds of 

regression problems, including nominal, ordinal, numeric, censored as well as multivariate response variables 

and arbitrary measurement scales of the covariates. The methods are described in Hothorn et al. [12], Zeileis et 

al. [13] and Strobl et al. [14]. 

J48 generates unpruned or pruned C4.5 decision trees [15]. C4.5 uses a method called pessimistic 

pruning, which uses error rate estimates to make decisions regarding sub tree pruning. However, it does not 

require the use of a prune set. Instead, it uses the training set to estimate error rates. It adjusts the error rates 
obtained from the training set by adding a penalty, so as to counter the bias incurred. 

 

3.2 Ensemble Methods in Decision Tree Induction 

3.2.1 Bagging Trees 

A bagging tree combines a series of   learned models (or base classifiers), with the aim of creating an 

improved composite classification model,  . A given data set,  is used to create   training sets,          , to 

generate   learned models (or base classifiers),            . Given a new data tuple to classify, the base 

classifiers each vote by returning a class prediction. The ensemble returns a class prediction based on the 

majority votes of the base classifiers. An ensemble tends to be more accurate than its base classifiers. The base 
classifiers may make mistakes, but the ensemble will misclassify X only if over half of the base classifiers are in 

error. 

The pseudo algorithm for bagging tree is as shown in fig.1[11] 

 

Algorithm: Bagging. The bagging algorithm—create an ensemble of classification models 

for a learning scheme where each model gives an equally weighted prediction. 

 

Input: 

  , a set of   training tuples; 

  , the number of models in the ensemble; 

 a decision tree learning scheme. 

 

Output: The ensemble—a composite model,   . 

 

Method: 

 

(1) for    = 1 to   do // create   models: 

(2) create bootstrap sample,    , by sampling   with replacement; 

(3) use    and the learning scheme to derive a model,    ; 

(4) end for 

 

To use the ensemble to classify a tuple, X: 

let each of the k models classify X and return the majority vote; 

 

Figure.1. Pseudo Algorithm for Bagging[11] 
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We have used the “ipred” package in R to demonstrate the bagging tree models. Ipred provides 

improved predictive models by indirect classification and bagging for classification, regression and survival 

problems as well as resampling based estimators of prediction error. Bagging for classification and regression 
trees were suggested by Leo Breiman [16] in order to stabilize trees. The trees in this function are computed 

using the implementation in the rpart package in R. 

 

3.2.2 AdaBoost 

Unlike bagging trees, in boosting models, weights are also assigned to each training tuple. A series of   

classifiers is iteratively learned. After a classifier,    , is learned, the weights are updated to allow the 

subsequent classifier,    , to “pay more attention” to the training tuples that were misclassified by    . The 

final boosted classifier,  , combines the votes of each individual classifier, where the weight of each classifier’s 
vote is a function of its accuracy. 

AdaBoost (short for Adaptive Boosting) is a popular boosting algorithm. The pseudo algorithm for AdaBoost 

tree is as shown in figure.2.[11] 

 

Algorithm: AdaBoost. Create an ensemble of classifiers. Each one gives a weighted vote. 

 

Input: 

  , a set of   training tuples; 

  , the number of models in the ensemble; 

 a decision tree learning scheme. 

 

Output: A composite model. 

 

Method: 

 

(1) initialize the weight of each tuple in   to    ; 

(2) for          do // for each round: 

(3) sample   with replacement according to the tuple weights to obtain    ; 

(4) use training set    to derive a model,    ; 

(5) Compute                         
 
    ,where          is the misclassification of tuple  . If 

the tuple was misclassified, then         is 1; otherwise, it is 0. 

(6) if                then 

(7) go back to step 3 and try again; 

(8) end if 

(9) for each tuple in    that was correctly classified do 

(10) multiply the weight of the tuple by                        ; // update weights 

(11) normalize the weight of each tuple; 

(12) end for 

 
To use the ensemble to classify tuple, X: 

 

(1) initialize weight of each class to 0; 

(2) for          do // for each classifier: 

(3)        
            

         
; // weight of the classifier’s vote 

(4)        ; // get class prediction for   from    

(5) add    to weight for class   

(6) end for 

(7) return the class with the largest weight; 

Figure.2. Pseudo Algorithm for Boosting[11] 

 

AdaBoost algorithm is demonstrated using the R package adabag in this study. 

