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Abstract: A decoy state method based on one decoy state protocol has been derived for both BB84 and 

SARG04. This method can give a different lower bound of the fraction of single-photon counts )( 1y  and the 

fraction of two-photon counts )( 2y , the upper bound QBER of single-photon pulses( 1e ), the upper bound 

QBER of two-photon pulses( 2e ), and the lower bound of the key generation rate for both BB84 and SARG04. 

The estimations have  demonstrated that a decoy state protocol with only one decoy state ( 0v ) can 

approach the theoretical limit, and the estimations have provided an optimal key generation rate, which is the 

same as having an infinite number of decoy states for BB84 and SARG04.This finding has led to the introduction 

of the Vacuum Protocol. We have simulated an optical fiber-based QKD system using our decoy state method 

for both SARG04 and BB84. The simulation has shown that the fiber-based QKD systems using the proposed 

method for BB84 are able to achieve both a higher secret key rate and greater secure distance than those of 

SARG04. 
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I. Introduction 
Quantum key distribution (QKD) is a cryptographic protocol that allows two remote parties (Alice and 

Bob) to generate a random key (a string of bits) so that only Alice and Bob have any information regarding the 

key. The most well-known QKD protocol is the BB84 protocol [1], which has been proven to be unconditionally 

secure against any attacks allowed by quantum mechanics [2,3, 4 ];this does not guarantee the security of QKD 

in practice, due to various types of imperfections in a practical set-up. For real-life experimental set-ups, which 

are mainly based on faint laser pulses, the occasional production of multi-photons and channel loss make it 

possible for sophisticated eavesdroppers to launch various subtle eavesdropping attacks, including the PNS 

(photon number splitting) attack[5], in which she Alice blocks all single-photon pulses and splits multi-photon 

pulses. She keeps one copy of each of the split pulses to for herself and forwards another copy to Bob. Although 

[5, 6] showed that secure QKD is still possible even with imperfect devices, the PNS attack puts severe limits on 

the distance and key generation rate of an unconditionally secure QKD. A novel solution to the problem of 

imperfect devices in BB84 was proposed by Hwang [8], who used extra test states–called decoy states–to learn 

the properties of the channel and/or eavesdrop on the key-generating signal states. Lo and co-workers presented 

an unconditional security proof of decoy-state QKD [9, 10]. By combining the idea of the entanglement 

distillation approach by Gottesman, Lo, Lutkenhaus, and Preskill (GLLP) [11] with the decoy state method, they 

showed that decoy state QKD can exhibit a dramatic increase in distance and key generation rate compared to 

non-decoy protocols [12]. Moreover, many methods have been developed to improve the performance of the 

decoy state QKD, including more decoy states [13], non-orthogonal decoy-state method [14], photon number-

resolving method [15], herald single photon source method [16, 17], modified coherent state source method 

[18], and the intensity fluctuations of the laser pulses [19] and [20]. Some prototypes of decoy state QKD have 

already been implemented [21- 26]. 

Additionally, there has been work on measuring-device independent (MDI) QKD, in which Alice and 

Bob independently prepare phase randomized coherent pulses in one of the four BB84 states (with decoy states) 

and send them to an untrusted third party, Charlie. Charlie then performs Bell state measurements (BSM) and 

announces to Alice and Bob over a public channel the successful BSM events. Alice and Bob can obtain a sifted 

key by dropping events, in which they send pulses to different bases [27]. This has been implemented and gives 

good key rates in the laboratory [28]. A further improvement using four-source decoy states has been examined 
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[29]. The preparation of phase-randomized coherent pulses could be achieved, for instance, by strongly 

modulating the laser diode, taking it below and above a threshold [30]. Importantly, the security of decoy-state 

QKD has been obtained in the case of finite-length keys [31,32]. A complete passive decoy-state QKD 

transmitter with coherent light has been presented in [33,34]. 

In this paper, we first present a simple method for studying the secure key generation rate when single-

photon and two-photon pulses are employed to generate a secure key. We drive a general theory for the decoy 

state protocol, with one decoy state protocol for both BB84 and SARG04. This method can be used to estimate 

the lower bound of the fraction of single-photon counts  1y and the fraction of two-photon counts  2y , the 

upper bound QBER of single-photon pulses  1e ,and the upper bound QBER of two-photon pulses  2e , as 

well as to evaluate the lower bound of the key generation rate for both BB84 and SARG04. Then, we show the 

simulation of fiber-based Decoy State Quantum Key Distribution based on one decoy state protocol for both 

BB84 and SARG04.  

