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Abstract 
The Level Generation Competition, Mario AI Championship, was to the knowledge of the world’s first 

procedural content generation competition. Competitors participated by submitting level generators — software 

that generates new levels for a version of Super Mario Bros tailored to individual players’ playing style. This 

paper presents the principles of the competition, the scoring procedure, the submitted level generators, and 

therefore the results of the competition. Here also discuss what are often learned from this competition, both 

about organizing procedural content generation competitions and about automatically generating levels for 
platform games. 
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I. Introduction 
In the last few years, a number of game AI competitions have been run in association with major 

international conferences, several of them sponsored by the IEEE Computational Intelligence Society. These 

competitions are based either on classical board games (such as Othello and Go) or video games (such as Pac-

Man, Super Mario Bros, and Unreal Tournament). In most of these competitions, competitors submit controllers 

that interface to the game through an API built by the organizers of the competition. The competition is won by 

the person or team that submitted the controller that played the game best, either on its own (for single-player 

games such as Pac-Man) or against others (in adversarial games such as Go). One interesting variation on this 

formula is the 2k BotPrize, where the submitted entries are not supposed to play the game as well as possible, 

but in a human-like manner as possible [1]. Several of these competitions have spurred valuable research 

contributions as reported in [2], [3]. 

Here the ‘Mario AI Competition’ which ran from 2009 to 2012 is focused: providing an introduction 
to the problem area and the challenges it presented. Here I explore one of the most interesting areas to have 

arisen in Artificial Intelligence for games in recent years: procedural content generation. The challenges faced in 

developing AI that creates content that is assessed primarily by the fun it generates for the player. This is the 

focus of a particular track of the competition.  

 

II. Infinite Mario Bros 

Infinite Mario Bros (Markus Persson 2008) is a public domain clone of Nintendo’s classic platform 

game Super Mario Bros (1985). The original Infinite Mario Bros is playable on the web, where Java source code 

is also available. The gameplay in Super Mario Bros consists of moving the player-controlled character, Mario, 

through two-dimensional levels, which are viewed sideways. Mario can walk and run to the right and left, jump, 

and (depending on which state he is in) shoot fireballs. Gravity acts on Mario, making it necessary to jump over 
holes to get past them. Mario can be in one of three states: Small, Big (can crush some objects by jumping into 

them from below), and Fire (can shoot fireballs). The main goal of each level is to get to the end of the level, 

which means traversing it from left to right. Auxiliary goals include collecting as many as possible of the coins 

that are scattered around the level, finishing the level as fast as possible, and collecting the highest score, which 

in part depends on the number of collected coins and killed enemies. Complicating matters is the presence of 

holes and moving enemies. If Mario falls down a hole, he loses a life. If he touches an enemy, he gets hurt; this 

means losing a life if he is currently in the Small state. Otherwise, his state degrades from Fire to Big or from 

Big to Small. However, if he jumps and lands on an enemy, different things could happen. Most enemies (e.g. 

goombas, cannonballs) die from this treatment; others (e.g. piranha plants) are not vulnerable to this and proceed 

to hurt Mario; finally, turtles withdraw into their shells if jumped on, and these shells can then be picked up by 

Mario and thrown at other enemies to kill them. Certain items are scattered around the levels, either out in the 
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open or hidden inside blocks of brick, and only appearing when Mario jumps at these blocks from below so that 

he smashes his head into them. Available items include coins, mushrooms which make Mario grow Big, and 

flowers which make Mario turn into the Fire state if he is already Big. No textual description can fully convey 

the gameplay of a particular game. Only some of the main rules and elements of Super Mario Bros are explained 

above; the original game is one of the world’s best selling games, and still very playable more than two decades 
after its release in the mid-eighties. Its game design has been enormously influential and inspired countless other 

games. The original Super Mario Bros game does not introduce any new game mechanics after the first level, 

and only a few new level elements (enemies and other obstacles). It is also very little in the way of the story. 

Instead, the player’s interest is kept through rearranging the same well-known elements throughout several 

dozens of levels, which nevertheless differ significantly in character and difficulty. This testifies to the great 

importance of level design in this game (and many others in the same genre), and to the richness of the standard 

Super Mario Bros vocabulary for level design. 

