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Abstract: Computer science plays a vital role providing us different kinds of software and the facility to learn 

singing accurately and smartly. This paper is to provide a singing tutor which will compare the learner song 

with the tutor song and provide the result of accuracy in the learner song. So any one sitting in his/her own 

room with a laptop or desktop computer can learn singing and judge the accuracy of the song. Firstly, to detect 

voiced and unvoiced part of the song, linear model is used here. Apply EMD (Empirical mode decomposition) to 

obtain IMFs. From the first IMF which captures most of the noise, estimate the noise level in the noisy signal 

and “noise only” model from the confidence interval parameter for the linear model and the corresponding 

model for a chosen confidence interval. Then compute the EMD of the noisy signal, and compute the IMF 

energies by using the confidence interval as a threshold. If there is at least one IMF whose energy exceeds the 

threshold then the speech frame is classified as voiced. If all the IMFs lie below the threshold then the speech 

frame is classified as unvoiced. Pitch is estimated from the voiced part only, so after separating the voiced part, 

weighted autocorrelation method is used here to estimate pitch and by using Hilbert transformation, energy is 

estimated. Then compare the pitch and energy of tutor song and student song to observe the difference and 

mistakes in the learner’s song. By this way any one can identify the places in the song where he/she has 

mistaken, identify the scale and tune through which he/she can sing more accurately. 
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I. Introduction 
Music is one of the spiritual happiness exist in the earth. Singing is the act of producing musical sounds 

with the voice, anyone who can speak can sing, since singing resembles sustained speech. A singing tutor or a 

vocal coach is a music teacher who instructs singers on how to sing a song accurately. To make the concept of 

singing training or learn singing more convenient and cost free, our going trend of technology and science keep 

a dominating roll and it provides the facility to learn singing accurately and smartly. This is really very effective 

way to learn singing, it is time consuming and easy also. Learner never needs to feel shy in front of the singing 

tutor, because the tutor is not a human. This is a repetitive way where a learner could learn a specific song 

accurately without any bindings. There are four physical processes involved in producing vocal sound: 

respiration, phonation, resonation, and articulation [1]. Singers should be thinking constantly about the kind of 

sound they are making and the kind of sensations they are feeling while they are singing [2]. Vocal exercises is 

needed to sing perfectly, it has purposes, including [3] warming up the voice; extending the vocal range; "lining 

up" the voice horizontally and vertically; and acquiring vocal techniques such as legato, staccato, control of 

dynamics, rapid figurations, learning to sing wide intervals comfortably, correcting vocal faults. Singing has a 

well-defined technique that depends on the use of the lungs, the larynx, the chest and head cavities and the 

tongue. Though these four mechanisms function independently, they are nevertheless coordinated in the 

establishment of a vocal technique and are made to interact upon one another [4]. Another major influence on 

vocal sound and production is the function of the larynx which people can manipulate in different ways to 

produce different sounds.[5] These different kinds of laryngeal function are described as different kinds of vocal 

registers [6][7]. Registers originate in laryngeal function. They occur because the vocal folds are capable of 

producing several different vibratory patterns. Vibrato is the pulse or wave in a sustained tone. Each of these 

vibratory patterns appears within a particular range of pitches and produces certain characteristic sounds [8]. 

The term "register" can be somewhat confusing as it encompasses several aspects of the human voice; this view 

is also adopted by many vocal pedagogics [9]. Vocal resonation is another important term in sound production. 

McKinney defines it as a process by which the basic product of phonation is enhanced in timbre and/or intensity 

by the air-filled cavities through which it passes on its way to the outside air. There are seven areas that may be 

listed as possible vocal resonators. In sequence from the lowest within the body to the highest, these areas are 

the chest, the tracheal tree, the larynx itself, the pharynx, the oral cavity, the nasal cavity, and the sinuses[10]. 
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The first recorded mention of the terms chest voice and head voice [11] was around the 13th century, 

when it was distinguished from the "throat voice" by the writers Johannes de Garlandia and Jerome of Moravia. 

[12] The terms were later adopted within Bel canto, the Italian opera singing method. Another current popular 

approach that is based on the Bel canto model is to divide both men and women's voices into three registers. 

