
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 20, Issue 1, Ver. III (Jan.- Feb. 2018), PP 33-37

www.iosrjournals.org

DOI: 10.9790/0661-2001033337 www.iosrjournals.org 33 | Page

The Effectiveness of use case And Activity Diagram on Software

Requirement Inspection: An Experimental Study

HamayoonGhafory
Senior Lecturer, Faculty of Computer Education & Information Technology,ShahidProf.Rabbani Education

University, Kabul Afghanistan

Abstract:Software inspection is a means of detecting faults in software artifacts, such as documents and code.

The objective of an inspection is to detect and identify faults in the software product by a visual examination.

Finding faults early in the development life cycle is important since the cost of correction increases the later the

fault is found in the development cycle. Faults can be found early with inspections, since inspections can be

performed as soon as an artifact has been created. Unified Modeling Language (UML) diagrams have been

widely used for modeling different aspects of software systems during its life cycle. In this study an experiment is

conducted in an educational institution to verify the effect of including Use Case and Activity diagram in the

software requirements specification on the inspection effectiveness and the amount of reported defects. The

result showed that those students inspected documents with text only, reported more faults than students

inspected documents with text + diagram and those students inspected documents with text + diagram reported

correct faults same as those students inspected document with text only but those students inspected the

documents with text only, reported more incorrect faults than students inspected document with text + diagram.

Keywords:Software Requirements, Software engineering.

--- ----------

Date of Submission: 25-01-2018 Date of acceptance: 19-02-2018

--- ----------

I. Introduction
 Inspection is a constant confirmation method and one of the real advantages of inspection is that, it can

be applied to any artifact built through software development. Therefore, it is may be one of the few techniques

that people really say yes that it is beneficial in improving software quality (Aurum et al, 2002). Detection of

defect in documents requirements is one of the greatest useful quality assurance methods in Software

Engineering (SE) (Porter et al, 1995). In software development the UML diagrams and object oriented modeling

have an important role in specifying system requirements and it is usual to see the needs specification

documents which includes UML diagrams (Albayrak, 2009). Software inspection involves individual step of

reading, where the reviewer reads the artifact alone and record all defects when finds them. However, in the area

of software requirements specification almost there is no data available about the effect of using UML diagrams

in the specification document on the review effectiveness (Albayrak, 2009).Nowadays, it is during the

preparation step where the visual examination occurs. The technique applied by the reviewer to visually

examine the artifact is called reading technique. The reading technique describes how the reviewer should check

the artifact in order to find faults. Checklist-based reading (CBR) and perspective-based reading (PBR) are

examples of reading techniques. In addition, in industry ad hoc and checklist-based reading techniques are most

commonly used (Berling and Thelin, 2004).In this sense, this paper presents an experimental study in order to

evaluate the effectiveness of use case and activity diagram in early stage of software development lifecycle. The

following section describe the process of this experiment.

II. Related Work
 Related work shows that what other researcher investigated in area of software requirement inspection.

Therefore it is necessary to discuss about the experiment that executed in field of software requirement

inspection.Neiva et al (2009) executed an experimental study on requirement engineering for Software Product

Lines (SPL). The goal of experiment was to analyze the requirement engineering process, to evaluate the

efficiency, usability and impact of requirement engineering for SPL. At the result, the experiment showed which

of the processes allows performing requirement engineering in SPL context with good effectiveness. On the

other hand, the efficiency can be improved with the use of an appropriate support tool.Mendonca et al (2008)

executed experimental replication in software engineering. They compared the use of specific inspection

techniques Perspective Based Reading (PBR) and Checklist Based Reading (CBR) technique. The techniques

that were used by participants in the experiment were to find defect during inspection (where the detection

process is not by the experience of inspector) and Checklist Based Reading (CBR) (that each inspector focus on

The Effectiveness Of Use Case And Activity Diagram On Software…

DOI: 10.9790/0661-2001033337 www.iosrjournals.org 34 | Page

list of quality aspect). The result of this research has shown who had used the PBR technique found more defect

in percentage and it was more useful than those who were used CBR.Porter et al. (1994) conducted a controlled

experiment in which graduate students in computer science inspected several requirements specifications. Their

results showed meeting gain rates consistent with Votta’s gain rates. They also show that these gains are offset

by “meeting losses” (defects first discovered during preparation but never reported at the collection meeting).