 

III. The Mario Ai Championship 
The Mario AI Championship was set up as a series of linked competitions based on Infinite Mario 

Bros. In 2009, the first iteration of the Championship (then called the Mario AI Competition) was run as a 

competition focusing on AI for playing Infinite Mario Bros as well as possible. A write-up of the organization 

and the results of this competition can be found in [3]. The 2010 Mario AI Championship was a direct successor 

of this competition, but with a wider scope. It consisted of three competition tracks (the Gameplay Track, the 

Learning Track, and the Level Generation Track) that were run in association with three international 

conferences (EvoStar, IEEE Congress on Evolutionary Computation, and IEEE Conference on Computational 

Intelligence and Games). While the championship was open to participants from all over the world, the cash 

prizes (sponsored by the IEEE Computational Intelligence Society) could only be awarded to competitors that 

were physically present at the relevant competition event. 

 

IV. A Little Bit of History 
As noted earlier, the competition has run since 2009. However, the area of interest, the procedural 

generation track, did not run until 2010.  The original emphasis of the competition, much like Ms. Pac-

Man before it, was to create characters that could learn to play the game. The classic Super Mario game is one 

that is almost ingrained within modern culture.  It provided an alternative to Ms. Pac-Man given that it a 

completely different style of game, given that it is a two-dimensional platformer. 

Outside of the gameplay mechanics, it also acted in much the same way the Ms. Pac-Man had done 

previously.  Super Mario Bros. is an equally, if not more so, recognizable game than Ms. Pac-Man. So it acted 

on two fronts: a legitimate problem to explore and an iconic game to rally interest.  The team pushed the 

competition heavily through social media in order to get the message out there and encourage submissions not 
only from researchers but hobbyists too. 

The Mario AI competition provides a legitimate AI problem to explore in an iconic game to rally 

interest. 

The competition itself is reliant upon the Infinite Mario Bros. Clone that was developed by Markus 

‘Notch’ Persson, who is more famously known for that little project he developed called Minecraft.  

 

4.1 Game Play Track 

The gameplay track was the inaugural track of the competition in 2009 and was aimed at researchers 

adopting any technique they wanted to play Mario levels.  This resulted in a range of implementations (15 to be 

precise) that varied from hand-scripted to the use of genetic algorithms, neural networks, and reinforcement 

learning.    

 

4.2 The Learning Track 

As discussed in (Togelius et al., 2010) there was a gulf in the performance of the A* and handcrafted 

submissions versus those that were reliant upon machine learning algorithms.  As a result, a separate track was 

introduced in 2010.  However, it didn’t seem to be as popular and only ran that year. The A* implementation 

made people think that the problem was ‘solved’ and did not merit further consideration. 

 

4.3 The Turing Track 

The behavior is not remotely human.  As a result, the team also introduced a Turing track, whereby AI 

players must behave as human-like as possible.  In many ways inspired by a similar competition running in 

Unreal Tournament 2004: the 2K BotPrize (Hingston, 2010).  The Turing track has only run in the 2012 

iteration of the competition and as noted in (Togelius, 2013a), bots were not capable of fooling the judges. 

https://minecraft.net/
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Interestingly the moments they appeared more human were when they were standing still or second-guessing 

their actions. 

 

V. The Level Generation Track 
The level generation track in the Mario competition is the first of its kind.  Unlike the other tracks that 

were focused on producing software agents that could act in the players' stead as Mario, the focus was to create 

a level generator that would create levels to play.  As mentioned in (Togelius et al., 2013a), when the first PCG 

track ran back in 2010, there were no real benchmarks that could be used to argue the validity of a generated 

piece of terrain.  

Of course, in order to evaluate the generated content, it needs to be played! So the traditional method of 

simply allowing the AI to run against a problem doesn’t work. So for judging to take place, human players 

would play against the generated levels.  However, as mentioned in (Shaker et al., 2011), each judge was asked 

to play a test level that acted solely to accrue metrics from the players' performance.  This information was 

passed on to the level generators to allow them to run their procedural generation.  In addition, there are a 
number of constraints passed to each generator that dictate some expectations of the generated level.  This 

included things such as the number of pits, the number of coin/power-up blocks. 