Men's voices are divided into "chest register", "head register", and "falsetto register" and woman's voices into 

"chest register", "middle register", and "head register". Such pedagogics teach that the head register is a vocal 

technique used in singing to describe the resonance felt in the singer's head [13]. The contemporary use of the 

term chest voice is often applied throughout the modal register. Chest timbre can add a wonderful array of 

sounds to a singer's vocal interpretive palette [14]. However, the use of overly strong chest voice in the higher 

registers in an attempt to hit higher notes in the chest can lead to forcing. Forcing can lead consequently to vocal 

deterioration [15]. The pitch of the voice is controlled by the cycle of the cyclic pulse string. In the case of the 

vocal tract resonance filter, differences in tone resulting from phonemes such as the Japanese syllables ―a‖ or 

―ka‖ are controlled by modifying resonance characteristics (voice spectrum characteristics). The vocal tract 

shape is determined from the position of the vocal organs, and speech is produced by using the vocal tract area 

[16]. 

 

II. Related Works 
There are many work exits based on signal processing about singing tutor like ―A Program to Teach 

Sight-Singing‖ [17], ―Application-Specific Music Transcription for Tutoring‖ [18], ―Visual displays for the 

assessment of vocal pitch matching development‖ [19] etc. This paper will help a learner to learn any song 

correctly. By learning many songs in this way, the learner will be a good singer with the help of this singing 

tutor.   

 

III. Role of signal processing in singing tutor 
One defining characteristic of speech is its pitch, but it is oftentimes difficult to obtain this value 

because some segments of speech simply do not have a measureable pitch. This paper explores techniques in 

determining the pitch of a speaker in a noiseless utterance, starting with the classification of types of speech and 

automatic pitch detection. 

 

3.1. Speech classification 

Speech can be classified into two general categories, voiced and unvoiced speech. A voiced sound is 

one in which the vocal cords of the speaker vibrate as the sound is made, and unvoiced sound is one where the 

vocal cords do not vibrate. A given speech utterance could contain a mix of different voiced and unvoiced 

segments depending upon the. Pitch detection relies on the periodic qualities of the sound waveform, therefore 

any attempt to determine pitch is only valid on voiced segments of an utterance. This factor necessitates a 

secondary step before pitch detection is the voiced segments identification.   

 

3.2. Pitch [20] 

Pitch is that attribute of auditory sensation in terms of which sounds may be ordered on a scale extending from 

low to high. (Verbal definition) 

Sound has a certain pitch if it can be reliably matched by adjusting the frequency of a sine wave of arbitrary 

amplitude. (Operational definition) 

 

3.3. Fundamental frequency 

The fundamental tone, often referred to simply as the fundamental and abbreviated f0 or F0, is the 

lowest frequency in a harmonic series. The fundamental frequency of a periodicsignal is the inverse of the 

period length. The period is, in turn, the smallest repeating unit of a signal. One period thus describes the 

periodic signal completely. The significance of defining the period as the smallest repeating unit can be 

appreciated by noting that two or more concatenated periods form a repeating pattern in the signal. However, the 

concatenated signal unit obviously contains redundant information. The fundamental frequency is the lowest 

frequency component of a signal that excites (imparts energy) to a system. 

 

Fundamental frequency vs. pitch [20] 

• Fundamental frequency (F0) is a physical term; Pitch is a perceptual term (perceived F0) 

• Both measured in Hertz (Hz), usually pitch (perceived F0) ~ F0 (approximately equal) 

 

3.4. Energy 

Since we often think of signal as a function of varying amplitude through time, it seems to reason that a good 

measurement of the strength of a signal would be the area under the curve.  However, this area may have a 
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negative part. This negative part does not have less strength than a positive signal of the same size (reversing 

your grip on the paper clip in the socket is not going to make you any more lively). This suggests squaring the 

signal or taking its absolute value, then finding the area under that curve.  It turns out that what we call the 

energy of a signal is the area under the squared signal. 

 

 
Figure 1: The energy of this signal is the shaded region. 

 

 

 

 t  

             Figure 2: A simple, common signal with infinite energy.  

 

IV.   Voiced/Unvoiced detection 
We need to know about EMD to detect voiced unvoiced part of the signal. A short note is given below about 

EMD and IMF, after that there is a big description about the classification of voiced unvoiced part and its 

detection. 