It implements Freund and Schapire's Adaboost.M1 algorithm [17] using classification trees as individual 

classifiers. Once these classifiers have been trained, they can be used to predict on new data. Also, cross 

validation estimation of the error can be done. The weight updating coefficient is set as ’Breiman’ where 
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3.2.3 Random Forests 

Random Forests are an improvement over bagged decision trees. In Bagging, the decision trees can 

have a lot of structural similarities and in turn have high correlation in their predictions. Ensembles works better 

if the predictions from the sub-models are uncorrelated or at best weakly correlated. The individual decision 

trees are generated using a random selection of attributes at each node to determine the split. In Random Forest, 

the individual decision trees are generated using a random selection of attributes at each node to determine the 
split. The resulting predictions from all of the sub trees have less correlation. Each tree depends on the values of 

a random vector sampled independently and with the same distribution for all trees in the forest. Each tree votes 

and the most popular class is returned. 

Random forests are comparable in accuracy to Boosting, yet are more robust to errors and outliers. They are 

faster than either bagging or boosting. 

The random forest algorithm is demonstrated using Breiman and Cutler's Random Forests for Classification and 

Regression, Version 4.6-14 [18]in the R package. 

 

IV. The Data Sets for the study 
The subject Nuclear power plant has a Distributed digital Control System (DCS) that scans all the 

process sensors, collects the data and logs in the historian. We collected the  archived data from the historian for 

the key parameters of the process of the oil lubrication for reactor coolant pump for one month of stable 

operating performance The pump circulates the coolant to take away the thermal energy from the fission 

reaction in the core to produce steam in steam generators. The oil cooling system will circulate the oil in the 

mechanical seal assemblies of the pump to provide cooling, lubrication as well as sealing for the pump shaft 

assembly. 

The data was collected from the server for the analysis at a sampling rate of 5 seconds as listed in 

Table.1. After preprocessing of the data and removing the outliers the total data tuples taken for the study for the 

above period is about two lakhs. 

 

Table.1.Process Parameters and Ranges of Measurements 
Sl.No Parameter ID Parameter Description Range of Measurement 

1 Temperature-A Oil inlet temperature to bottom mechanical seal 0 to 600
o
 C 

2 Temperature-B Return oil temperature after cooling by blowers 0 to 600
o
 C 

3 Pressure-A Oil inlet pressure to bottom mechanical seal 0-7 kg/cm
2
 

4 Flow-A Oil outlet flow from mechanical seal 0-50 m
3
/hr 

 

V. Model Building 
The historian data in the process computers of DCS for the selected variables are imported to data 

analysis tool ‘R’ version 3.6.3. We converted the time series data to categorical attributes by slicing the ranges 

to 25 bins. The data frame now consists of 20585 data tuples of four categorical variables with 25 classes. 

Further, we have partitioned the data frame to training set and a test set in the ratio 70:30. Since the data is 

pertaining to steady state condition of the process, dataset indicated a class imbalance in each of the attributes. 

 

The models were implemented R language version 3.6.3 using the training data set. The various settings are as 

listed in Table.2. 

 

Table.2.Model Configurations in “R” 
Model Configuration Parameters 

Conditional 

Inference Tree 

Library- party,xtrafo = ptrafo, ytrafo = ptrafo, subset = NULL, weights = NULL 

 

C4.5 Library –Rweka 04-43, J48 pruned tree 

Bagging Tree Library -ipred, bootstrap replications 25, keepX=TRUE. 