This set of constraints were introduced for a reason: it would be naive to assume that these level 

generators will create something algorithmically without any constraints being imposed upon them. This might 

seem cynical, but there’s a good chance that an unchallenged level generator is randomly sampling from 

collections of hand-crafted, human-designed solutions.  That isn’t really the focus of the competition. In fact, it 

would be cheating!  This allows the competition to focus solely on content crafted procedurally. 

NOTE: One of the key things to remember about this competition is that the levels are not being 

designed to mimic ACTUAL Mario levels. Such a problem is – arguably – even more challenging, given that 

what we constitute as a Mario level adheres to a rule book that has never been released to the public domain 

and is locked in the minds of Nintendo’s finest designers. While some generators hope to invoke some of these 

principles, they are often inferred from the experience of playing Mario games. The rules on what makes a level 
a “Mario level” may not actually exist. 

There are a number of different implementations that were developed for the 2010 competition. Here a 

handful and show the variety of approaches employed by different teams is shown.  Some are driven by AI 

algorithms, whereas others have a more prescribed nature. 

 

5.1 A ‘Flow’-Driven Generator 

The untitled submission by Tomonori Hashiyama (University of Electro-Communications, Tokyo) 

and Tomoyuki Shimizu (formerly Uni. Electro-Com, Tokyo), developed a system designed to make experiences 

‘flow’ between one another.  This is achieved by using what is known as an Interactive Evolutionary 

Computational algorithm.  In short, an evolutionary algorithm is used to build the solutions, but the fitness 

criteria are first determined by the player’s performance at the test level. 
 

 
Figure 1: An overview of the architecture of the Shimizu and Hashiyama generator. (Shaker et al., 2011)  
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A skill and preference estimator derives key information from the player’s data from the test level. Identifying 

your preference for collecting coins, killing enemies, and smashing blocks.  The system is then reliant upon a 

collection of randomly crafted level ‘chunks’ which are assessed with respect to the metrics you have defined.  

The system then creates levels by matching chunks to the skill level, followed by the preference of the player. 

5.2 The ‘Hopper’ Level Generator 
This generator used a rule-driven approach to place tiles across the map from left to right, utilizing 

probabilities that were hand-crafted for things such as widths of gaps and enemy frequency.  Depending on the 

incoming user-stats, different probabilities would be applied. 

 

 
Figure 2: Screenshots showcasing the special ‘zones’ that the ‘Hopper’ generator by Glen Takahashi and 

Gillian Smith would implement. Clockwise from top-left: hidden coin zone, fire zone, super jump zone, and 
shell zone. (Shaker et al., 2011) 

 

5.3 ProMP 
Meanwhile, Ben Weber, a PhD student at the University of California, devised the Probabilistic Multi-

Pass Generator (ProMP) that adds content to the level in stages.  For each level generated, the system would 

make multiple passes in a specific order: main terrain, hills, pipes, enemies, blocks then coins. This is shown in 

an example below. 

 

 
Figure 3: An overview of the level generation process in Ben Weber’s implementation. 
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This process is also parameterized, allowing the levels to be tailored to suit the player’s skill levels. 

These levels are pretty intense and would be insurmountable for many human players.  Interestingly, it also 

identifies some limitations of the A* player. 

 
Figure 4: Illustration of node generation in A* search. 

 

 
Figure 5: Illustration of node placement in A* search in Infinite Mario. The best node in the previous simulation 

step (right, speed) is inaccessible because it contains an obstacle. Thus the next best node is chosen, which 

results in a jump over the obstacle. The search process continues by generating all possible neighbors. The speed 

of Mario at the current node distorts the positions of all the following nodes. 