 

4.1 Introduction to EMD and IMF 

The fundamental part of the HHT is the empirical mode decomposition (EMD) method. Using the 

EMD method, any complicated data set can be decomposed into a finite and often small number of components, 

which is a collection of intrinsic mode functions (IMF). An IMF represents a generally simple oscillatory mode 

as a counterpart to the simple harmonicfunction. By definition, an IMF is any function with the same number 

of extremer and zero crossings, with its envelopes being symmetric with respect to zero. The definition of an 

IMF guarantees a well-behaved Hilbert transform of the IMF. This decomposition method operating in the time 

domain is adaptive and highly efficient. Since the decomposition is based on the local characteristic time scale 

of the data, it can be applied to nonlinear and non stationary processes. 

 

4.2 Voiced Unvoiced Classification Methods 

Voiced sounds, e.g., ‗a‘, ‗b‘, are essentially produced by vibrating   the vocal cords, and are oscillatory. 

Therefore, over short periods of time, they are well modeled by sums of sinusoids. This makes short-time 

Fourier transform—to be discussed later—a useful tool for speech processing. Unvoiced sounds such as‗s‘, ‗sh‘, 

are more noise-like, as shown in Figure 3. For many speech applications, it is important to distinguish between 

voiced and unvoiced speech. 

 

4.2.1 Short-time power function 

Split the speech signal x (n) into blocks of 10-20 ms, and calculate the power within each block: 

𝑃𝑎𝑣 =  𝑥2 𝑛                                                    (1)

𝐿

𝑛=1

 

Typically, Pav, voiced>Pav, unvoiced. 

Zero-crossing rate, ―the signal x (n) has a zero-crossing at n0‖ means that x (n0) x (n0 + 1) < 0. Unvoiced signals 

oscillate much faster, so they will have a much higher rate of zero-crossings. 

http://en.wikipedia.org/wiki/Oscillation
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http://en.wikipedia.org/wiki/Hilbert_transform
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Figure 3: Distinction between voiced and unvoiced speech. 

 

This system is illustrated in Figure 3. Its upper part (the production of voiced sounds) is very much 

akin to playing a guitar (Figure 3). We produce a sequence of impulsive excitations by plucking the strings, and 

then the guitar converts it into music. The strings are sort of like the vocal cords, and the guitar‘s cavity plays 

the same role as the cavity of the vocal tract. 

 

4.2.2 Source-Filter Model of Speech Production 

Sounds get variations in air pressure. The creation of sound is the process of setting the air in rapid vibration. 

Our model of speech production will have two major components: 

 Excitation: How air is set in motion. 

     Voiced sounds: Periodic air pulses such as in Figure 4(a) pass through vibrating vocal chords. 

     Unvoiced sounds: Force air through a constriction in vocal tract, producing turbulence. 

 Vocal tract: Guides air. 

A periodic pulse train excitation is illustrated in Figure 4(a). The period T is called the pitch period, and 1/T is 

called the pitch frequency. 

 

 
Figure 4: Time domain and frequency domain perspectives of voiced sounds. 

 

In other words, each sound is approximately periodic, but different sounds are different periodic 

signals. This implies that we can model the vocal tract as an LTI filter over short time intervals. Moreover, since 

the vocal tract is a cavity, it resonates. In other words, when a wave propagates in a cavity, there is a set of 
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frequencies which get amplified. They are called natural frequencies of the resonator, and depend on the shape 

and size of the resonator. Therefore, the magnitude response of the vocal tract for one voiced sound (phoneme) 

can be modeled as in Figure 5. 

 

 
Figure 5: Magnitude response of the vocal tract. 

 

This waveform will then be the convolution of the driving periodic pulse train x (t) with the impulse response v 

(t), as illustrated in Figure 6 (b), and the magnitude of its spectrum |S (f) will be the product of X (f) and the 

magnitude response |V (f)|, as illustrated in Figure 6 (c).The maxima of |S (f)| are called the formant frequencies 

of the phoneme.  

 

 
Figure 6: The vocal tract as an LTI filter. 