Again, since this issue clearly affects both the research and practice of inspections, additional studies are

needed.(Biffi, 2000) experimented the impact of inspector ability and the change of inspection process for a

software requirements specification. In addition, this research showed controlled experiment which investigated

the power of reading techniques and ability of inspector on the effectiveness to find set of defect in requirement

specification document. Finally, the result of experiment showed that inspector ability played an important role

for inspection performance, in the experiment with varying influence depending on reading technique and

documents part.Rong et al (2012) examined the effectiveness of checklist technique by conducting semi

controlled experiments in code review for inexperienced student. They prepared two groups of students for

experiment. The first group didn’t use checklist during code review and second group used checklist during

code review. Then, they collected the data from both groups. Finally, the result showed that Checklist is helpful

for inexperienced students because checklist guides them to start and conduct code review.

III. Experiment
3.1 Research Question & Hypotheses:

 This paper has two research questions as follows:RQ1: For requirements inspections, what is the effect

of including Unified Modeling Language (UML) diagrams (Use Case and Activity) in the Software

Requirement Specification (SRS) on the rate of faults reported by inspectors?RQ2: For requirements

inspections, what is the effect of including Unified Modeling Language (UML) diagrams (Use Case and

Activity) in the Software Requirement Specification (SRS) on the rate of correct faults detected report by

inspectors? To investigate these two research questions, a more detailed set of two hypotheses were defined. For

each hypothesis, the null hypothesis Ha0 is presented, followed by the alternative hypothesis Ha1:Ha0) The

number of faults reported by inspectors is not affected by including UML diagrams Use case and activity

diagrams in the requirements document inspected.Ha1) The number of faults reported by inspectors is affected

by including UML diagrams Use case and activity diagrams in the requirements document inspected.Hb0) The

effectiveness of an inspector, the number of correct faults detected by an inspector is not affected by including

UML diagrams Use case and activity diagrams in the requirements document inspected.Hb1) The effectiveness

of an inspector, the number of correct faults detected by an inspector is affected by including UML diagrams

Use case and activity diagrams in the requirements document inspected.

3.2variables:

There were two independent variables measured to specify their effect on the two dependents variables. Each of

these variables is defined in the following section

3.1.1independent Variables:

 SRS with UML diagrams: the Software Requirements Specification (SRS) documents contained UML

diagrams (Use Case and Activity) diagrams.

 SRS without UML diagrams : the Software Requirements Specification (SRS) documents do not contain

UML diagrams (Use Case and Activity) diagrams

3.1.1dependent Variables:

 Number of faults reported by inspector: the total number of faults reported or found by inspector reflects

the number of possible improvements that should be made as a result of the inspection process.

 Number of correct faults reported by inspector: the total number of correct faults that were correctly

detected or found by inspector is a measure of inspection process’s effectiveness.

3.1.1experiment Design:

3.2.1participants:

 There were 40 participants were selected from fourth class of software engineering faculty at

ShahidProf.Rabbani Education University 20 of them were female and the other 20 of them were male. The

students didn’t have industries experience but they were familiar with programing, data base, data analysis,

software engineering and UML diagrams. 20 of them were inspected the two documents with text only and half

them were inspected the documents with UML diagrams use case and activity (text + diagram). Firstly, students

were guided how to transfer the faults to the checklist.

The Effectiveness Of Use Case And Activity Diagram On Software…

DOI: 10.9790/0661-2001033337 www.iosrjournals.org 35 | Page

1.2.2 Materials:

 In this study two software system were used: Parking Garage Control System (PGCS) and Online

Registration System (ORS), each system was contained two requirements documents, one without UML

diagrams (Text only) and another with UML diagrams use case and activity diagram (text+diagrams). The

documents with UML diagrams did not describe the use case and activity diagram for both systems (PGCS

AND ORS). In non UML version, the information of requirements document was provided in natural language

as textual explanation before the functional requirements. In UML version, the diagrams were used after

information of the system before the functional requirements. They had the same requirements set that were

written in natural language as the corresponding documents without UML diagrams. Table 4.1 shows the

number of use case diagram, activity diagram, use cases and activities which were used in requirements

documents.