 

5.4 Scoring procedure  

The rationale behind the scoring was that the level generator which generates levels that were preferred 

by most players should win. As mentioned earlier, the primary aim of the competition was the generation of 

personalized Super Mario levels for particular players. For this purpose, we used human judges as Mario players 

to assess the quality of each submitted competitor; everyone who was present at the competition event was 

encouraged to participate in the judging. Each human judge was given a test level to play, and his or her 

performance on that level was recorded and passed on to the level generators. The judge then played two 
generated levels from two competing generators and ranked them according to how much fun they were to play.  

A two-alternative forced-choice questionnaire was used according to which each judge expressed a pairwise 

preference of fun after completing the two levels (i.e. “which game of the two was more fun to play?”). (The 

concept of “fun” was deliberately not defined further, so as not to bias judges more than what is unavoidable.) 

The adoption of this experimental procedure was inspired by earlier attempts to capture player experience via 

pairwise preference self-reports which were introduced by the competition organizers (see [4], [5], [6] among 
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others). For all competition entries to be treated fairly all generators had to be played an equal number of times 

by the judges and compared against all other generators submitted. On that basis, the required minimum number 

of judges was 15 given that there were six competitors (i.e. all possible combinations of 2 games out of 6 

competitors). To control for order of play effects, each pair was played by the same judge in both orders. 

To make sure that each pair of competitors were judged at least once in both orders we set up an online SQL 
database that initially contained all possible pairs marked as “unplayed”. Whenever a game session started, the 

software connected to the database and asked for an unplayed pair to load. Once the two-level generators in the 

pair had been chosen from the database, the levels were generated according to the judge’s gameplay behavioral 

statistics and the judge was set to play the generated two levels in both orders. The level generators had access 

to player metrics such as numbers of player jumps and coins collected. When the two games and the 

questionnaire were completed, the judge’s preferences and gameplay statistics were stored in the database and 

the pair was marked as “played”. The experiment is reset if there are no more pairs available in the database to 

play (all pairs are marked as “played”). 

 

VI. Lessons learned 
Four years of running the Mario AI Championship has taught us a few things about what to do and 

what not to do when running a game-based AI competition. Let’s start with what did right. Basing the 

competition on a version of a famous game and keeping an active presence in social media helped to get 

attention to the competition. There also went to great lengths to ensure that the API is very simple to use – the 

target was for anyone familiar with Java to be able to have a controller up and running within five minutes – and 

that the framework is computationally lightweight and lacks external dependencies. These factors together seem 

to be responsible for the impressive adoption of the software for both research and teaching (the software is used 

for assignments in dozens of AI classes worldwide). However, most of the controllers and level generators 

developed for research purposes have not been submitted to any track of the competition, and after 2010 the 

Gameplay and Learning tracks have eff ectively stagnated. We believe the main reason for this is our failure to 

keep a central, coordinated source of information for the competition. There has been confusion regarding which 
version of the software and which settings have been used for particular competition events, and it has not 

always been easy to find updated information about results or the submitted controllers themselves. This has 

diminished the value of the software as a benchmark. A better example to follow is the Ms. Pac-Man 

competition, which evaluates controllers automatically via a web interface and keeps an updated league table at 

all times. 

 

VII. The Future of the Competition 
The Mario AI Championship is launched under the name “The Platformer AI Competition”, with 

reworked graphics and sounds from the open-source game SuperTux 4. The name and graphics change are 
meant to avoid problems associated with Nintendo’s ownership of the name “Mario” and the Mario graphics, 

but also to signify a reinvigoration of the competition taking into account several of the lessons learned while 

running the Mario AI Championship. In particular, the new competition will adopt a better approach to making 

canonical benchmark code available for each competition event, and making the code of competition 

submissions available. Initially there concentrate on the Turing Test and Level Generation tracks, given that 

these contain the currently most fertile research challenges and seem to draw the most interest from the 

academic community. 

 

VIII. Discussion 
This section discusses what can learn from this round of the Level Generation Track (which was also 

the first academic PCG competition and the first competition about adaptive or controllable PCG), both about 

organizing a PCG competition and about generating levels for platform games. 