 

4.3 Proposed Voiced Unvoiced Detection Method 

This algorithm is based on linear model of noise filtering by empirical mode decomposition. Weighted 

autocorrelation is used for pitch period calculation. The general concept is, the voiced speech is quasi-periodic 

and unvoiced speech is non-periodic. The goal of this algorithm is to detect periodicity of each noisy speech 

frame. But accurate speech periodicity detection is still a challenge. Here, I newly developed linear model for 

noise filtering is used which is robust voiced unvoiced classification. 

Basically Gaussian noise (fGn) is a generalization of ordinary white noise. It is a versatile model for a 

homogeneously spreading broadband noise without any dominant frequency band. The statistical properties of 

fGn are entirely determined by its second-order structure, which depends solely upon one single scalar 

parameter, H, its Hurst exponent. More precisely, {xH[n],n=…,-1,0,1…} is a fGnof index H (with 0 < H < 1) if 

and only if it is a zero-mean Gaussian stationary process whose autocorrelation sequence rH [k]:= E{xH[n] 

xH[n+k]} is 
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𝑟𝐻 𝐾 =  
𝜍2

2
 |𝐾 − 1|2𝐻 − 2 𝐾 2𝐻 + |𝐾 + 1|2𝐻                                  (2)  

In linear model for filter-bank the Hurst exponent varies between0.1 to 0.9. In filter-bank structure we can 

improve our search by self-similarity search which means that 

𝑆𝑘 ′ ,𝐻 𝑓 =  𝜌𝐻
𝛼 𝑘 ′−𝑘 

𝑆𝑘 ,𝐻 𝜌𝐻
𝑘 ′−𝑘𝑓  3  

for some  α and any k
’
>k≥ 2. Consequently, the power spectra of all IMFs should collapse onto a single curve 

when properly renormalized. Indeed, the value of is set α=2H-1. From equation (3) of self-similarity relation for 

band-pass IMFs (index k>1), we can deduce how the variance should evolve as a function of k. Assuming that 

equation (3) holds for any k
’
>k≥ 2 and α=2H – 1, we have 

𝑉𝐻 𝑘
′  =  𝑣𝑎𝑟𝑑𝐾 ,𝐻 𝑛 =   𝑆𝑘 ,𝐻 𝑓 𝑑𝑓

1/2

−1/2

                         (4)  

𝑉𝐻 𝑘
′  =  𝜌𝐻

𝛼 𝑘 ′−𝑘 
 𝑆𝑘 ,𝐻 𝜌𝐻

𝑘 ′−𝑘𝑓 𝑑𝑓

1/2

−1/2

                         (5)  

𝑉𝐻 𝑘
′  =  𝜌𝐻 

 𝛼−1  𝑘 ′−𝑘 
𝑉𝐻[𝑘]                         (6)  

Which leads to 

𝑉𝐻 𝑘 = 𝐶𝜌𝐻
2 𝐻−1 𝑘                          (7) 

 

      The IMF variance should be an exponentially decreasing function of the IMF index with a decay rate which 

is a linear function of the Hurst exponent H. The linear model with regards to the variability of the variance 

estimate, various confidence intervals is written as: 

log2 𝑉𝐻 𝑘 = log2 𝑉  2 + 2 𝐻 − 1  𝑘 − 2 log2 𝜌𝐻                                  (8) 

For k≥2, where 

𝑉 𝐻 𝑘 =  
1

𝐽
  

1

𝑁
  𝑑𝑘 ,𝐻

 𝑗   𝑛  
2

𝑁

𝑛=1

 

𝐽

𝑗=1

                            (9) 

is a function of the index k. 

    The parameters of confidence interval parameters have shown in Table 1. For white noise, the number of 

parameterize TH[k] is obtained by using the formula: 

log2 log2 𝑇𝐻 𝑘 /𝑊𝐻[𝑘]  =  𝛼𝐻𝑘 + 𝑏𝐻                                 (10) 

WhereWH[k] denotes the H-dependent variation of the IMF energy. The best linear fit occurs when the median 

of the IMF‘s energy is used to compute WH over the realizations. The parameters αH and bHare obtained from 

Table 4.1. WH [1] can be estimated from 

𝑊 𝐻 1 =   𝑑1,𝐻
2  𝑛 

𝑁

𝑛=1

                                            (11) 

and subsequent values of WH[k] are given by 

𝑊 𝐻 1 =  𝐶𝐻𝜌𝐻
−2 1−𝐻 𝑘  , 𝑘 ≥ 2                           (12) 

Where HHH WC /ˆ . 