This paper is prepared as follows. In section 2, we propose a tight verification of the fraction of the 

single photon state and the quantum bit error rate (QBER) for the practical decoy method with one decoy state 

protocol for both BB84 and SARG04. In section 3, we simulate the key generation rate over transmission 

distance. The main conclusions are summarized in section 4. 

 

II. Proposed Decoy State Method 
In this section, we propose a method for evaluating the lower bound of the key generation rate for both BB84 

and SARG04 by estimating the lower bound of the fraction of one photon count 1y and two photon counts 2y , 

upper bound of the  quantum bit-error rate (QBER) of one photon 1e  and upper bound of the quantum bit-error 

rate (QBER) of two photons 2e . It is assumed that Alice can prepare and emit a weak coherent state 
ie  . 

Assuming that the phase   of each signal is randomized, the probability distribution for the number of photons 

of the signal state follows a Poisson distribution with some parameter 
 
(the intensity of signal states), which 

is given by 
!

i

ip e
i

  ; Alice’s pulse will contain an i-photon state. Therefore, it is assumed that any 

Poissonian mixture of the photon number states can be prepared by Alice. Moreover, Alice can vary the 

intensity for each individual pulse.  

 

Assuming Alice and Bob choose the signal and decoy state with expected photon numbers 1,  , respectively, 

they will obtain the following gains and QBERs for the  signal state and decoy state [35]: 
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The transmittance of the i-photon state  with respect to a threshold detector is   

1 (1 )i

i                                                                                                                              (7) 

for 0,1,2,...i   

The yield of an i-photon state is given by 

0 0 0i i i iy y y y                                                                                                 (8) 

The error rate of the i-photon state is given by  
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where iy  is the yield of an i-photon state, which comes from two parts: background ( 0y ) and true signal.   

is the overall transmittance, which is given by  1010 ,
l

Bob



 



 
where  (dB/km) is  the loss coefficient , l is 

the length of the fiber and Bob  denotes the transmittance on Bob’s side. dete  is the probability that a photon 

hits the erroneous detector, while  dete  characterizes the alignment and stability of the optical system. The error 

rate of the background is 
0

1

2
e  . 

  

Case A1 of one decoy state protocol for BB84: In this protocol, we should estimate the lower bounds of 1y  and 

the upper bounds of 1e . Intuitively, only one decoy state is needed for the estimation. Here, we investigate how 

to use one decoy state to estimate those bounds. 

Suppose that Alice randomly changes the intensity of her pump light among 2 values (one decoy state and a 

signal state) such that the intensity of one mode of the two mode source is randomly changed among v
 
and  , 

which satisfy the inequalities 0 1v    . v  is the mean photon number of the decoy state and   is the 

expected photon number of the signal state. 

According to Eq. (1), the gain of the signal and one decoy state are given by:  
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By using the inequality (8) in [36] , with 0 1v     , we obtain  
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Using Eq.  (10), we obtain  
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By solving inequality (13), the lower bound of 1y  is given by  
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According to Eq. (1), the lower bound of the gain of a single photon state is then given by  
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The QBER of the one decoy state  is given by  
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By solving inequality (16), the upper bound of 1e
 
is 
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Here, we will see how good are our estimations are for 1y  and 1e for one decoy state protocol. By  substituting 

Eqs. (1), (3), and (5) into Eq. (14), the lower bound of 1y  becomes  
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which matches the theoretical value 1 0y y   from Eq. (8)  (see appendix).  

Next, substituting Eqs.  (2), (4), and (6) into Eq. (17), the upper bound of 1e  becomes 
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Our estimation of the upper bound of 1e  matches the theoretical value from Eq. (9)  (see appendix). 
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The above calculation seems to suggest that our estimations for 1y  and 1e  for a one decoy state protocol are as 

good as those for the most general protocol when 0.v  

 

Case B1 of one decoy state protocol for SARG04: In this protocol, we should estimate the lower bounds of 2y  

and the upper bounds of 2e  to obtain the lower bound of the key generation rate for SARG04. Intuitively, only 

one decoy state is needed for the estimation. Here, we investigate how to use one decoy state to estimate these  

bounds. 