Table4.1: Number of Use case diagram, Activity diagram, Use cases and activities

Documents Number of Use- Case

Diagrams

Number of Use Cases Number of Activity

Diagram

Number of Activity

PGCS 1 6 1 13

ORS 1 5 1 5

The Both two systems (PGCS and ORS) had 12 requirements in ORS and PGCS related requirements 7

defects were seeded. The same defects were seeded to the requirements documents with UML diagrams and

without UML diagram. There were three types of defects were seeded in requirements documents omission,

incorrect fact and ambiguous information. The document requirements of PGCS were prepared in three pages

without UML diagram and in four pages with UML diagram. The document requirements of ORS were

prepared in two pages without UML diagram and in three pages with UML diagram as shown in table 4.2.

Table4. 2: document requirements
Non-UML-
diagram

Number of
pages

Participants With-UML-
diagram

Number of
pages

Participants

PGCS 3 22 PGCS 4 22
ORS 2 22 ORS 3 22

The students had checklist while they inspecting the documents and the checklist was the same for both

documents. The checklist standard was used from albayrak (2009) and sample of checklist has shown in table

4.3.

Table4.3: Sample of checklist
Defect No Functional Requirement NO Defect Type Description

3.2.3procedure:

 There were two software system Online Registration System (ORS) and Parking Garage Control

System (PGCS), each software was written in two documents one with text only and other text with diagram.

The ORS was clear and understandable for students, they didn’t need for explanation. The PGCS was described

for students and students were guided how to transfer faults to the checklist. The experiment was done in two

days; in first day 20 students participated and inspected the two documents with text only. The students were

divided in two groups 10 by 10 and the documents prepared 10 by 10 with text only the first group inspected the

ORS and then PGCS. The second group inspected the PGCS and then ORS. The second day 20 students were

participated and inspected the documents with UML diagrams use case and activity (text + diagram). The

students were divided in to two groups the first group inspected the ORS documents with diagram and then

PGCS with diagram. The second group inspected first the PGCS document and then ORS documents with

diagram. Each student received two documents and checklist for reporting of faults with defect types for

information. The SRS document without UML diagrams were inspected about 2 hours by inspectors and the

SRS document with UML diagrams were inspected about 1 and half hours by inspectors.

IV. Data Analysis
 The participants inspected the ORS with text only reported 98 faults that 55 was correct reported and

43 was incorrect reported faults. For PGCS with text only they reported 109 faults that 55 were correct faults

and 54 was incorrect report faults. The participants that inspected ORS with text + diagram they reported 70

faults that they reported 47 correct faults and 23 was incorrect faults. When they inspected the PGCS with text +

The Effectiveness Of Use Case And Activity Diagram On Software…

DOI: 10.9790/0661-2001033337 www.iosrjournals.org 36 | Page

diagrams reported 91 faults that 63 was correct faults and 28 was incorrect faults. Therefore, participants that

reviewed text only reported more faults than participants inspected the text + diagram.

V. Discussion
The participants that inspected the SRS documents with text only reported more faults and they used

about 2 hours for inspection that start from 10:00 am to 12:00. The faults that they reported were consist of

correct faults and incorrect faults. The number of correct and incorrect faults that participants found and

reported for SRS with text only in both systems was approximately same. In contrast, the students that inspected

the SRS documents with text + diagrams (use case and activity diagrams) reported less faults in less time and

they inspected the both SRS about in 1 and half hour which start from 2:30 pm to 4:00. The faults that they

reported were consist of correct faults and incorrect faults. The number of correct faults that participants found

and reported were more than the number incorrect faults that participants found and reported for SRS with text +

diagrams in both systems. In addition, the inspectors that inspected the SRS with text only found more faults

than those inspectors that inspected the documents with text + diagrams but the inspectors that inspected the

SRS with text only reported more incorrect faults from total of reported faults. The reason that participants

inspected the documents with text only in long time and reported more faults were:

 The inspectors read many times the documents to understand the system and functional of the system.

 It was difficult for inspectors to compare the functional requirement of the system with description of the

system.

 The inspectors could not decide soon about error in functional requirements.