 

Table 1: The Confidence Interval Parameters for the Linear Model. 

       H βHαH (95 %)         bH(95 %)         αH (99 %)          bH(99 %)     

       0.2     0.487        0.458                -2.435                  0.452                  -1.951 

       0.5     0.719        0.474                -2.449                  0.460                  -1.919 

       0.8     1.025        0.497                -2.331                  0.495                  -1.833                 

 

Here in the proposed method the third row of Table 1 has been used as the confidence interval 

parameters for linear model. This model is applied to select the IMF whose energy exceeds the upper limit of 

99% confidence interval of the Gaussian noise. From EMD domain all IMFs starting from that IMF are summed 

up to partial reconstruction of the signal. If there remains at least one IMF above the confidence interval of 99% 

then the speech frame is classified as voiced frame. If all the IMFs lie below that confidence interval then the 

speech frame is classified as unvoiced. 
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The proposed algorithm is given below: 

1. From the first IMF which captures most of the noise, estimate the noise level in the noisy signal by 

computing HŴ [1] (eq. 11). 

2. Estimate the ―noise only‖ model (by using eq. 11 and 12). 

3. Estimate the corresponding model for a chosen confidence interval (eq. 11 and table 1). 

4. Compute the EMD of the noisy signal, and compute the IMF energies by using the confidence interval as a 

threshold. 

5. If there is at least one IMF whose energy exceeds the threshold then the speech frame is classified as 

voiced. 

6. If all the IMFs lie below the threshold then the speech frame is classified as unvoiced. 

 

Now, let observe how the proposed method works for voiced and unvoiced speech classification. For voiced 

speech classification I have taken the following voiced speech frame as shown in Figure 7. 

 

 
                                             Figure 7: A voiced frame. 

After applying linear model to the voiced frame which contains eight IMFs, including residue as shown in  

 
Figure 8 

Figure 8:  The selection of starting IMF to extract the low frequency component of the speech signal. The 3
rd

 

IMF is selected as its energy exceeds the upper limit of 99% confidence interval of the IMFs‘ energies of 

Gaussian noise (Gn). 
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From the above figure we see that more than one IMF (IMF3, 4) exceeds the confidence interval so the speech 

frame is voiced. From the IMFs exceed the confidence interval are summed up for partial reconstruction of the 

speech signal as shown Figure 9. 

 
Figure 9: Partial reconstruction of speech signal from linear model. 

 

In the next let us observe how this model works for an unvoiced speech frame and for this purpose an unvoiced 

frame like below is taken. 

 

 
Figure 10: An unvoiced frame 

 

.  

Figure 11: There exists no IMF whose energy exceeds the upper limit of 99% confidence interval of the IMFs‘ 

energies of Gaussian noise (Gn). 
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As we see that no IMF is selected from above the confidence interval of 99 % the frame is classified as 

unvoiced. Consequently no partial reconstruction has occurred.Here in this algorithm the use of the linear model 

is an efficient process of voiced unvoiced classification. This method works as an efficient filter-bank 

implementation. It is highly sensitive to noise. Due to introduce Gaussian noise we need not worried for the 

accuracy of voiced unvoiced classification. It is a strong mathematical theoretical foundation for noise assisted 

data analysis (NADA) technique for non-stationary data. It estimates the white noise added to the speech frame 

make a better decision to obtain the IMFs from EMD domain that contain the dominant frequency of the speech 

frame. The IMF selection technique is extremely a gigantic approach provided by the model. In the case shown 

here, we observed the ―spontaneous‖ emergence of an equivalent filter-bank structure which has the advantage 

of being fully data-driven. Furthermore, because it is local in time, this structure can adopt automatically to non-

stationary situations with greater flexibility than other approaches using a pre-determined decomposition 

scheme. 

 

4.4 Pitch estimation  

In this paper, a modified version of the autocorrelation pitches extraction method well known to be 

robust against noise. Utilizing that the average magnitude difference function (AMDF) has similar 

characteristics with the autocorrelation function, the autocorrelation function is weighted by the reciprocal of the 

AMDF. By simulation experiments, it is shown that the proposed pitch extraction method is useful in noisy 

environments. 