Suppose that Alice randomly changes the intensity of her pump light among 2 values (one decoy state and a 

signal state) such that the intensity of one mode of the two mode source is randomly changed among v
 
and  , 

which satisfy the inequalities 0 1,v    . v  is the mean photon number of the decoy state and   is the 

expected photon number of the signal state. 

According to Eq. (1), the gain of the signal and one decoy state are given by:  
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By using inequality (8) in [2] , with 0 1v     we obtain  
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Then, 
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Multiplying both sides by  
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Using Eq. (24), we obtain  
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By solving inequality (24), the lower bound of 2y  is given by 
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According to Eq. (20), the lower bound of the gain of a two photon state is then given by  
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The QBER of the one decoy state is given by  



Practical QKD For Both BB84 And SARG04 Protocols….. 

DOI: 10.9790/0661-2001043747                                     www.iosrjournals.org                                         42 | Page 

2

0 0 1 1 2 2

32 !

i
v

v v i i

i

v v
E Q e e y ve y e y e y

i





                                     

            

2

0 0 1 1 2 2
2

v
e y ve y e y                                                                                               (27) 

 

By solving inequality (27), the upper bound of 2e
 
is  

 ,

2 2 1 1 0 02 ,

2

2U v v

v vL v
e e E Q e ve y e y

v y
                                                                            (28) 

Here, we will see, how good are our estimations are for 2y and 2e  for  a two decoy state protocol. By 

substituting Eqs. (1), (3), (5) and 1 0y y   into Eq. (25), the lower bound of 2y  becomes  
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which matches the theoretical value 2 02y y   from Eq. (8). (see appendix). 
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Our estimation of the upper bound of 2e  matches the theoretical value from Eq. (9). (see appendix). 

The above calculation seems to suggest that our estimations for 1y , 2y , 1e  and 2e  for the one decoy state 

protocol are as good as those of the most general protocol when 0.v  

Our estimations match the theoretical values when v  tends toward zero, which gives an optimal key generation 

rate (for BB84 and SARG04) and is the same as having an infinite number of decoy states.  

Here, we estimate 1e  and 2e  for a one decoy state protocol. These estimations will be needed in the case of a 

two decoy state protocol. The QBERs of the signal and one decoy state are given by  
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By using Eq.  (31) , with 0 1,v    we obtain  
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By solving inequality (33), the upper bound of 1e
 
is 
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Next, we  estimate 2e . By using Eq. (31) , with 0 1,v     we obtain  
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By solving inequality (36), the upper bound of 2e
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After estimating the lower bounds of 1y  and 2y  and the upper bounds of 1e  and 2e  for each decoy state 

protocol. we can then use the following formula to calculate the final key generation rate of our QKD system for 

both the BB84 and SARG04 protocols [37]: 

 

          84 84 2 1 2 1{ ( ) ( ) [1 ( )]}L L U

BB BBR R q Q f E H E Q H e                                                  (55) 

 

04 04 2 1 2 1 2 2 2( ) ( ) [1 ( )] [1 ( )]L L U L U

SARG SARGR R Q f E H E Q H e Q H e                             (56) 

 

where q depends on the implementation (1/2 for the BB84 protocol because half of the time, Alice and Bob 

disagree with the bases; if one uses the efficient BB84 protocol [10], q ≈ 1)  f(x) is the bi-direction error 

correction efficiency as a function of the error rate (normally, f(x) ≥ 1 with the Shannon limit f(x) = 1), and 

H2(x) is the binary Shannon information function, which has the form H2(x) = −x log2(x) − (1 − x) log2 (1 − x). 

 

 

 

III. Optical Fiber Based Qkd System Simulation 
We attempt to simulate an optical fiber-based QKD system using our decoy state method for both SARG04 and 

BB84 ; the losses in the quantum channel can be derived from the loss coefficient   in dB/km and the length of 

the fiber l in km. The channel transmittance can be written as 1010 ,
l

AB






  and the overall transmission 

between Alice and Bob is given by ,Bob AB  
 

where 0.21 /dB km   in our set-up is the loss 

coefficient, and Bob  is the transmittance on Bob’s side. We choose a detection efficiency of  =
24.5 10 , 

detectors dark count rate of 
6

0 1.7 10y   , the probability that a photon hits the erroneous detector 

det 0.033ectore  ,wavelength 1550nm  and the total number of pulses sent by Alice 100N Mbit . 