AdaBoost Library-adabag, boos =TRUE, mfinal = 100, coeflearn = 'Breiman',method AdaBoost.M1" 

Random Forest Library-randomForest 4.6-14, Type of random forest: classification,  

Number of trees: 500, No. of variables tried at each split: 2 

 

We used the predictions made by the models on test data set to evaluate their performance for each of the 

variable. 
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VI. Model Evaluation 
The performance of the models were evaluated using the confusion matrix in R package “caret”[19].  The 

performance indicators as derived from the confusion matrix that are used for model evaluation and selection are 

as per the Table.3. 

 

Table.3.Model Metrics for Evaluation 

Sl.No Model Metrics Description Derivation 

1 Global Accuracy/Recognition 

rate 

percentage of test data tuples 

that are correctly classified 100




NP

TNTP

 
2 No Information 

Rate/Prevalence 

largest class percentage in the 

data 

 
     

   
 

2 F1-Score Harmonic average of precision 

and recall 
            

  
     

         
  

     
 

                
 

3 Model Fitness(SSPN) Fitness score on model 

prediction accuracy 
            

  

     
              

  

     
 

                           
  

     
 

                           
  

     
       

4 Area Under the Curve (AUC) 

Value 

The area covered in a plot with False Positive Rate (1-Specificity) on the X-axis and 

True Positive Rate (Sensitivity) on the Y-Axis. The diagonal line represents a random 

guessing with equal probability of True and False Positive Rates. The accuracy of the 

model is based on how close is the curve to the diagonal line and the area covered. 

TP- True Positives, FP-False Positives, TN-True Negatives, FN-False Negatives, P-Total Positives, N-Total 

Negatives 

 

6.1 Global Accuracy 

Global Accuracy indicates the overall recognition performance of the model for the true positives and 

true negatives out of the test set. The Global Accuracy values are calculated as per the Table.3 for all models in 

each parameters and represented in the Figure.4.   
 

 
Figure.4. Global Accuracy 
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In this study, it is found that all the models exhibit more close values ranging from 0.7432(74.32%) to 

0.8077(80.77%), lowest being Conditional Inference Tree for Flow and highest being Random Forest for 

Pressure. The overall accuracy values for the models for the parameter Pressure is highest compared to other 
variables. 

For all the parameters, the models C4.5, Bagging Cart and random Forest Models exhibit a near equal 

and consistent performance marginally higher than other models. Further Ada Boost model exhibits a 

marginally lower performance than the other three models for all the cases. 

 

6.2 No Information Rate (NIR) 

The metric No Information Rate indicates how common the desired class in the prediction is. It is just 

the largest class percentage in the data. The idea is that a useful model should do better than you could do by 

always predicting the most common class. Higher rate indicates that the model has encountered a higher class 

imbalance. Accuracy of the models should be higher than No information rate to consider the prediction by the 

model as significant. The NIR values are calculated as per the Table.3. for all models in each parameters and 
represented in the Figure.5. 

 

 

 
Figure.5. No Information Rate (NIR) 

 

As seen by the plot, the NIR values are nearly 1 for Temperature-A and Flow for the models 

Conditional Inference Trees and C4.5. Whereas their global accuracies are in the range 0.74 to 0.75. Hence 

dependability of the models for these parameters are lower. However for these parameters the ensemble models 

exhibit a NIR value comparable to Accuracy and hence can be considered. For all the other cases the NIR values 

are lesser than Accuracy values.  

 

6.3 F1 Score 

Generally accuracy indicates if a model is trained correctly and how it performs in a homogeneous set 

of classes. However, it is not a complete metric for evaluation, when there is class imbalance. Even though 

precision and recall are individually calculated for the data set of the given class, a single overall evaluation is 
provided by the F1 score. An F1 score is considered perfect when it's 1, while the model is a total failure when 

it's 0. The F1 scores are calculated as per the Table.3 for the most prevalent class in each parameters and 

represented in the Figure.6.  
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Figure.6. F1 Score 

 
The values indicates that all the models are having a good score ranging from 0.816 to 0.859.  

Differences in their scores are very minimum and had to be identified with a high resolution of the axes. Again 

the performance of the models C4.5, Bagging Cart and random Forest are near equal and consistent for all the 

parameters. 