In this paper, a new pitch extraction method which uses an autocorrelation function weighted by the 

inverse of an AMDF is used. The characteristics of the AMDF are very similar with those of the autocorrelation 

function. The AMDF produces a notch, while the autocorrelation function produces a peak. However, both 

functions essentially have the same periodicity. The proposed method utilizes the feature that in a noisy 

environment, the noise components included in the autocorrelation function and AMDF behave independently 

(and are uncorrelated each other). This feature will be validated in this paper. By such uncorrelated properties, 

the peak of the autocorrelation function is emphasized in a noisy environment when the autocorrelation function 

is combined with the inversed AMDF. As a result, it is expected that the accuracy of pitch extraction for the 

AUTOC is improved.  

 

4.4.1. Proposed Method [21] 

Principle 

 

Autocorrelation function 𝜙 𝜏  is calculated by 

𝜙 𝜏 =  
1

𝑁
 𝑥(𝑛)𝑥(𝑛 + 𝜏)

𝑁−1

𝑛=0

                                                (13) 

Where, 

𝑥(𝑛)Speech signal; 

𝜏Lag number; 

𝑛Time for a discrete signal. 

The characteristic of 𝜙 𝜏  is that  𝜙 𝜏  has a large value when 𝑥(𝑛) is similar with   𝑥(𝑛 + 𝜏). If   𝑥(𝑛) has a 

period of P then 𝜙 𝜏 has peaks at  𝜋 = 𝑙𝑃 where l is an integer. 

Essentially, 𝜙(0) gives the largest value among  𝜏 , 𝜏 = 𝑙𝑝 , for   l=0,1,2.......... . The second value is given by 

𝜙 𝑃 other peaks of  𝜙(𝜏) usually decrease as 𝜏 increases. Therefore, we can estimate the pitch period P from 

the location of the peak at 𝜏 = 𝑃. 

 

Let us assume that is a noisy speech signal given by 

𝑥 𝑛 = 𝑠 𝑛 + 𝑤 𝑛                                           (14) 

      Where 𝑠 𝑛  a clean speech issignal and 𝑤(𝑛)is additive white Gaussian noise. In this case, we have an 

autocorrelation function given by 

𝜙 𝜏 =  
1

𝑁
  𝑠 𝑛 + 𝑤(𝑛))(𝑠 𝑛 = 𝜏 + 𝑤(𝑛 + 𝜏) 

𝑁−1

𝑛=0

=
1

𝑁
  𝑠 𝑛 𝑠 𝑛 + 𝜏 + 𝑠 𝑛 𝑤(𝑛 + 𝜏 

𝑁−1

𝑛=0

+ 𝑤 𝑛 𝑠 𝑛 + 𝜏 + 𝑤 𝑛 𝑤(𝑛 + 𝜏))

=  𝜙𝑠𝑠(𝜏) + 2𝜙𝑠𝑤 (𝜏) +  𝜙𝑤𝑤 (𝜏)                                                                      (15) 
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Figure 12: Autocorrelation function and proposed function, correspond to the true pitch period. 

 

Where 

𝜙𝑠𝑠 𝜏 Autocorrelation function of 𝑠(𝑛); 

𝜙𝑠𝑤 (𝜏)Cross-correlation function of 𝑠(𝑛)and 𝑤(𝑛); 

𝜙𝑤𝑤 (𝜏)Autocorrelation function of 𝑤(𝑛). 

 

For large N, if 𝑠(𝑛)does not correlate with 𝑤(𝑛)then 𝜙𝑠𝑤  𝜏 = 0. 

Furthermore, if 𝑤(𝑛) is uncorrelated, then 𝜙𝑤𝑤  𝜏 = 0 except for  𝜏 = 0 

In such a case, the relations 

 

𝜙 𝜏 = 𝜙𝑠𝑠 𝜏 + 𝜙𝑤𝑤  𝜏  𝜏 = 0                                 (16) 

𝜙 𝜏 = 𝜙𝑠𝑠 𝜏  𝜏 ≠ 0                                                      (17) 

 

 

are valid. Based on these properties, the AUTOC provides robust performance against noise. 