These parameters are taken from the GYS experiment [38]. We choose the intensities, the percentages of the 

signal state and decoy states that could result in the optimization of the key generation rate and the maximum 

secure distance of one decoy state protocol for BB84 and SARG04. The search for optimal parameters can be 

obtained via numerical simulation using Matlab. 
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Figure 1: The simulation results of the key generation rate versus the secure distance of fiber link for different 

decoy state protocols. (a) The asymptotic decoy state method (with an infinite number of decoy states) for 

BB84. (b) The key generation rate of one decoy state protocol for BB84. (c) For both single and two photon 

contributions (SARG04). (d) For only single-photon contributions. (SARG04). (e) One decoy state protocol for  

SARG04.  

 

Figure 1 illustrates the simulation results of the key generation rate versus the secure distance of fiber link for 

different decoy state protocols with statistical fluctuation. (a) The asymptotic decoy state method (with an 

infinite number of decoy states) for BB84. (b) The key generation rate of one decoy state protocol with the 

statistical fluctuations (BB84). (c) The asymptotic decoy state method (with an infinite number of decoy states) 

for both single and two-photon contributions (SARG04). (d) The asymptotic decoy state method (with an 

infinite number of decoy states) for only single-photon contributions (SARG04). (e) The key generation rate of 

one decoy state protocol with the statistical fluctuations (SARG04). Comparing these curves, it can be observed 

that the fiber-based QKD system using the one decoy state method for BB84 is able to achieve both a higher 

secret key rate and greater secure distance than SARG04. The maximal secure distances of the five curves are 

142 km, 111.9 km, 97 km, 94 km, and 69 km. 

 

IV. Conclusions 

We have studied the one-decoy-state protocol (                  ), where one decoy state of intensity v  and 

signal state with intensity   are employed for BB84 and SARG04. We have performed optimization on the 

choice of intensity of the one decoy states. The estimations show that a decoy state protocol with only one decoy 

state (           ) can approach the theoretical limit and gives an optimal key generation rate, which is the same as 

having an infinite number of decoy states for BB84 and SARG04. Our results show that the fiber-based QKD 

system, using the proposed method for BB84, is able to achieve both a higher secret key rate and greater secure 

distance than that of SARG04. Hence, the two-photon part has a contribution to the key generation rates at all 

distances.  
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Appendix   

Case A1 of one decoy state protocol for BB84: 

Substituting Eqs. (1), (3), and (5) into Eq. (14), the lower bound of 1y  becomes  

 
 , 2 2 2 2

1 0 0 02 2

0

1
( ) ( )L v v

v

y y v e v y e v y
v

   
  



      
 

     

       

0

0
                                                                                                             (A1) 

Using l’Hopital’s rule to evaluate the limit for the indeterminate case, 

   
 

, 2 2

1 0 0 020

0

1
( ) 2 ( ) 2

2

L v v v

v

v

y y v e e v y e vy
v

    
 


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                 0y                                                                                             (A2) 
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Next, substituting Eqs. (2), (4), and (6) into Eq. (17), the upper bound of 1e  becomes 

,

1 1 0 0 det 0 0,

1 0

1
( )U v v

L v

v

e e e y e v e e y
vy




       

  

0

0
                                                                                                             (A3) 

Using l’Hopital’s rule to evaluate the limit for the indeterminate case, 

,

1 1 0 0 det det,

1 0

1
( )U v v v

L v

v

e e e y e v e e e
y

 
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det 0 0
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L

e e y

y

 
                                                                                (A4) 

Case B1 of one decoy state protocol for SARG04: 

Substituting Eqs. (1), (3), (5) and 1 0y y   into Eq. (25), the lower bound of 2y  becomes  

 
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Using l’Hopital’s rule to evaluate the limit for the indeterminate case, 
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Using the second l’Hopital’s rule to evaluate the limit for the indeterminate case, 
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Here, substituting Eqs. (2), (4), (6) and 
det 0 0

1

1

e e y
e

y

 
  into Eq. (28), the upper bound of 2e  becomes 
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0

0
                                                                                                         (A8) 

Using l’Hopital’s rule to evaluate the limit for the indeterminate case,  
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Using the second l’Hopital’s rule to evaluate the limit for the indeterminate case, 
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