 

8.1 Organizing a PCG competition  

Compared to other game AI competitions the PCG competition attracted a reasonably large set of 

competitors, representing a considerable diversity both geographically and in particular in terms of algorithmic 

approaches to the particular content generation problem. All of the entries submitted contain novel elements, 

most of the approaches are sophisticated and some of them are connected to the competitors’ ongoing research 

programs. The number and quality of submissions indicate a fairly strong interest in the field of procedural 

content generation forming a sub-community devoted to PCG that lies within the broader game AI and 
computational intelligence and games communities. Therefore, it seems very plausible that given a simple 

enough interface and an interesting enough content generation problem, future PCG competitions will attract 

good attention. In organizing this competition, the organizers drew on the experience of organizing several 

previous game AI-related competitions, as well as a set of “best practices” that have been accumulated within 



Mario AI Competition 

DOI: 10.9790/0661-2206020815                             www.iosrjournals.org                                                 14 | Page 

the computational intelligence and games community over the past few years. One core principle is that the 

competition should be as open as possible in every sense, both in terms of source code, rules, procedures, and 

participation. Another key principle is that the software interface should be so simple that a prospective 

competitor is able to download the software and hack together a simple entry in five minutes. Limitations in 

terms of operating systems and programming languages should be avoided wherever possible. It has also 
become customary to provide a cash prize in the range of a few hundred dollars, along with a certificate, to the 

winner. We believe that these principles have served us well. 

This not to say the current competition has been without its fair share of problems, actual as well as 

potential. It was until the last moment unknown how many members of the audience would be willing and able 

to participate in the judging, and it would, in general, be desirable to have a larger number of votes cast in order 

to increase the statistical validity of the scores. One of the key limitations of the existing survey protocol is that 

all entries need to be played against each other; ideally multiple times from different judges. That generates a 

large number of judges — which is combinatorial with respect to the number of entries — required to 

sufficiently assess the entries. This problem can be solved, in part, with a fair sampling of the pairs and an 

adaptive protocol which is adjusted according to the number of judges existent in the competition room. It is 

also questionable how representative of the general game-playing population an audience of game AI 

researchers is. As already mentioned, an Internet-based survey is currently running, where the software is 
included on a public web page and judges are solicited through mailing lists and social networking sites; this 

approach would undoubtedly come with its own set of limitations, such as preventing the competitors from 

gaming the system by voting multiple times themselves. Additional minor problems include the short time 

period given for the presentation of the competition; the competitors agree that it would have been very useful to 

have on spot presentations of their submissions as well. Moreover, one of the entries included a trivial but 

severe bug that was only discovered during the scoring, and which was arguably responsible for the very low 

score of that entry. The competition software repeatedly locked up on several of the judges’ laptops during level 

generation for as yet unknown reasons. A potential problem is that someone could submit a “level generator” 

that essentially outputs the same human-designed level each time and, if that level is good enough, it could win 

the competition. As we have abandoned the idea of forcing additional constraints on the level generators for fear 

of restricting them too much, such a case would probably have to be decided by the organizers of the 
competition based on some fairly fuzzy guidelines. The deeper problem is that the distinction between a level 

and a level generator and is not clear. It should rather be thought of as a continuum with intermediate forms 

possible, e.g. a fixed level design that varies the number and distribution of enemies according to the player’s 

skill level. (Bear in mind that several of the submitted level generators included complete human-designed level 

chunks of different sizes.) A possible solution to the above problem would be to let the judge play not one but 

several levels generated by the same level generator with the same player profile as parameters. In such a 

setting, a generator that always outputs the same level would probably come across as boring. This solution 

would also ensure that the judges rate that the actual design capacity of the generator rather than just the novelty 

value of a single generated level. If this is done, the player metrics might be updated as the player plays, 

allowing the generators to continuously adapt to a player’s changing playing style. It would require that each 

judge spends more time on judging, which might lead to a shortage of willing judges, but given the considerable 

advantages, it seems like a good idea that the next level generation competition lets judges play several levels 
from each generator. 