 

The autocorrelation function with the period of P has some peaks at the locations of lP. Although the 

maximum peak is located at except for the case of𝜏 = 0, in some cases, the peak located at 𝜏 = 2𝑃 becomes 

larger than that located at, as shown in Fig. 12. Then, a half pitch error occurs. On the other hand, as also shown 

in Fig. 12, a peak is often made at. This situation, in some cases, leads to a double-pitch error. For such reasons, 

if unnecessary peaks of autocorrelation function as shown in Fig. 12 are suppressed somehow, then it is 

expected that the accuracy of pitch extraction becomes higher. 

For the purpose of emphasizing the true peak the AUTOC makes, we propose an autocorrelation function 

weighted by an in versed AMDF. The AMDF is described by 

 

𝜓 𝜏 =
1

𝑁
 |𝑥 𝑛 − 𝑥 𝑛 + 𝜏 |

𝑁−1

𝑛=0

.                                      (18) 

 

The AMDF has the characteristic that when is 𝑥(𝑛) similar with𝑥 𝑛 + 𝜏 ,𝜓(𝜏) becomes small. This means that 

if 𝑥(𝑛)has a period of𝑃,𝜓(𝜏) produces a deep notch at 𝜏 = 𝑃 Therefore, 1/𝜓(𝜏)makes a peak at  𝜏 = 𝑃 

Furthermore, the additive noise 𝑤(𝑛)included in 𝜓(𝜏) behaves independently with that included in𝜙(𝜏)  (see 

Appendix). Hence, using the autocorrelation function weighted by1/𝜓(𝜏),  it is expected that the true peak is 

emphasized, and as a result the errors of pitch extraction are decreased. 

 

The proposed function is given by 

 

𝜂 𝜏 =  𝜙(𝜏)/(𝜓 𝜏 + 𝑘)                                  (19) 

 

wherek is a fixed number k>0 The AMDF in (17) provides 

 

𝜓 0 = 0                                                         20  
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which invokes a divergence of the directly inversed AMDF. For this reason, the denominator in (18) is 

stabilized by adding the number K. 

 

Fig. 12 shows the autocorrelation and proposed functions obtained for a speech signal corrupted by noise. In this 

case, by picking the maximum amplitude of each function, the proposed function leads to the true pitch, while 

the autocorrelation function does an erroneous one. 
 

4.4.2. Implementation 

Pitch of the segmented speech is estimated by searching the peak of the weighted function. However, if 

we use the weighted function directly, the accuracy of pitch extraction is not so accurate. Therefore, the 

proposed system uses interpolation based on 3 points around the detected peak. It is known that such 

interpolation on the autocorrelation function is useful for improving the accuracy of pitch extraction. The 

interpolation operation used in this paper is based on Lagrange‘s method. The region for searching the pitch 

peak is set to be from 50 Hz to 400 Hz, which corresponds to the region of the fundamental frequencies of most 

men and women [21]. 

We have proposed a modified version of the autocorrelation method for pitch extraction. Based on the 

experimental results it has been shown that the proposed method is useful in noisy environments. Especially, it 

has been asserted that the proposed method provides a moderate improvement relative to the conventional 

autocorrelation method at very low SNR. 

 

V. Experimental results 
 

5.1. Data:  

We have taken two songs, one is tutor song, and another is student song. Now we will compare the 

pitch and energy of tutor and student song, and find out all the mistakes the student has made. The lengths of 

these two songs are almost same. They are about 45scecond of a song, just a part of a song for analysis only; 

this is of course applicable for a full song. 

 

5.2 Comparison of pitch:  

 
Figure 13: Pitch comparison for song 1; 
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Figure 14: Pitch comparison for song 2. 

 

5.3 Comparison of energy: 

 
Figure 15: Energy comparison for song 1. 

 

 
Figure 16: Energy comparison for song 2 
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VI. Discussion and conclusion 
There are many people interested in learning singing, this is a better way to learn singing, by 

comparing the pitch and energy, anyone can identify the faulty places in  his/her song. The energy could be 

plotted from different places during male and female voice comparison, we will observe their changing pattern 

and their distance, if these two things are same, then the song is right. This is a beginning concept of singing 

tutor. By developing the model and the structure of coding we can use this more conveniently and smoothly.  
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