The reason of inspected the documents with text + diagrams (use case and activity) in less time and reported lest

faults were:

 The diagrams help inspectors to understand the main functional requirement of the system and avoid from

waste of time.

 The inspectors easily find the correct faults when see the diagrams.

 The inspectors do not need to read many times the description of the system.

 The diagrams help inspectors to compare the functional requirement of the system with description of the

system to find faults in less time.

VI. Conclusion

 This paper investigated the effectiveness of use case and activity diagram on software requirement

inspection at early phase of software development life cycle by conducting an experimental study at Shahid

prof.Rabbani Education University Kabul Afghanistan

This study is carried out to achieve the following objectives:

 To conduct an experiment and evaluate the effect of including UML diagrams, Use Case diagram and

Activity diagram in the usefulness of software inspections.

 To evaluate the effectiveness of faults finding in the early phase of software development life cycle using

UML diagrams (Use case and Activity diagrams).

As a conclusion, according to research question-1what is the effect of including Unified Modeling Language

(UML) diagrams (Use Case and Activity) in the Software Requirement Specification (SRS) on the rate of faults

reported by inspectors? The UML diagrams does not affect to the number of total faults reported by inspectors,

but the UML diagrams (use case and activity) help inspectors to understand the main functions of SRS

documents and avoid them from reporting incorrect faults, because without UML diagrams the participants

reported more incorrect faults. In addition, the UML diagrams help the inspectors to understand the main

function of the system during the inspection and find or reported the correct faults in less time than the SRS

documents with text only.

According to research question-2: what is the effect of including Unified Modeling Language (UML) diagrams

(Use Case and Activity) in the Software Requirement Specification (SRS) on the rate of correct faults detected

report by inspectors? The participants that inspected the documents without UML diagrams reported same

correct faults as those participants that inspected the documents with UML diagrams (use case and activity) but

those participants that inspected the documents without UML diagrams spent more time than those participants

that inspected the documents with UML diagrams. It means that use case and activity diagrams help the

inspectors that find correct faults in less time during inspection.

References
[1] Albayrak, O. 2009. An experiment to observe the impact of UML diagrams on the effectiveness of software requirements

inspections. 3rd International Symposium, pp. 506-510.
[2] Aurum, A. H. Petersson, and C. Wohlin, 2002.State of- the-art: Software Inspections After 25 Years. Software Testing, Verification

and Reliability, 12: 133-154.

The Effectiveness Of Use Case And Activity Diagram On Software…

DOI: 10.9790/0661-2001033337 www.iosrjournals.org 37 | Page

[3] Berling, T., and Thelin, T. 2004.A case study of reading techniques in a software company.In Empirical Software Engineering,

ISESE'04.Proceedings. 2004 International Symposium on, pp. 229-238.
[4] Biffl, S. 2000. Analysis of the impact of reading technique and inspector capability on individual inspection performance.In

Software Engineering Conference.Proceedings. Seventh Asia-Pacific, pp. 136-145.

[5] Mendonça, M. G., Maldonado, J. C., de Oliveira, M. C., Carver, J., Fabbri, C. P. F., Shull, F., and Basili, V. R. 2008.A framework
for software engineering experimental replications.In Engineering of Complex Computer Systems, 13th IEEE International

Conference on, pp. 203-212.

[6] Neiva, D. F. S., de Almeida, E. S., & de LemosMeira, S. R. 2009.An experimental study on requirements engineering for software
product lines.In Software Engineering and Advanced Applications, pp. 251-254.

[7] Porter . A, Votta. L and Basili. V. 1995. Comparing Detection Methods for Software Requirements Inspections: A Replicated

Experiment. IEEE Trans. on Software Engineering.,21: 563-575.
[8] Rong, G., Li, J., Xie, M., &Zheng, T. 2012. The Effect of Checklist in Code Review for Inexperienced Students: An Empirical

Study. In Software Engineering Education and Training (CSEE&T), 2012 IEEE 25th Conference on,. pp. 120-124.

HamayoonGhafory "The Effectiveness of use case And Activity Diagram on Software

Requirement Inspection: An Experimental Study." IOSR Journal of Computer Engineering

(IOSR-JCE) 20.1 (2018): PP 33-37.