There are certain aspects of the questionnaire protocol used that could be improved on the next 

iteration of the competition. A 4-alternative forced-choice questionnaire scheme [7] could be adopted to 

improve the quality of self-reported preferences. Such a questionnaire scheme would include two more options 

for equal preferences (i.e. “Both levels were equally fun” and “Neither level was fun”) and thereby eliminate 

experimental data noise caused by judges who do not have a clear preference for one of the two levels. In the 

future, we might consider including hand-authored levels (e.g. original Super Mario Bros levels) among the 

generated levels; a litmus test for whether the (personalized or other) level generators are really successful 

would be whether they have generally preferred over professionally hand-authored levels. We would also like to 

try to answer not only the “which” question about fun levels but also the “why” question; asking judges why 

they prefer a particular level over another would be interesting but would require significant human effort in 
interpreting the data. Another method would be to ask not only which level was more fun, but also which was 

more challenging, interesting, etc., similar to the questionnaires used in [8]. Another takeaway from previous 

CIG competitions is that competitions usually benefit from repetition. When basically the same competition is 

run a second or third time, competitors get a chance to perfect their entries and learn from each other, meaning 

that much better entries are submitted. Refining individual entries also mean that techniques that are more 

appropriate for the problem stand out from initially interesting ideas that fail to deliver on their promise. In other 

words, the scientific value of competition in general increases with the number of times it is run. 
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8.2 Generating levels for platform games  

The main point to note about the competition results is that the simplest solution won. Ben Weber’s 

ProMP level generator does not search and backtrack while constructing the level, does not include any human-

designed level chunks, and does not in any way adapt to the judge’s playing style. Above all, it does not attempt 

any form of large-scale level structure, pacing, or anything similar, but simply places individual level elements 
in a context-free manner.  

It would be premature to conclude that the above-mentioned features (adaptation, human-designed 

chunks, search in level space, and macrostructure), which were attempted by the other generators, cannot in 

principle add to the quality of generated levels. Rather, we believe that imperfect implementation and a lack of 

fine-tuning was responsible for the relative failure of the more complex level generators. It is clear that the 

entrants need more time to perfect their entries, and possibly recombine ideas from different approaches. In 

addition, player behavioral information could assist the generation of more personalized, and thereby preferred, 

levels (as in [9]). While level generation studies in Super Mario indicate features that are responsible for a 

level’s high aesthetical value [8] we are still far from identifying the complete set of features — which could be 

represented computationally — that would yield a highly engaging platform game. Earlier findings suggest that 

this feature set needs to be individualized for each player's behavioral type [8]. In other words, the competition 

needs to run again to give the competitors further opportunities to improve their level generators. 
While Ben Weber’s level generator did not generate any macrostructure, it can be argued that it 

generates more micro-structure than several of the other level generators. Individual images of levels generated 

by Ben Weber’s generator tend to be densely filled with items, creatures, and landscape features and frequently 

give the false appearance of macrostructure, such as there being multiple paths through the level. This suggests 

that the current evaluation mechanism incentivizes judges to make judgments on level quality early or based 

only on local features. On a positive note, all the entries produced levels that were, at least once, judged to be 

more entertaining than some level generated by another entry. Also, the score difference between the winner and 

the runner-up was very small, despite the level generators being very dissimilar. This suggests that widely 

differing approaches can successfully be used to generate fun levels for Super Mario Bros. This particular 

content generation problem is still very much an open problem. Here also attempted to see how much of the 

preference for certain levels of others, and therefore the quality of level generators, can be explained by simple 
extracted features using linear correlations. The analysis showed that there are particular key level attributes, 

such as the number of coins and rocks as well as the average gap width and the even placement of enemies, that 

affect the fun preference of judges. These features are all negatively correlated; more items and more irregularly 

distributed items are associated with less fun. The most succinct summary of the statistical analysis would be 

that the less clutter, the more fun level. At the same time, the correlations are far from strong enough to explain 

all of the expressed preferences, suggesting that the relationship between level features and quality is too 

complex to be captured by linear correlations. We also know from previous research that level preferences are 

highly subjective. It is likely that an analysis of more extracted features, including playing style metrics, from a 

larger set of levels played by a larger set of judges could help us understand the complex interplay of the 

different aspects of level design better. 
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