 

6.4 Model Fitness (SSPN) 

As can be seen from the global accuracy and F1 score, the performance of the models are near equal 

with only marginal differences among the two. Hence it becomes essential to derive comprehensive metrics 

which can better highlight the performance for meaningful comparisons. For a multiclass environment, the 

performance of the model is best assessed by combining individual metrics for the desired class into a single 

fitness function. We chose the SSPN fitness function that is based on all the four statistical indexes: sensitivity 
(SE), specificity (SP), positive predictive value (PPV), and negative predictive value (NPV). The fitness 

function SSPN is given as  

                                                  
 

Thus, for evaluating the fitness   of an individual model, the following equation is used: 

 

                                                                     
 

Which obviously ranges from 0 to 1000, with 1000 corresponding to the ideal. The models are ranked based on 
the fitness scores.  

The values of SE, SP, PPV and NPV calculated for the desired class are tabulated in Table.4 for all the models 

and all the parameters. 

 

Table.4.Model Metrics for SSPN 

S.No Parameter Model Sensitivity(S

E)/ 

Recall 

Specificity(S

P) 

Positive Predicted 

Value(PPV)/ 

Precision 

Negative 

Predicted 

Value(NPV) 

1 Temperature-A Conditional 

Inference Trees 

0.75382 0.95578 0.99965 0.02346 

C4.5 0.74653 0.95516 0.99956 0.02668 

Bagging Tree 0.99956 0.02712 0.74661 0.95585 

Random Forest 0.99956 0.02712 0.74661 0.95585 

AdaBoost 0.74645 1.000 1.000 0.02586 

2 Temperatue-B Conditional 

Inference Trees 

0.78830 0.69430 0.84660 0.60520 

C4.5 0.796 0.7047 0.8523 0.6174 
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Bagging Tree 0.8523 0.6185 0.7965 0.7051 

Random Forest 0.8523 0.6184 0.7965 0.705 

AdaBoost 0.7963 0.7044 0.8519 0.6182 

3 Flow Conditional 

Inference Trees 

0.74453 0.91189 0.99824 0.05057 

C4.5 0.7452 0.89834 0.99771 0.05605 

Bagging Tree 0.74406 0.05679 0.74532 0.89262 

Random Forest 0.99764 0.05654 0.74529 0.89652 

AdaBoost 0.74406 0.97669 0.99958 0.99899 

4 Pressure Conditional 

Inference Trees 

0.86550 0.67650 0.83750 0.72300 

C4.5 0.8701 0.6866 0.8436 0.7313 

Bagging Tree 0.8425 0.7343 0.8712 0.686 

Random Forest 0.84370 0.73240 0.8706 0.6871 

AdaBoost 0.8698 0.9995 0.6322 0.9998 

The   score of the models under study calculated for the most prevalent class in each parameters are plotted as 

in Figure.7. 

 

 
Figure.7. Model Fitness (SSPN) 

 

The plot indicates that the score is very low in the range of 17 to 38 for the parameters Temperature A 

& Flow. This is due to high Type-1 error in ensemble models and high Type-2 error in Conditional Inference 

Trees & C4.5 for the prediction of negative classes. Further there is a very high class imbalance seen in the data 

tuples for these parameters with the prevalence values being around 0.98 for all the models. Similarly the score 

in case of Temperature B & Pressure is in the range of 280 to 370. The prevalence values for the desired class in 

these parameters are in the range 0.65 to 0.68. 

The   score indicates that Conditional Inference Trees are inferior in their performance when compared 

to other models for each of the variable. The performance of the models C4.5, Bagging Cart and random Forest 

are higher and consistent for all the parameters. Out of the three, Bagging Cart and random Forest models have 

shown marginally higher performance compared to C4.5. Adaboost model had a lower performance in case of 
flow. For other parameters the model performed comparable (slightly lower) than other ensemble models. 

 

6.5 Area under the Curve (AUC)  

Receiver operating characteristics (ROC) analysis is a yet another visualization of prediction 

performance based on the trade-offs between sensitivity and specificity. To compare the models in a 

comprehensive scale, the receiver operating characteristics curve is plotted with 1-specificity also called FPR on 

x-axis and sensitivity (TPR) on the y-axis. The Area under the Curve (AUC) is calculated using the R package 

‘pROC’ as per ref [20]. The area under the ROC curve indicates the measure of goodness for prediction by the 

model. A value of 0.5 indicates random and useless classification while 1 would indicate perfect classifier. The 
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various AUC values for the models under this study are calculated using the data in Table.3 and are plotted in 

Figure.8.  

 

 

 
 Figure.8. Area under the Curve (AUC) values 

 

From the plots it is found that the models cannot be ignored for prediction classification as the AUC 

values are ranging from 0.9079 to 0.9804. Random Forest model exhibited highest value for all the parameters 

except Temperature-B. Conditional Inference Tree model performed the best for temperature-B but was lowest 

for temperature-A and Pressure. Adaboost model performed the best for Flow and better than bagging tree and 

random Forest for Temperature-B. But for other parameters the model performed poorer. 
Similarly C4.5 model was lowest in its AUC Value for the parameters Temperature-B and Flow. Both 

Bagging Tree and random Forest performed consistently equally for all the parameters better than other models. 

 

VII. Conclusion 
This study dealt the development of various Decision Tree classification models that are trained with 

the key process variables of a Nuclear Power Plant Process that are recorded and available in the Distributed 

Control System (DCS) and evaluated their performance to estimate of a real time process data under steady state 

conditions without giving a time treatment while processing. With these models that can use the real time data, 

we can optimise the values of the key parameters, and predict their values when there is a shift in the process to 
help the operator to understand whether the plant is operated under an optimum efficiency. Different supervised 

machine-learning algorithms based on Decision Trees and their ensemble models using bagging and boosting 

techniques were developed and evaluated for their suitability for estimating the key performance variables. The 

performance of the models were assessed using a test data set calculating various metrics based on their 

predictions. The study results show that all the models are closer in terms of Global Accuracy values between 

74.32% to 80.77%. Two ensemble models viz. Bagging Tree and Random Forest have a marginally better 

performance. The models Conditional Inference Trees and C4.5 are not dependable for Temperature A and Flow 

as their NIR values are higher than Accuracy. 

On the basis of derived selection measures, all the models have a comparable performance for all the 

parameters in terms of F1 scores. The performance of the models C4.5, Bagging Cart and random Forest are 

near equal and consistent for all the parameters. On SSPN index, Conditional Inference Trees are found to be 
inferior to the other models. On this score also the ensemble models Bagging Tree and Random Forest have a 

better performance with C4.5 closely comparable. 

On the basis of AUC values, both ensemble models Bagging Tree and random Forest performed 

consistently equally for all the parameters better than other models. 

Thus although utility of all decision tree models for Process parameters prediction cannot be neglected, 

ensemble like bagging Trees and random Forests have given a better results. 
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Further study can be done on the performance by modifying the class levels with lower bin sizes, using 

custom ensemble techniques with multiple type of models instead of single type like Decision Trees.  

 

References 
[1] D. Flynn, J. Ritchie, and M. Cregan, “Data mining techniques applied to power plant performance monitoring,” in IFAC 

Proceedings Volumes (IFAC-PapersOnline), 2005, p. Volume-38,Issue-1,pages-369-374. 

[2] J. Q. Li, C. L. Niu, J. Z. Liu, and L. Y. Zhang, “Research and application of data mining in power plant process control and 

optimization,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes 

in Bioinformatics)(Vol. 3930 LNAI, pp. 149–158)., 2006, pp. 149–158, doi: 10.1007/11739685_16. 

[3] T. Ogilvie, E. Swidenbank, and B. W. Hogg, “Use of Data Mining Techniques in the Performance Monitoring and Optimisation of 

a Thermal Power Plant,” in IEE Colloquium on Knowledge Discovery and Data Mining (1998/434), London, UK, 1998, pp. 7/1-7/4, 

doi: 10.1049/ic:19980647. 

[4] V. R. S.Narasimhan, “Application of data mining techniques for sensor drift analysis to optimize nuclear power plant performance,” 

Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 1, pp. 3087–3095, 2019, doi: 10.35940/ijitee.A9139.119119. 

[5] V. R. S.Narasimhan, “Optimization of a Process System in Nuclear Power Plant- A Data Mining Approach,” Grenze Int. J. Eng. 

Technol. Spec. Issue, vol. Grenze ID:, no. 6.2.1, pp. 1–11, 2020. 

[6] S. Narasimhan and R. Velayudham, “Classification Models Based on Association Rules for Estimation of Key Process Variables in 

Nuclear Power Plant,” vol. 100, no. 4, pp. 315–330, 2020. 

[7] D. Davidov, O. Tsur, and A. Rappoport, “Enhanced sentiment learning using twitter hashtags and smileys,” in Coling 2010 - 23rd 

International Conference on Computational Linguistics, Proceedings of the Conference, 2010. 

[8] M. W. Ahmad, M. Mourshed, and Y. Rezgui, “Tree-based ensemble methods for predicting PV power generation and their 

comparison with support vector regression,” Energy, vol. 164, pp. 465–474, 2018, doi: 10.1016/j.energy.2018.08.207. 

[9] D. P. Gaikwad and R. C. Thool, “Intrusion detection system using Bagging with Partial Decision Tree base classifier,” in Procedia 

Computer Science, 2015, vol. 49, no. 1, pp. 92–98, doi: 10.1016/j.procs.2015.04.231. 

[10] N. G. Relan and D. R. Patil, “Implementation of network intrusion detection system using variant of decision tree algorithm,”  in 

2015 International Conference on Nascent Technologies in the Engineering Field, ICNTE 2015 - Proceedings, 2015, pp. 3–7, doi: 

10.1109/ICNTE.2015.7029925. 

[11] J. P. Jiawei Han, Micheline Kamber, Data mining : concepts and techniques, 3rd ed. Morgan Kaufmann Publishers, 2012. 

[12] T. Hothorn, K. Hornik, and A. Zeileis, “Unbiased Recursive Partitioning: A Conditional Inference Framework,” J. Comput. Graph. 

Stat., vol. 15, no. 3, pp. 651–674, Sep. 2006, doi: 10.1198/106186006X133933. 

[13] A. Zeileis, T. Hothorn, and K. Hornik, “Model-Based Recursive Partitioning,” J. Comput. Graph. Stat., vol. 17, no. 2, pp. 492–514, 

Jun. 2008, doi: 10.1198/106186008X319331. 

[14] C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn, “Bias in random forest variable importance measures: Illustrations, sources 

and a solution,” BMC Bioinformatics, vol. 8, no. 1, p. 25, 2007, doi: 10.1186/1471-2105-8-25. 

[15] S. L. Salzberg, “C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993,” Mach. 

Learn., vol. 16, no. 3, pp. 235–240, 1994, doi: 10.1007/BF00993309. 

[16] L. Breiman, “Bagging Predictors,” Mach. Learn., vol. 24, no. 2, pp. 123–140, 1996, doi: 10.1023/A:1018054314350. 

[17] Y. Freund, R. E. Schapire, and M. Hill, “Experiments with a New Boosting Algorithm,” 1996. 

[18] L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001, doi: 10.1023/A:1010933404324. 

[19] M. Kuhn, “Classification and Regression Training [R package caret version 6.0-86],” 2020, Accessed: Jun. 10, 2020. [Online]. 

Available: https://cran.r-project.org/package=caret. 

[20] X. Robin et al., “pROC : an open-source package for R and S + to analyze and compare ROC curves,” BMC Bioinformatics, no. 12, 

p. Article No.77, 2011, doi: 10.1186/1471-2105-12-77. 

 

S.Narasimhan, et. al. “Decision Trees for Nuclear Power Plant Performance Optimization.” IOSR Journal 

of Computer Engineering (IOSR-JCE), 23(2), 2021, pp. 51-62. 

 


